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Some consequences of the generalized forms of the Lagrange–Jacobi equation for model gravitational
systems with variable masses are given.
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A famous Russian science historian G.K. Mikhailov [1], who was working at the Fesenkov
Astrophysical Institute of Non-stationary Dynamic Problems of Astronomy, considered
Fesenkov’s concept of corpuscular radiation to be a factor in the evolution of the formation
and development of the Sun and stars [2].

One can become acquainted with the relevant achievements through the monographs in [3, 4]
and the special reviews in [5–7]. In particular, Omarov [8] obtained the following dynamic
equation for a gravitational system, which changes its composition along an arbitrary exterior
bound S:

1

2

d2I

dt2
+ 1

2

d

dt

(∮
S

r2 [σa (r, t) − σb (r, t)] ds

)

+
∮

S

r [ua (r, t) σa (r, t) − ub (r, t) σb (r, t)] ds = 2T + W, (1)

where I is the barycentric moment of inertia, T is the kinetic energy, W is the potential energy
of the system, σa and σb are the masses along unit area of the surface S at unit time, and the
functions ua and ub describe the S speed distribution of the particles taken from the system
and added to it.

In the case of a gravitational system, the mass of which changed in time only as a
consequence of the variation in the mass m of its members, the analogue of the well-known
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Lagrange–Jacobi equation in a classic problem of n bodies [9] has the form

m

2

d2

dt2

(
I

m

)
= 2T + W, I =

∑
i

m(t)r2
i , (2)

where ri are the barycentric radius vectors of the bodies (i = 1, . . . , n). Taking into account
that the change in the energy H = T + W of such a system obeys the law [3]

dH

dt
= 1

m

dm

dt
(T + 2W), (3)

equation (2) may be given in the following form [10]:

1

2

1

m3

dm

dt

d2

dt2

(
I

m

)
= − d

dt

(
H

m3

)
. (4)

Equations (1) and (4) are the basis for the development of Jacobi dynamics variable-mass
gravitational systems.

Consider from this viewpoint the following problems of stellar dynamics.
The evaporation of gravitation is one possible mechanism for the non-stationarity of the

composition of stellar systems [11]. Adiabatic evolution of such a system is usually considered
in the assumption that its total energy is constant. In this approach the dependence ρ ∝ n−5

between the average density ρ of a stellar system and the variable number n of gravitating
members is defined. Let us determine the correct law here with the actual dependence of
the quantity H on time. In the case when the system’s mass is decreasing at the expense of
dissipation of its members with constant masses, i.e.

mi = constant, i = 1, 2, . . . , n, n = n(t), (5)

equation (1) has the form [3]

d2I

dt2
= R

d2M

dt2
+ R

(
2

dR

dt
+ 2VR

)
dM

dt
+ 2(2T + W), (6)

where M = mn(t) is the system’s mass, R is the system’s radius and VR is the average value
of the radial velocities that are out of touch with the system’s members. The system energy
changed according to the law [12]

dH

dt
=

(
V 2

R

2
− 1

2

GM

R

)
dM

dt
, (7)

where G is the gravitation constant and

V 2
R � 2

GM

R
. (8)

On the basis of equation (7) let us evaluate the change in the system density ρ = 3M/4πR3

as a function of n. Let

V 2
R ≈ 2

GM

R
. (9)

Then equation (7) takes the form

dH

dt
= 1

2

GM

R

dM

dt
. (10)
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Jacobi dynamics of variable-mass gravitational systems 281

In the case in equation (9) the following equality occurs:

n(t)∑
i=1

Hi =
n(t)∑
i=1

(Ti + Wi) = T + 2W = H + W ≈ constant. (11)

Moreover, one can put

W ≈ −GM2

R
. (12)

From equations (10)–(12) it follows that

3

2M

dM

dt
= 1

R

dR

dt
(13)

or

R = R0

M
3/2
0

M3/2 = R0

n
3/2
0

n3/2, (14)

where M0 = M(t0), n0 = n(t0) and R0 = R(t0).
For the average density of a system we have

ρ = 3mn
9/2
0

4πR3
0

n−7/2. (15)

The dynamic effects of mass loss by the members of a gravitational system have been
studied in stellar dynamics by applying it to clusters of galaxies [13, 14]. Let us complete this
investigation with an analytical estimation of the time of transition of the system’s n bodies
of variable masses from the initial stage with a negative energy to the disintegration condition
with H > 0. In the case of a gravitational system, in which mass is changing with time only
on account of the isotropic variability of the individual masses of its members, i.e.

mi = mi(t), i = 1, 2, . . . , n, n = constant, (16)

from equation (4) we obtain

2
H

m3
+ 1

m3

dm

dt

dJ

dt
− J

d

dt

(
1

m3

dm

dt

)
= constant −

∫ t

t0

J
d2

dt2

(
1

m3

dm

dt

)
dt, (17)

where t0 is the starting moment of time and

J = I

m
. (18)

If the mass-changing law m(t) takes place according to the Mestschersky law

m(t) = m(t0)(
At2 + 2Bt + C

)1/2 , (19)

where A, B and C are constants, then equation (17) will turn into an exact integral.
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When the masses of the bodies are changing in accordance with the Eddington–Jeans law

dm

dt
= αmk, (20)

where α and k are constants, from equation (17) we obtain

2
H

m3
+ αmk−3 dJ

dt
− α2(k − 3)m2k−4J = constant + �, (21)

where

� = −2α3(k − 2)(k − 3)

∫ t

t0

Jm3k−5dt. (22)

The quantity J = J (t) in equation (18) can be expressed by a Taylor series and is limited by
the squared approach:

J (t) ≈ J (t0) + (t − t0)

(
dJ

dt

)
0

+ (t − t0)
2

2

(
d2J

dt2

)
0

. (23)

In this case from equation (2) it follows that

2(2T + W) = m

(
d2J

dt2

)
0

. (24)

Accordingly, equation (4) gives

H

m3
= H0

m3
0

+ 1

4

(
1

m2
− 1

m2
0

) (
d2J

dt2

)
0

, (25)

where H0 = H(t0) and m0 = m(t0).
Considering that from equation (24) it follows that

(
d2J

dt2

)
0

= 2(2T0 + W0)

m0
,

where T0 = T (t0) and W0 = W(t0), one can rewrite equation (25) in the form

H

m3
= H0

m3
0

+
(

1

m2
− 1

m2
0

)
2T0 + W0

2m0
. (26)

On the basis of equation (26) we can estimate the time of the system’s disintegration.
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Let t = t∗ be the time in which the system transits into the disintegration condition in view
of the masses lost by individual members (equation 16). Then

H(t∗) = 0. (27)

From equations (26) and (27),

(
m(t0)

m(t∗)

)2

= 1 − 2H0

2T0 + W0
. (28)

The mass-changing law (20) gives

(
m(t0)

m(t∗)

)2

= m2
0[α(1 − k) �t∗ + m1−k

0 ]2/(k−1), k �= 1, (29)

where the system’s disintegration time is denoted by

�t∗ = t∗ − t0. (30)

From equations (28) and (29) we obtain the formula defining the time interval in which
system transits into the disintegration condition:

�t∗ = 1

α(1 − k)

[
1

m2
0

(
1 − 2H0

2T0 + W0

)(k−1)/2

− m1−k
0

]
. (31)

In the case when k = 1, which was not included in equation (31), from equations (20), (27)
and (28) it follows that

�t∗ = − 1

2α
ln

(
1 − 2H0

2T0 + W0

)
. (32)
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