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The planet is assumed to consist of an absolutely rigid sphere to which the viscous elastic spherical
shell (the mantle) is connected from the external side. In the undeformed state the centres of mass of
the mantle and the core coincide and the shells have concentric positions. The centre of mass of the
core is considered to be displaced according to a definite law relative to the centre of mass of the mantle
in its undeformed state among to the differential action from external celestial bodies. The solution
of the problem of elasticity is obtained using a restricted treatment by taking into account only the
mutual interaction of the mantle and the moving core and by neglecting the non-sphericities of the
core and the mantle. The corresponding effects of the mantle deformations caused by the external
bodies are known and can be studied separately on the basis of the principle of superposition. The
deformations of the Earth’s mantle due to secular drift of the core along the polar axis are described.
The phenomenon of the contrasting tendencies in the deformations northern and southern hemispheres
of the Earth (expansion and contraction, respectively) is discovered. The evaluation of the velocity of
the core drift relative to the mantle’s centre of mass has been obtained and was found to be equal to
8.0 cm year−1 .

Keywords: Planetary deformations; Core motion; Elastic mantle; Expansion and contraction of the
hemispheres

1. Introduction

In the model problem the relative displacements of the mantle and core and deformations of
the mantle are studied. We consider the mantle as an elastic (homogeneous and isotropic)
layer, and the core as a rigid homogeneous spherical body. In the undeformed state of the
mantle and the core, their centres of mass coincide and the shells have concentric positions.
The mantle and the core are considered to execute a given relative motion, i.e. the centres of
the mantle and the core move by a definite law. Furthermore, in this paper we shall concentrate
attention on the secular drift of the core along the polar axis of the Earth. The dynamic reason
for and the origin of the similar relative displacements lie in the gravitational differential action
on the non-spherical core and mantle from external celestial bodies [1–6].
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196 Yu. V. Barkin and A. V. Shatina

Because of this action the shells undergo forced mutual mechanical interaction. The core
pushes on the mantle (and the mantle on the core), attracts its material points and deforms its
external surface and all mantle layers. The gravitational attraction of the particles of the mantle
is changed also by the gravitational attraction of any external body, and the mantle undergoes
by additional deformations. We give an analytical description of the above-mentioned defor-
mations of the mantle due to small displacements of the core. Here, we consider a restricted
treatment of the problem and believe that the displacements of the core relative to the centre
of mass of the planet (by undeformed mantle) are given. Formally, this means that here we do
not consider the deformations of the mantle under the attraction of the external celestial body.
In accordance with the linear theory of elasticity this can be studied separately. Furthermore,
using the solution of the above-mentioned problem of elasticity we neglect the non-sphericities
of the core and the mantle (in its undeformed state) and do not take into account the rotation
of the planet.

The solution of the problem of elasticity of the mantle’s deformations due to the core
displacements was first used for the study of the variations in the geopotential coefficients [7].
These results were obtained for a compressible elastic body with a concentric mass distribution
(in the undeformed state of the mantle). However, in this paper we consider and study in more
detail a similar solution for the homogeneous elastic mantle described in [8, 9].

We pay special attention to the study of the deformations of the mantle’s external surface by
the secular trend of the core along the polar axis. Using the given constant velocity of the drift
we observe the inversion phenomenon of the expansion of the southern hemisphere and the
contraction of the northern hemisphere of the planet. We have applied the solution obtained to
the Earth’s core–mantle system and obtained the following evaluations. Owing to the secular
drift of the core to the North Pole with a velocity of 8.3 cm year−1 and owing to the gravitational
action of its superfluous mass the mantle’s surface is deformed so that the 45◦ S parallel of the
southern hemisphere tests lengthens and the 45◦ N parallel shortens at a velocity of 1.67 cm
year−1. This effect has been predicted theoretically in the Barkin [2, 3, 10] as a ‘flux inversion
phenomenon’ and has been confirmed by space geodesy methods in the last few years.

Chinese workers first detected the planetary ‘flux phenomenon’ from observational data
[11, 12]. In these papers, the global planetary form change deduced from geophysical research
was identified by space geodesy data from very-long-baseline interferometry, Global Position-
ing System and satellite laser ranging measurements. Using the data on the geodesic rates and
vertical velocities of stations, three kinds of data and their integration have been obtained
with consistent results; within the midlatitude belt 20–50◦ latitude in the northern hemisphere
there may be a contraction of about 8–10 mm year−1; within the midlatitude belt–(20–50◦)
latitude in the southern hemisphere there may be an expansion of about 12–14 mm year−1

[11]. The dependence of the length of the parallels on the latitude was also studied [12] and
the velocities of expansion of the middle parallels have been evaluated as 16–20 mm year−1.
Using the above-mentioned Chinese results we have evaluated the velocity of the centre of
the core of the Earth relative to the mantle centre as 8.0 cm year−1.

2. Treatment of the problem and equations of motion

2.1 Displacement vector

The planet is a system of two shells: the mantle and the core. We consider the mantle as an
elastic (homogeneous and isotropic) layer, and the core as a rigid spherical body with a radius
r0. In the undeformed state the mantle occupies a domain Ω = {r ∈ E3 | r0 ≤ |r| ≤ r1}. In the
undeformed state the centres of mass of the mantle and the core coincide and the shells have
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Deformations of the Earth’s mantle 197

concentric positions. The mantle and the core are subjected to differential action from external
celestial bodies. Because of this action the shells undergo a mutual mechanical interaction.
The core pushes on the mantle and deforms its inner surface and all mantle layers. The
gravitational attraction of the particles of the mantle is also changed and the mantle is exposed
to additional deformations. The goal of our work is to give an analytical description of the
above-mentioned deformations of the mantle due to small displacements of the core. Here, we
consider a restricted treatment of problem and believe that displacements of the core relative
to the centre of mass of the planet (by the undeformed mantle) are given. Formally, this means
that we do not consider deformations of the mantle under the attraction of an external celestial
body.Also we do not take into account the rotational motion of the planet. We shall characterize
the elastic properties of the homogeneous mantle using the standard parameters of the theory
of elasticity: E is the Young’s modulus; ν is the Poisson’s ratio; µ, k and λ are the Lamé
coefficients.

To describe the planetary motion and deformations let us introduce the following reference
systems. C0xyz and Ccxyz are two Cartesian reference systems with parallel axes and with
the origin at the centre C0 of mass of the undeformed planet and as the centre Cc of mass of the
core respectively. The axes C0z and Ccz coincide and are directed along the polar axis of the
planet. From the secular trend of the core along the polar axis with a constant velocity it can
be seen that both reference systems are inertial. The base reference system in the considered
problem for the construction of the equations of motion will be Ccxyz.

We suggest that the core’s centre of mass undergoes a given small relative motion with
respect to the reference system C0xyz. We shall determine its position by the radius vector ρ.
The radius vector of the mantle point M is

R(r, t) = r + u(r, t),

where r ∈ V (V is a domain in occupied by the planet in the undeformed state) is a displacement
vector of points of the elastic mantle. The distance between the centre of the core and an
arbitrary mantle point is determined from the formula

R(r, t) = −ρ(t) + r + u(r, t). (1)

The displacement vector ρ(t) is considered to be a known function of time, but the main
attention in the paper will be given to the case of secular drift of the core along the polar axis
with a constant velocity ρ̇ = |ρ̇|:

ρ(t) = ρ̇t. (2)

2.2 Potential energy

The potential energy of gravitational interaction of the core with the elastic mantle is
determined by the volume integral

Π = −f �mc

∫
Ω

δ

[(r + u − ρ̇ )2]1/2
dv. (3)

Here, �mc is the additional mass of the core, δ is the density of the mantle, f is a gravitational
constant, γ = f �mc and dv is the elementary volume of the mantle. Taking into account the
geometrical relation ρ � r0 we develop the potential energy in a series. Employing only the
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198 Yu. V. Barkin and A. V. Shatina

main terms of this series we have

Π = − γ δ

∫
Ω

[(r + u − ρ)2]−1/2 dv

= − γ δ

∫
Ω

[(r, r) + 2(r, u − ρ) + (u − ρ, u − ρ)]−1/2 dv

= − γ δ

∫
Ω

1

r

(
1 + 2(r, u − ρ)

r2
+ (u − ρ, u − ρ)

r2

)−1/2

dv

= − γ δ

∫
Ω

1

r

[
1 − 1

2

(
2(r, u − ρ)

r2
+ (u − ρ, u − ρ)

r2

)

+ 3

8

(
2(r, u − ρ)

r2
+ (u − ρ, u − ρ)

r2

)2

+ · · ·
]

dv

= − γ δ

∫
Ω

1

r

(
1 − (r, u − ρ)

r2
− 1

2

(u − ρ, u − ρ)

r2
+ 3

2

(r, u − ρ)2

r4
+ · · ·

)
dv

= − γ δ

∫
Ω

(
1

r
− (r, u − ρ)

r3
− (u − ρ, u − ρ)

2r3

+ 3

2

(r, u)2 − 2(r, u)(r, ρ) + (r, ρ)2

r5
+ · · ·

)
dv.

2.3 Equations for the elasticity problem and boundary conditions

In this section we obtain the equations of deformations for the problem based on the standard
method developed in [8, 13] and using the known classical results of the theory of elasticity
[14]. We introduce the functional of the potential energy of elastic deformations in accordance
with the linear theory of elasticity. The functional of dissipative forces corresponds to the
Kelvin-loight model:

D[u̇] = χE[u̇] (4)

The variation principle of d’Alembert and Lagrange will be formulated in the following
form: ∫

V

(ü, δu)ρ dx + (∇uΠ + ∇uE[u] + ∇u̇D[u̇], δu)Ω = 0. (5)

Using equation (2) and the independence of variables of variations and on the basis of
principle (5) we obtain the differential equations of the problem given by

∇uE[u] + (∇u̇Π [u], δu)Ω = 0, (6)

(∇uE[u], δu)Ω = −
∫

Ω

E

2(1 + ν)

(
1

1 − 2ν
∇(∇ · u) + �u

)
δu dv

+
∫

∂Ω

3∑
i=1

Eν

(1 + ν)(1 − 2ν)
∇ · uγi + Eν

2(1 + ν)

(
∂u
∂xi

n + �ui n
)

δui dv.

(7)
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Deformations of the Earth’s mantle 199

Here, n = (γ1, γ2, γ3) is a vector of the external normal to the boundary ∂Ω of the domain
Ω . Now equation (6) can be presented in the following form:

− E

2(1 + ν)

(
1

1 − 2ν
∇(∇ · u) + �u

)
= γ δ

(
− r

r3
+ ρ

r3
− 3r(r, ρ)

r5

)
, r ∈ Ω. (8)

The boundary conditions are given by the following basic assumptions in the considered
problem.

(i) The displacements of the mantle particles on the core surface are equal to zero.
(ii) The tension on the external surface of the mantle is equal to zero.

Boundary conditions (i) and (ii) are represented by the equations:

u|r=r0
= 0, (9)

Eν

(1 + ν)(1 − 2ν)
∇ · u γi + Eν

2(1 + ν)

(
∂u

∂xi

n + �ui n
) ∣∣∣∣

r=r1

= 0 (i = 1, 2, 3), (10)

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
, � =

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
.

Remark In equations (8)–(10) the basic reference system used is the Cartesian reference
system connected with the core, which is characterized by translational displacements and
is considered to be an inertial reference system. We neglect here possible non-inertial
dynamic effects in the mantle deformations. In the case of translational relative displace-
ments of the mantle and core with a constant relative velocity these equations are correct and
exact.

Taking into account the relations between the standard elastic parameters from section 2.1,
namely:

µ = E

2(1 + ν)
, λ = Eν

(1 + ν)(1 − 2ν)
, ν = λ

2(λ + µ)
, E = µ(3λ + 2µ)

λ + µ
, (11)

the equations of the boundary problem for determination of displacement vector can be
described in the form:

(λ + µ)∇(∇ · u) + µ �u = γ δ

(
r
r3

− ρ

r3
+ 3r(r, ρ)

r5

)
, (12)

u|r=r0
= 0, (13)

Xν |r=r1
= 0, Yν |r=r1

= 0, Zν |r=r1
= 0, (14)

where:

Xν | = µ

r

(
λ

µ
x ∇ · u + r ∇u + ∂

∂x
(r · u) − u

)
,

Yν | = µ

r

(
λ

µ
y ∇ · u + r ∇v + ∂

∂y
(r · u) − v

)
, (15)

Zν | = µ

r

(
λ

µ
z ∇ · u + r ∇w + ∂

∂z
(r · u) − w

)
.
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200 Yu. V. Barkin and A. V. Shatina

3. Solution of the elasticity problem

Equations (13)–(15) are the boundary conditions: on the surface of the core, displacements of
particles of mantle are absent (equation (13)); the component of tension normal to the external
surface of planet is equal to zero (equations (14) and (15)).

Equation (8) is linear and its solution can be presented as a superposition of two solutions:

u = u(−1) + u(−2), (16)

where u(−1) is a solution of the equation:

(λ + µ)∇(∇ · u(−1)) + µ �u(−1) = γρ
( r

r3

)
(17)

satisfying the boundary conditions (13)–(15), and u(−2) is a solution of the equation:

(λ + µ)∇(∇ · u(−2)) + µ �u(−2) = γ δ

(
− ρ

r3
+ 3r(r, ρ)

r5

)
(18)

also satisfying the boundary conditions (13)–(15). The sum of solutions (16) also satisfies the
boundary conditions on the external and inner surfaces of the mantle.

3.1 Solution of equation (8) (n = −1)

Let us consider a volume spherical function Vn = γ /r of the order n = −1. Equation (8) can
be presented in the form of a system of three scalar equations:

(λ + µ)
∂

∂x
(∇ · u(−1)) + µ �u(−1) + δ

∂V−1

∂x
= 0,

(λ + µ)
∂

∂y
(∇ · u(−1)) + µ �v(−1) + δ

∂V−1

∂y
= 0, (19)

(λ + µ)
∂

∂z
(∇ · u(−1)) + µ �w(−1) + δ

∂V−1

∂z
= 0,

u(−1) = (u(−1), v(−1), w(−1)).

The particular solution of equations (8) is known for arbitrary volume spherical functions.
In particular, for n = −1 on the base of the general equations (4.3) and (4.4) in [14] we obtain:

u
(−1)
1 = δ

2(λ + 2µ)
r2 ∂V−1

∂x
,

v
(−1)
1 = δ

2(λ + 2µ)
r2 ∂V−1

∂y
, (20)

w
(−1)
1 = δ

2(λ + 2µ)
r2 ∂V−1

∂z
.

The solution (20) must be added to the solution of the homogeneous equation of the theory
of elasticity:

(λ + µ) ∇(∇ · u(−1)
0 ) + µ �u

(−1)
0 = 0, (21)
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Deformations of the Earth’s mantle 201

which is known and has the following form:

u
(−1)
0 = F−1(r)

∂V−1

∂x
+ G−1(r)V−1x,

v
(−1)
0 = F−1(r)

∂V−1

∂y
+ G−1(r)V−1y (22)

w
(−1)
0 = F−1(r)

∂V−1

∂z
+ G−1(r)V−1z

The functions F−1(r), and G−1(r) are defined by the general equations (4.13) in [14], and
in the case n = −1 we obtain:

F−1(r) = c
(−1)
4 r + c

(−1)
3 − 3λ + 5µ

6(λ + 2µ)
c
(−1)
2 r3 − c

(−1)
1 r2,

G−1(r) = c
(−1)
4 r−1 − λ + µ

2(λ + 2µ)
c
(−1)
2 r − c

(−1)
1 .

(23)

where c
(−1)
i are constants determined from the boundary conditions.

Taking into account the simple relations:

V−1x = −r2 ∂V−1

∂x
, V−1y = −r2 ∂V−1

∂y
, V−1z = −r2 ∂V−1

∂z
, (24)

we present the solution of the system (8) in the following forms:

u(−1) = u
(−1)
0 + u

(−1)
1 =

(
F−1(r) − r2G−1(r) + δ

2(λ + 2µ)
r2

)
∂V−1

∂x
c
(−1)
i ,

v(−1) = v
(−1)
0 + v

(−1)
1 =

(
F−1(r) − r2G−1(r) + δ

2(λ + 2µ)
r2

)
∂V−1

∂y
, (25)

w(−1) = w
(−1)
0 + w

(−1)
1 =

(
F−1(r) − r2G−1(r) + δ

2(λ + 2µ)
r2

)
∂V−1

∂z
.

In accordance with general theory, the components of tension on the spherical surface of
radius r corresponding to solution (14) of the homogeneous equation (13) are defined by
equation (4.18) in [14] in which we have:

ω = V−1,

P−1(r) = −2c
(−1)
4 − 4c

(−1)
3

r
+ µ

3(λ + 2µ)
c
(−1)
2 r2 + c

(−1)
1 r, (26)

Q−1(r) = −2µc
(−1)
4 r−1 + µ(λ + µ)

λ + 2µ
c
(−1)
2 r + µc

(−1)
1 .

The components of the tension on the sphere of radius corresponding to solution (12) are
defined by equations (4.23) of [14] for which:

n = −1, C = δ

2(λ + 2µ)
. (27)

The components of the tension on the sphere of radius corresponding to solution (29) are
defined by equations (4.24) of [14]. Taking into account the properties of the function Vn we
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obtain the following expressions:

Xν =
(

µP−1(r) − rQ−1(r) + δλ

λ + 2µ
r

)
∂V−1

∂x
,

Yν =
(

µP−1(r) − rQ−1(r) + δλ

λ + 2µ
r

)
∂V−1

∂y
, (28)

Zν =
(

µP−1(r) − rQ−1(r) + δλ

λ + 2µ
r

)
∂V−1

∂z
.

The boundary conditions (5) will be equivalent to the following two equations:

F−1(r) − r2G−1(r) + δ

2(λ + 2µ)
r2

∣∣∣∣
r=r0

= 0,

µP−1(r) − rQ−1(r) + δλ

λ + 2µ
r

∣∣∣∣
r=r1

= 0.

(29)

From equations (23) we obtain the relation:

F−1(r) − r2G−1(r) = c
(−1)
3 − µ

3(λ + 2µ)
c
(−1)
2 r3. (30)

This means that solution (25) does not contain the constants c
(−1)
1 and c

(−1)
4 .

From equations (26) we obtain a system of equations for determination of the constants
c
(−1)
2 and c

(−1)
3 :

c
(−1)
3 − µ

3(λ + 2µ)
c
(−1)
2 r3

0 + δ

2(λ + 2µ)
r3

0 = 0,

−4µ

r1
c
(−1)
3 − µ(3λ + 2µ)

3(λ + 2µ)
c
(−1)
2 r2

1 + δλ

λ + 2µ
r1 = 0.

(31)

Solving the linear equations (31) we find that:

c
(−1)
2 = −3δ(λ + 2µ)

µ∆d

(
2µr2

0 + λr2
1

)
, (32)

c
(−1)
3 = − δ

2∆d

r2
0 r2

1 [2λr0 − (3λ + 2µ)r1] ,

where

∆d = −(λ + 2µ)[4µr3
0 + (3λ + 2µ)r3

1 ].
From equations (27), (29) and (36) finally we obtain:

u = −γ δ
(
d1 + d2r

2 + d3r
3
) r

r3
, (33)

where the constant coefficients di are determined by the formulae:

d1 = 1

2∆d

r2
0 r2

1 [2λr0 − (3λ + 2µ)r1],

d2 = 1

2(λ + 2µ)
, (34)

d3 = − 1

∆d

(2µr2
0 + λr2

1 ).
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Deformations of the Earth’s mantle 203

In special dimensionless notation the solutions (33) and (34) can be presented as:

u = K�c

((
A0 + A2ζ

2 + A3ζ
3
) r

r
ζ−2r1

)
, (35)

where:

A0 = −λd1

r2
1

= − 1

2∆d

λr2
0 [2λr0 − (3λ + 2µ)r1],

A2 = −λd2 = − λ

2(λ + 2µ)
,

A3 = −λr1d3 = 1

∆d

λr1(2µr2
0 + λr2

1 ),

∆d = −(λ + 2µ)[4µr3
0 + (3λ + 2µ)r3

1 ].

(36)

Here, ζ = r/r1 is the dimensionless radius of the mantle particle, K∆C = f ∆mc/λr1 is the
constant dimensionless coefficient and �mc is the superfluous mass of the moving core.

3.2 Solution of equation (8) (n = −2)

In this case, equations (8) can be represented as:

(λ + µ)
∂

∂x
(∇ · u(−2)) + µ �u(−2) + δ

∂V−2

∂x
= 0,

(λ + µ)
∂

∂y
(∇ · u(−2)) + µ �v(−2) + δ

∂V−2

∂y
= 0,

(λ + µ)
∂

∂z
(∇ · u(−2)) + µ �w(−2) + δ

∂V−2

∂z
= 0,

u(−2) = (u(−2), v(−2), w(−2)).

(37)

Here V−2 = γ (r, ρ)/r3 is a harmonic and homogeneous volume function of the order n = −2.
Particular solution of equations (37) in accordance with equations (4.3) and (4.4) of [14]

for n = −2 is defined by formulae similar to equations (24):

u
(−2)
1 = δ

2(2λ + 5µ)
r2 ∂V−2

∂x
,

v
(−2)
1 = δ

2(2λ + 5µ)
r2 ∂V−2

∂y
, (38)

w
(−2)
1 = δ

2(2λ + 5µ)
r2 ∂V−2

∂z
.

The solution of the corresponding homogeneous equation of elasticity theory, namely:

(λ + µ)∇(∇ · u(−2)
0 ) + µ ∆u(−2)

0 = 0, (39)

is described by equations (4.5) of [14] in which ω = V−2 and the functions are:

F−2(r) = c
(−2)
4 r3 + c

(−2)
3 − 2λ + 3µ

5(λ + 2µ)
c
(−2)
2 r5 + λ + 3µ

2(λ + 2µ)
c
(−2)
1 r2,

G−2(r) = 3c
(−2)
4 r − λ + µ

λ + 2µ
c
(2)
2 r3 + 2λ + 5µ

λ + 2µ
c
(−2)
1 .

(40)
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From the solution of equations (39) we obtain the following:

u(−2) = u
(−2)
0 + u

(−2)
1 =

(
F−2(r) + δ

2(2λ + 5µ)
r2

)
∂V−2

∂x
+ G−2(r)V−2x,

v(−2) = v
(−2)
0 + v

(−2)
1 =

(
F−2(r) + δ

2(2λ + 5µ)
r2

)
∂V−2

∂y
+ G−2(r)V−2y, (41)

w(−2) = w
(−2)
0 + w

(−2)
1 =

(
F−2(r) + δ

2(2λ + 5µ)
r2

)
∂V−2

∂z
+ G−2(r)V−2z.

In vector form the solution (41) can be described as follows:

u(−2) = γ

[(
F−2(r) + δ

2(2λ + 5µ)
r2

) (
ρ

r3
− 3r(r · ρ)

r5

)
+ G−2(r)

r(r · ρ)

r3

]
(42)

or

u(−2) = γ

{(
F−2(r) + δ

2(2λ + 5µ)
r2

)
ρ

r3

+
[
G−2(r)r

2 − 3

(
F−2(r) + δ

2(2λ + 5µ)
r2

)]
r(r · ρ)

r5

}
. (43)

In accordance with general equations (4.18) and (4.23) of [14] the components of tension on
the surface of the mantle are represented by the expressions:

Xν = µ

(
P−2(r) − 2δ

2λ + 5µ
r

)
∂V−2

∂x
+

(
Q−2(r) − 2δ(λ + µ)

2λ + 5µ

)
V−2

x

r
,

Yν = µ

(
P−2(r) − 2δ

2λ + 5µ
r

)
∂V−2

∂y
+

(
Q−2(r) − 2δ(λ + µ)

2λ + 5µ

)
V−2

y

r
, (44)

Zν = µ

(
P−2(r) − 2δ

2λ + 5µ
r

)
∂V−2

∂z
+

(
Q−2(r) − 2δ(λ + µ)

2λ + 5µ

)
V−2

z

r
,

where

P−2(r) = −6

r
c
(−2)
3 − 3λ + 2µ

5(λ + 2µ)
c
(−2)
2 r4 − µ

λ + 2µ
c
(−2)
1 r,

Q−2(r) = −3c
(−2)
1 µ, (45)

c(−2) = δ

2(2λ + 5µ)
.

The boundary condition (10) will be equivalent to the following system of two equations:

γ

(
F−2(r) + δ

2(2λ + 5µ)
r2

)
1

r3
= 0,

G−2(r) − 3

r2

(
F−2(r) + δ

2(2λ + 5µ)
r2

)
= 0,

(46)

or

F−2(r) + δ

2(2λ + 5µ)
r2 = 0, G−2(r) = 0. (47)
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In particular, for r = r0 we obtain:

F−2(r0) + δ

2(2λ + 5µ)
r2

0 = 0,

G−2(r0) = 0,

and for r = r1, from equations (45), we find that:

P−2(r1) − 4c(−2)r1 = 0,

Q−2(r1) − 4c(−2)(λ + µ) = 0.
(48)

Substituting equations (47) and (48) in equations (45), we obtain the algebraic system of
equations for determination of the constants:

c
(−2)
4 r3

0 + c
(−2)
3 − 2λ + 3µ

5(λ + 2µ)
c
(−2)
2 r5

0 + λ + 3µ

2(λ + 2µ)
c
(−2)
1 r2

0 + δ

2(2λ + 5µ)
r2

0 = 0,

3c
(−2)
4 r0 − λ + µ

λ + 2µ
c
(−2)
2 r3

0 + 2λ + 5µ

λ + 2µ
c
(−2)
1 = 0,

− 6

r1
c
(−2)
3 − 3λ + 2µ

5(λ + 2µ)
c
(−2)
2 r4

1 − µ

λ + 2µ
c
(−2)
1 r1 − 2δ

2λ + 5µ
r1 = 0,

−3c
(−2)
1 µ − 2δ(λ + µ)

2λ + 5µ
= 0.

(49)

Solving the system (49) (see appendix A) we obtain the following expressions:

c
(−2)
1 = − 2δ(λ + µ)

3µ(2λ + 5µ)
,

c
(−2)
2 = 5δ

3∆d

(λ + 2µ)[(λ + 4µ)r2
0 − 2µr2

1 ],

c
(−2)
3 = − δ

18∆d

(λ + 4µ)r2
0 r2

1 [4µr3
0 + (3λ + 2µ)r3

1 ],

c
(−2)
4 = δ

9r0∆d

(λ + µ)[9(λ + 4µ)r5
0 − 10µr3

0 r2
1 + 2(3λ + 2µ)r5

1 ],

∆d = µ(λ + 2µ)
[
2(λ + 4µ)r5

0 + (3λ + 2µ)r5
1

]
.

(50)

Now from equations (40) we obtain the following polynomial equations:

F−2(r) + δ

2(2λ + 5µ)
r2 = a1 + a2r

2 + a3r
3 + a4r

5,

G−2(r)r
2 − 3

(
F−2(r) + δ

2(2λ + 5µ)
r2

)
= a5 + a6r

2 + a7r
5,



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:0
9 

7 
D

ec
em

be
r 2

00
7 

206 Yu. V. Barkin and A. V. Shatina

where

a1 = c
(−2)
3 ,

a2 = λ + 3µ

2(λ + 2µ)
c
(−2)
1 + δ

2(2λ + 5µ)
,

a3 = c
(−2)
4 ,

a4 = − 2λ + 3µ

5(λ + 2µ)
c
(−2)
2 ,

a5 = −3c
(−2)
3 ,

a6 = 2λ + 5µ

λ + 2µ
c
(−2)
1 − 3

λ + 3µ

2(λ + 2µ)
c
(−2)
1 − 3δ

2(2λ + 5µ)

= λ + µ

2(λ + 2µ)
c
(−2)
1 − 3δ

2(2λ + 5µ)
,

a7 = − λ + µ

λ + 2µ
c
(−2)
2 + 3

2λ + 3µ

5(λ + 2µ)
c
(−2)
2 = λ + 4µ

5(λ + 2µ)
c
(−2)
2 .

(51)

Finally, the solution (42) and (43) of the problem can be represented by the formula:

u(2) = γ δ

(
(a1 + a2r

2 + a3r
3 + a4r

5)
1

r3
ρ + (a5 + a6r

2 + a7r
5)

1

r5
(r · ρ)r

)
, (52)

where the coefficients ai (equations (51)) are transformed to the following forms:

a1 = − 1

18∆a

(λ + 4µ)r2
0 r2

1 [4µr3
0 + (3λ + 2µ)r3

1 ],

a2 = − λ

6µ(λ + 2µ)
,

a3 = 1

9r0∆a

(λ + µ)[9(λ + 4µ)r5
0 − 10µr3

0 r2
1 + 2(3λ + 2µ)r5

1 ],

a4 = − 1

3∆a

(2λ + 3µ)[(λ + 4µ)r2
0 − 2µr2

1 ],
a5 = −3a1,

a6 = − λ + 4µ

6µ(λ + 2µ)
,

a7 = 1

3∆a

(λ + 4µ)[(λ + 4µ)r2
0 − 2µr2

1 ],

∆a = µ(λ + 2µ)
[
2(λ + 4µ)r5

0 + (3λ + 2µ)r5
1

]
.

(53)

3.3 Full solution of the problem

Here, we present the final formulae describing the full solution of the equation of the elasticity
problem (equation (8)) with the boundary conditions (9) and (10). In the dimensionless notation

ζ = r

r1
, K∆C

= f �mc

λr1
, (54)
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the full solution of the considered problem (16) on the basis of equations (35), (36), (51) and
(53) can be described in the following final form:

u = K∆c

[(
−λd1

r2
1

− λd2ζ
2 − λr1d3ζ

3

)
r
r
ζ−2r1

+
(

λa1

r2
1

+ λa2ζ
2 + λr1a3ζ

3 + λr3
1 a4ζ

5

)
ζ−3ρ

+
(

λa5

r2
1

+ λa6ζ
2 + λr3

1 a7ζ
5

)
ζ−3 (r · ρ)

r2
r
]

or

u = K∆c

((
A0 + A2ζ

2 + A3ζ
3
) r

r
ζ−2r1 + (

B0 + B2ζ
2 + B3ζ

3 + B5ζ
5
)
ζ−3ρ

+ (
C0 + C2ζ

2 + C5ζ
5
)
ζ−3 (r · ρ)

r2
r
)

, (55)

where

A0 = −λd1

r2
1

= − 1

2∆d

λr2
0 [2λr0 − (3λ + 2µ) r1],

A2 = −λd2 = − λ

2(λ + 2µ)
,

A3 = −λr1d3 = 1

∆d

λr1(2µr2
0 + λr2

1 ),

B0 = λa1

r2
1

= − 1

18∆a

λ(λ + 4µ)r2
0 [4µr3

0 + (3λ + 2µ)r3
1 ],

B2 = λa2 = − λ2

6µ(λ + 2µ)
,

B3 = λr1a3 = r1

9r0∆a

λ(λ + µ)[9(λ + 4µ)r5
0 − 10µr3

0 r2
1 + 2(3λ + 2µ)r5

1 ],

B5 = λr3
1 a4 = − 1

3∆a

λr3
1 (2λ + 3µ)[(λ + 4µ)r2

0 − 2µr2
1 ],

C0 = λa5

r2
1

= 1

6∆a

λ(λ + 4µ)r2
0

[
4µr3

0 + (3λ + 2µ)r3
1

]
,

C2 = λa6 = − λ(λ + 4µ)

6µ(λ + 2µ)
,

C5 = λr3
1 a7 = 1

3∆a

λ(λ + 4µ)r3
1

[
(λ + 4µ)r2

0 − 2µr2
1

]
,

∆d = −(λ + 2µ)[4µr3
0 + (3λ + 2µ)r3

1 ],
∆a = µ(λ + 2µ)

[
2(λ + 4µ)r5

0 + (3λ + 2µ)r5
1

]
.

(56)

The first term in the solution (55) and (56) describes the central radial deformations caused
by the superfluous mass of the core in its concentric position. As these static deformations
take place for a non-moveable core we exclude them from consideration.
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4. Deformations of the Earth’s surface due to displacements of the core

4.1 Vector of displacement of the Earth’s mantle particles

The solution (54) and (55) of the problem of the theory of elasticity obtained in sections 1
and 2 is applicable to analysis of the deformations of different celestial bodies, considered as
a core-mantle system. Here we shall give a preliminary study of the possible deformations of
the Earth due to small relative displacements of the core and mantle.

Let us consider a reduced two-layer model of the Earth. We shall model the core of the
Earth as a rigid homogeneous sphere. The mantle is also homogeneous and spherical in an
undeformed state. The basic values of parameters of the considered model of the Earth are:

µ = 1.80, λ = 2.57 × 1011 Nm−2,

δ = 4.44 g/ cm−3, m⊕/�mc = 5.1760, K∆c = 0.208 33,

r0 = 3480 km, r1 = 6371 km, ς0 = r1/r0 = 0.5462.

(57)

In equations (57), δ is the value of the mean density of the Earth’s mantle, and r0 and r1

are the mean radii of the core and the mantle respectively of the Earth. We shall describe the
elastic properties of the mantle by the mean values of the Lame coefficients µ and λ. ∆mc is
the superfluous mass of the moving core. m⊕ is the Earth’s mass. K∆c is the dimensionless
fundamental parameter of the problem. The superfluous mass of the core is �mc = 0.1932m⊕
and all the other parameters of the model (57) of the Earth were determined on the basis of
the standard Earth model PREM [15]. For given values of the parameters (57) of the problem
from the basic equations (56) we obtain the following numerical values of the coefficients Ai ,
Bi and Ci (i = 0, 1, 2, 3):

A0 = −0.042 322 4, A2 = −0.208 266, A3 = −0.121 592,

B0 = −0.038 157, B2 = −0.099 119, B3 = 0.402 043, B5 = 0.045 425,

C0 = 0.114 472, C2 = −0.376 807, C3 = 0, C5 = −0.042 106.

(58)

4.2 Lengthening of the parallels in the southern hemisphere and shortening of the
parallels in the northern hemisphere of the Earth due to displacement of the Earth’s
core to the North pole

On the basis of the values of the parameters (57) and (58) and the equations of the solution
(55) and (56) for ζ = 1 we obtain the following expression for the displacement vector of the
particles of the mantle’s surface:

u = 0.064 777 273ρ − 0.063 576 461
(r · ρ)

r2
r. (59)

The parallel component (projection of the displacement vector on the plane of the parallel)
is determined by the following expression:

up = −ρ0.063 576 461 sin ϕ cos ϕ,

which means that the length of the circle of parallel with latitude ϕ changes its dependence of
the core displacement ρ according to the law:

δLp = 2πup = −ρ0.3994 sin ϕ cos ϕ. (60)
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In the case of secular drift of the core along the polar axis of the Earth with a constant velocity
ρ̇, the length of the corresponding parallel will change with the velocity:

δL̇p = 2πu̇p = −ρ̇0.399 463 sin ϕ cos ϕ.

In particular, the variation in the circle of the parallel ϕ = −π/4 is determined to be

δL̇p(−π/4) = −ρ̇0.199 731. (61)

Taking the observed value of parallel −π/4 lengthening from the Chinese results [11, 12] as
δL̇p(−π/4) = 1.6 from the basic equation (61) we obtain an evaluation of the velocity of the
core drift [16, 17]:

ρ̇ = 8.0 cm year−1 (62)

The velocity of the core drift (62) is in agreement with the predicted value of the velocity of
the centre of the Earth drift obtained in [10]. In reality the displacement of the superfluous
mass of the core relative to the mantle (2) generates the secular drift of the Earth’s centre of
mass with velocity vc which can be evaluated from the simple formula

vc = ρ̇
�mc

m⊕
= 1.55 cm year−1. (63)

Corresponding evaluations of the centre of mass drift obtained in [10] give vc = 1.7–
2.5 cm year−1. The above-mentioned values of the drift in the Earth’s centre of mass are
also confirmed by the space geodesy data of the last few decades [18–20] which testify to the
existence of a similar drift with a velocity of about 1–2 cm year−1 with the main tendency of
motion in the northern direction. Of course the core drift and centre of mass drift occurred in
the same direction towards the North Pole.

5. Conclusions

In this paper the phenomenon of the deformations of the Earth’s mantle and its surface caused
by gravitational action of the moveable core has been described in an analytical form as a
result of the solution of the corresponding problem of the theory of elasticity. The inversion
phenomenon of the contraction of the northern hemisphere and expansion of the southern
hemisphere of the Earth predicted in a series of papers has Barkin [1–4] has been obtained,
confirming the the space geodesy data. So, the circles of the middle parallels in the southern
hemisphere lengthen and in the northern hemisphere symmetrically shorten. Practical con-
firmation of the secular drift of the Earth’s centre of mass in a northern direction predicted
earlier [10] has been obtained.
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Appendix 1. Solution of algebraic system (49) from section 3.2

Substituting equations (47) and (48) in equation (45), we obtain the following algebraic system
of equations for determination of the constants ci :

c4r
3
0 + c3 − 2λ + 3µ

5(λ + 2µ)
c2r

5
0 + λ + 3µ

2(λ + 2µ)
c1r

2
0 + δ

2(2λ + 5µ)
r2

0 = 0, (A1)

3c4r0 − λ + µ

λ + 2µ
c2r

3
0 + 2λ + 5µ

λ + 2µ
c1 = 0, (A2)

− 6

r1
c3 − 3λ + 2µ

5(λ + 2µ)
c2r

4
1 − µ

λ + 2µ
c1r1 − 2δ

2λ + 5µ
r1 = 0, (A3)

−3c1µ − 2δ(λ + µ)

2λ + 5µ
= 0. (A4)

From equation (A4) we obtain:

c1 = − 2δ(λ + µ)

3µ(2λ + 5µ)
. (A5)
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Using solution (A5), we transform equation (A3) to the following reduced form:

6

r1
c3 + 3λ + 2µ

5(λ + 2µ)
c2r

4
1 + µ

λ + 2µ
c1r1 + 2δ

2λ + 5µ
r1 = 0,

and therefore

6

r1
c3 + 3λ + 2µ

5(λ + 2µ)
c2r

4
1 = − µ

λ + 2µ

(
−2

3

)
δ(λ + µ)

µ(2λ + 5µ)
r1 − 2δ

2λ + 5µ
r1

= δ

(λ + 2µ)(2λ + 5µ)

(
2

3
(λ + µ) − 2(λ + 2µ)

)
r1

= − 2δ

3(λ + 2µ)
r1.

Now we have reduced equation (A3) to:

6

r1
c3 + 3λ + 2µ

5(λ + 2µ)
c2r

4
1 = − 2δ

3(λ + 2µ)
r1, (A6)

from which we obtain:

c3 = − 3λ + 2µ

30(λ + 2µ)
c2r

5
1 − δ

9(λ + 2µ)
r2

1 . (A7)

Now we transform equations (A1) and (A2), substituting for the constants c1 and c3.
Equation (A1) will be:

c4r
3
0 − 3λ + 2µ

30(λ + 2µ)
c2r

5
1 − δ

9(λ + 2µ)
r2

1 − 2λ + 3µ

5(λ + 2µ)
c2r

5
0

− λ + 3µ

2(λ + 2µ)

2δ(λ + µ)

3µ(2λ + 5µ)
r2

0 + δ

2(2λ + 5µ)
r2

0 = 0.

So

c4r
3
0 − Ac2 = F, (A8)

where

A = 1

30(λ + 2µ)

[
(3λ + 2µ)r5

1 + 6(2λ + 3µ)r5
0

]
, (A9)

F = δ

9(λ + 2µ)
r2

1 + λ + 3µ

2(λ + 2µ)

2δ(λ + µ)

3µ(2λ + 5µ)
r2

0 − δ

2(2λ + 5µ)
r2

0

F = δ

µ(λ + 2µ)(2λ + 5µ)

[
1

9
µ(2λ + 5µ)r2

1 +
(

1

3
(λ + 3µ)(λ + µ) − 1

2
µ(λ + 2µ)

)
r2

0

]
.

Taking into account the relation:

1

3
(λ + 3µ)(λ + µ) − 1

2
µ(λ + 2µ) = 1

6
[2(λ + 3µ)(λ + µ) − 3µ(λ + 2µ)]

= 1

6
λ(2λ + 5µ),
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we obtain the following reduced expression:

F = δ

18µ(λ + 2µ)

(
3λr2

0 + 2µr2
1

)
. (A10)

Equation (A2) can be transformed to:

3c4r0 − λ + µ

λ + 2µ
c2r

3
0 = −2λ + 5µ

λ + 2µ

(
− 2δ(λ + µ)

3µ(2λ + 5µ)

)

or together with equation (A8) we have:

3c4r0 − λ + µ

λ + 2µ
c2r

3
0 = 2δ(λ + µ)

3µ(λ + 2µ)
, (A11)

c4r
3
0 − Ac2 = F.

From equations (A11) it follows that:

c4r
3
0 = λ + µ

3(λ + 2µ)
c2r

5
0 + 2δ(λ + µ)

9µ(λ + 2µ)
r2

0 = F + Ac2.

The equation for c2 becomes:(
λ + µ

3(λ + 2µ)
r5

0 − A

)
c2 = F − 2δ(λ + µ)

9µ(λ + 2µ)
r2

0 . (A12)

Here,

� = λ + µ

3(λ + 2µ)
r5

0 − A = − 1

30(λ + 2µ)

[
(3λ + 2µ)r5

1 + 6(2λ + 3µ)r5
0

] + λ + µ

3(λ + 2µ)
r5

0

or

� = − 1

30(λ + 2µ)

[
(3λ + 2µ)r5

1 + 2(λ + 4µ)r5
0

]
.

Using

F = δ

18µ(λ + 2µ)

(
3λr2

0 + 2µr2
1

)
,

the right-hand side of equation (A12) will be:

F − 2δ(λ + µ)

9µ(λ + 2µ)
r2

0 = δ

18µ(λ + 2µ)

(
3λr2

0 + 2µr2
1

) − 2δ(λ + µ)

9µ(λ + 2µ)
r2

0

or

F − 2δ(λ + µ)

9µ(λ + 2µ)
r2

0 = δ

18µ(λ + 2µ)

[−(λ + 4µ)r2
0 + 2µr2

1

]
.

Now from equations (A11) and (A12) we obtain the solution for the constant c2:

c2 = F − [2δ(λ + µ)/9µ(λ + 2µ)]r2
0

[(λ + µ)/3(λ + 2µ)]r5
0 − A

,

c2 = δ

18µ(λ + 2µ)
[−(λ + 4µ)r2

0 + 2µr2
1 ]

/(
− 1

30(λ + 2µ)
[(3λ + 2µ)r5

1 + 2(λ + 4µ)r5
0 ]

)

and finally,

c2 = 5δ

3∆d

[(λ + 4µ)r2
0 − 2µr2

1 ] �d = µ
[
(3λ + 2µ)r5

1 + 2(λ + 4µ)r5
0

]
. (A13)
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A.1 Determination of c3

From equation (A7), namely:

c3 = − 3λ + 2µ

30(λ + 2µ)
c2r

5
1 − δ

9(λ + 2µ)
r2

1 (A14)

and from equation (A13), we obtain:

c3 = − 3λ + 2µ

30(λ + 2µ)

5δ

3∆d

[(λ + 4µ)r2
0 − 2µr2

1 ]r5
1 − δ

9(λ + 2µ)
r2

1

c3 = − δ

18(λ + 2µ)∆d

(λ + 4µ)r2
0 r2

1 [4µr3
0 + (3λ + 2µ)r3

1 ]. (A15)

A.2 Determination of c4

From equation (A11), namely:

3c4r0 − λ + µ

λ + 2µ
c2r

3
0 = 2δ(λ + µ)

3µ(λ + 2µ)
,

where (equation (A13)):

c2 = 5δ

3∆d

[(λ + 4µ)r2
0 − 2µr2

1 ], ∆d = µ
[
(3λ + 2µ)r5

1 + 2(λ + 4µ)r5
0

]
,

we determine

3c4 = λ + µ

3r0(λ + 2µ)

5δ

3∆d

[(λ + 4µ)r2
0 − 2µr2

1 ]r3
0 + 2δ(λ + µ)

9r0µ(λ + 2µ)
,

and therefore:

c4 = δ

9r0(λ + 2µ)∆d

(λ + µ)[9(λ + 4µ)r5
0 − 10µr3

0 r2
1 + 2(3λ + 2µ)r5

1 ]. (A16)

The final formulae for calculations are, from equations (A5), (A13), (A15) and (A16),

c1 = − 2δ(λ + µ)

3µ(2λ + 5µ)
,

c2 = 5δ

3∆d

[(λ + 4µ)r2
0 − 2µr2

1 ],

c3 = − δ

18(λ + 2µ)∆d

(λ + 4µ)r2
0 r2

1 [4µr3
0 + (3λ + 2µ)r3

1 ],

c4 = δ

9r0(λ + 2µ)∆d

(λ + µ)[9(λ + 4µ)r5
0 − 10µr3

0 r2
1 + 2(3λ + 2µ)r5

1 ],

∆d = µ
[
(3λ + 2µ)r5

1 + 2(λ + 4µ)r5
0

]
.


