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Constant and periodic variations in the gravitational coefficients of the second harmonic of the gravita-
tional potential of Mercury caused by the attraction of the Sun and its resonant rotation are studied on
the basis of a planar model of translatory–rotary motion of Mercury as an elastic body on an elliptical
orbit. The main variations in the coefficients C20, C22 and S22 with periods that are a multiple of the
orbit period have been obtained and evaluated for Mercury. Dynamic effects in the resonant rotation of
Mercury considered as unchangeable non-spherical body (or as body with liquid core) are studied on
the basis of two simple models: firstly, the plane motion on the unperturbed elliptical orbit; secondly,
the rotation of Mercury on the precessing elliptical orbit. A few sets of possible values of Mercury’s
gravitational field parameters C20 and C22 are used in the paper for evaluations of the unperturbed,
forced and resonant effects in Mercury’s rotation (the Cassini positional parameters, amplitudes of
periodic librations in longitude, and periods of resonant librations in the vicinity of Cassini–Colombo
motion). The results are compared with similar characteristics of the resonant rotational motion of the
Moon, which have been obtained in parallel on the basis of the same models of motion.

Keywords: Mercury’s rotation; Mercury’s gravitational field; Moon’s rotation; Cassini–Colombo
motion; Resonant librations

1. Introduction

For successful realization of the modern planned Mercury missions (Messenger and Bepi-
Colombo) a more in-depth understanding of the inner structure, rotational and inner dynamics
and energization of Mercury is needed. Here the BepiColombo project has the leading role
[1, 2]. New data are expected from this mission. More exact data about the gravitational field,
figure and physical fields can be obtained from this mission and can make new dynamic studies
possible. These will result in a new epoch of studying Mercury.

The main feature of Mercury’s dynamics is the resonant character of its translational–
rotational motion. Because we expect high-accuracy measurements in the framework of the
space missions Messenger and BepiColombo, new studies of the main resonant features on
the basis of new, more real models of Mercury are very important [3–6]. In future we plan
to make a systematic study and to develop understanding of these fundamental features in
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62 Yu. V. Barkin and J. M. Ferrandiz

Mercury’s dynamics, taking into account real elastic and inelastic properties of these celestial
bodies and their two-layer structure. This paper is a first step in that direction.

Colombo [7] was the first to consider the generalization of the Cassini laws to other objects
in the Solar System such as Mercury. This work was developed by other workers: by Goldreich
and Peale [8], by Peale [9, 10], by Beletskij [11], by Ward [12], in some of Barkin’s [13–17]
papers and by Barkin and Vestnik [18]. The four possible coplanar configurations were enu-
merated and designated as the Cassini states by Peale [9]. The regular motions of Cassini were
obtained by different methods for the rigid model of a planet (Mercury, Moon and others).
Beletskij [11] has effectively used average methods of perturbation theory for analysis of the
resonant rotational motion of planets and satellites. Barkin [13–17] and Barkin and Vestnik
[18] have developed the Hamiltonian formalism for models of translatory–rotary motion of a
rigid body and in particular the applied Poincaré theory of periodic and conditionally periodic
solutions for study of the resonant motions of Mercury, Moon and Venus. The evolution of
rotation of celestial bodies to Cassini’s positions was studied, taking into account the tidal
deformations and friction of satellite [10–12] and others. The described studies need a modern
development in accordance with present requirements produced to the realization of Mercury
missions [1–3] and also ground radio-location studies of Mercury [19].

The studies of variations in Mercury’s rotation in the vicinity of the above-mentioned
resonant motion have been started by analytical and numerical methods for different models of
Mercury (a rigid model, a deformable model, a two-layer model and a model with a liquid core).
The first results of numerical modelling of the rotation of a rigid non-spherical Mercury model
were obtained by Peale’s group [3, 19] and Rambaux and Bois [20]. The influence of the liquid
core on Mercury’s resonant rotation was studied in a planar model [3] and in the general case
of spatial motion [4–6]. The first studies of relative oscillations of Mercury’s core and mantle
were reported in [3, 21–23] on the basis of the methods and approaches developed for the
Earth’s (Moon’s) rotation theory [4, 24]. These detailed studies let us establish a more precise
relationships between the dynamic and inner structures of Mercury. A wide programme of
studies of Mercury in connection with future space missions to this planet has been suggested
in the report of the Moscow 40th Vernadskii–Brown Microsymposium on Planetology in
Moscow [25] and in a report at the COSPAR Assembly in Paris [19]. The important results of
the ground radio-location observations of Mercury were presented in the latter report. It was
shown that the amplitude of the forced librations in longitude of Mercury can have a sufficiently
large value of about 1. We have used these data for new evaluations of the coefficients of the
second harmonic of Mercury’s gravitational potential and to study the stationary resonant
rotation of Mercury, its stability, resonant librations and others dynamic features.

In section 2 we study the possible variations in the gravitational field of Mercury due to
its tidal solar deformations in conditions of orbital–rotational resonance. In the framework of
the planar model of Mercury’s motion we have shown that variations in the coefficients J2

and C22 are periodic (with a period of orbital motion of 87.97 days) and are characterized
by the considerable amplitude of the order of 5 × 10−8, which is a few orders of magnitude
larger than the corresponding tidal variations in the geopotential coefficients [26]. The tidal
deformations of Mercury under resonant translatory–rotary motion give constant contributions
to the coefficients J2 and C22. The ratio of these contributions was evaluated as 〈δJ2〉/〈δC22〉 =
7.85 which is sufficiently close to the ratio of coefficients, J2/C22, of 8 in the paper by Peale
et al. [3]. One of the first attempts to evaluate this ratio was by Barkin [3] on the basis of
a model problem about periodic translatory–rotary motion of the rigid satellite in a central
gravitational field (J2/C22 = 35.3).

The librations in longitude of Mercury have been studied on the basis of a planar model for
the motion of a non-spherical celestial body with a liquid core in a central gravitational field.
For the models of Mercury in this paper, the amplitudes of periodic librations were evaluated.
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Dynamic structure and rotation of Mercury 63

Owing to the influence of solar gravitational moments the angular velocity of Mercury varied
by 0.03%. The phenomenon of non-perturbation of the rotation of Mercury in the vicinity of
the pericentre of the orbit has been established. In a period of 15 days the angular velocity of
Mercury has an almost permanent value.

The period of resonant librations in longitude of Mercury has been evaluated for a rigid
model of the planet and for a two-layer model of the planet (with a rigid mantle and liquid
core). The corresponding values for the periods are 16.0 years and 11.3 years. So, owing to the
influence of the liquid core, the period of librations are reduced by 29.3%. The amplitude and
phase of these librations can be determined only from observations. We assume that resonant
librations are not damped and are perturbed by the mechanism of shell dynamics [21, 22]. This
means that the resonant librations in longitude of Mercury can be determined from modern
observations (including ground radio observations) in a few years.

The main regular features in Mercury’s rotation were established and studied on the basis
of its rigid model on the assumption that Mercury moves on the evaluated elliptical orbit. The
plane of the orbit precesses with a permanent angular velocity, forming a constant angle with
the main unmovable plane. The line of apses of the orbit also rotates with a permanent angular
velocity. The theoretical value of inclination of the angular momentum of Mercury relative to
the normal to the orbit plane was determined as ρ0 = 1′607. This value is very close to another
evaluation of this parameter ρ0 = 1′6 [19]. The first evaluations of the inclination ρ0 obtained
earlier are ρ0 = 1′24 and ρ0 = 1′67 [27, 28]. The main regular features in the translatory–
rotary motion of Mercury have been interpreted as the Cassini–Colombo laws [7, 11]. In these
papers the detailed formulations of these laws and regular features were given. The definite
stationary solution of the equations of rotational motion described in Andoyer variables was
compared with Mercury’s resonant motion. In this paper we are restricted by a consideration
of Mercury as a non-spherical rigid-body model. The first steps to explain the resonant rotation
of the Moon and Mercury as celestial bodies with a liquid core were made in previous papers
by the present authors [4–6].

For comparison with all the resonant effects and phenomena of Mercury rotation discussed
we analyse in parallel also similar effects of the Moon’s rotational motion.

2. Gravitational parameters and their variations

2.1 Models of Mercury, parameters of gravitational potential and inner structure

The translatory–rotary motion of Mercury has an exotic resonant character of type 3:2. The
first constructive studies of Mercury’s resonant rotation were reported in [7–18, 28]. Using
numerical methods, Rambaux and Bois [20] have studied some aspects of the planar and
spherical motion of Mercury considering this planet as a rigid non-spherical body. In particular,
they evaluated the inclination of angular momentum and its long-period variations, two to
three periods of the resonant librations of Mercury [20]. The more real and complicated
Mercury models have also been studied in the last few years. Different aspects of the dynamic
influence of the liquid core of Mercury on its rotation have been studied by Peale et al. [3],
Barkin and Ferrandiz [4–6], Ferrandiz and Barkin [23] and others. The rotational dynamics
of Mercury as a system of two non-spherical rigid shells (core–mantle system) interacting
with each other owing to a thin elastic layer and perturbed by external celestial bodies were
studied by Peale et al. [3], Barkin [21, 22] and Ferrandiz and Barkin [23]. In our paper the
different models of Mercury are considered with the purpose of carrying out dynamic studies
of Mercury’s resonant rotation and tidal variations in its dynamic structure.
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64 Yu. V. Barkin and J. M. Ferrandiz

Table 1. Evaluations of the main coefficients of Mercury’s gravitational potential.

Reference Method J2 × 106 C22 × 106

Esposito et al. [29] Mariner 10 observations 80 ± 60 –
Barkin [13] Theory 80 3.3
Barkin [18] Theoretical values (model I) 77.34 9.86
Anderson et al. [30] Mariner 10 observations (model II) 60 ± 20 10 ± 5
Margot et al. [19] Theoretical values, radio-location of

Mercury (model III)
101.6 12.94

For the first studies of Mercury’s rotation in this paper we shall consider this planet as
an ellipsoidal unchangeable body with some model values of the main parameters of its
gravitational field J2 and C22 and others dynamic characteristics (tables 1 and 2). As a first
approximation, Mercury can be considered as a non-spherical rigid body with small dynamic
oblatenesses. In table 1 are given known evaluations of the two main coefficients of Mercury’s
gravitational field, J2 and C22, obtained on the basis of observations of the Mariner 10 mission
[29, 30] and by some theoretical studies [13, 18]. Planned missions to Mercury (BepiColombo
and Messenger) promise to obtain new and accurate data about the dynamics and structure of
this planet [1, 2, 25].

Evaluations of the dynamic parameters of Mercury give C/mR2 = 0.35 and Cm/C =
0.5 ± 0.07 [3, 31]. Here C and Cm are the moments of inertia of full Mercury and of its core,
m is the mass of Mercury and R is the mean radius of Mercury. For the dimensionless moment
of inertia we shall use C/mR2 = 0.35.

Model I is based on the predicted value of oblateness (C − B)/B [18] and on the resonant
value of the ratio J2/C22 for the deformed elastic Mercury in the Sun’s gravitational field
(section 1.1). Model II is based on the data from Mariner 10 observations. It is characterized
by a significant error in the value of the coefficient C22 (about 50%). The modern model III is
based on the evaluation of the amplitude of forced libration in longitude of Mercury obtained
by Peale’s group [19] in a study of Mercury’s rotation with the help of high-accuracy radio-
location observations (Earth-based measurements) of this planet. For all models of Mercury
we use the same value of the dimensionless moment of inertia, I = 0.34, and Peale’s [31]
evaluation of the ratio of the moment of inertia of Mercury to the moment of inertia of its
mantle, C/Cm = 2.

2.2 Elastic models of Mercury and its satellites

In a definite approximation, Mercury can be considered and modelled as an elastic body.
Because of the gravitational attraction of the Sun the elastic Mercury moving in a elliptic orbit
is deformed. In the considered case of resonant motion this leads to definite contributions

Table 2. Main dynamic characteristics of the models of Mercury.

Parameter Model I Model II Model III

(C − A)/B 2.855 × 10−4 2.353 × 10−4 3.748 × 10−4

(C − B)/B 1.695 × 10−4 1.177 × 10−4 2.226 × 10−4

(B − A)/B 1.160 × 10−4 1.177 × 10−4 1.523 × 10−4

δ 1.684 2.000 1.684
C22 9.857 × 10−6 10.0 × 10−6 12.942 × 10−6

J2 77.344 × 10−6 60.0 × 10−6 101.553 × 10−6

J2/C22 7.8469 6.00 7.8469
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Dynamic structure and rotation of Mercury 65

to the J2 and C22 coefficients. These variations can be obtained on the basis of the well-
known classical Takeuchi solution of the problem of elasticity for satellite deformations due
to gravitational action of the central planet [26, 32]. In the undeformed state of a satellite a
concentric mass distribution is assumed. In the case of resonant translatory–rotary motion of a
satellite the constant components of variations in the coefficients J2 and C22 can be described
by the following formulae:

〈J2〉 = −3
Dr

mR2

(
1+ 6

N2

m∗

m∗ +m
X−3.0

0 (e)

)
, 〈C22〉 = − 9

N2

Dr

mR2

m∗

m∗ + m
X−3.2

N (e). (1)

For Mercury, N = 3 and 3Trot = 2Torb. Taking into account that the ratio of the mass of
Mercury to the mass of the Sun, m/m∗, is small, from equations (1) we find that

〈J2〉 = − Dr

mR2
[3 + 2X−3.0

0 (e)], 〈C22〉 = − Dr

mR2
X−3.2

3 (e),

(2)( 〈J2〉
〈C22〉

)
Mercury

= 3 + 2X−3.0
0 (e)

X−3.2
3 (e)

.

For the considered bodies the commensurability of the unperturbed angular velocity ω = �

and the mean motion n has occurred: 3� = 2n for Mercury and � = n for the Moon.
In equations (1) and (2), m is the mass of Mercury (or the Moon), R is the mean radius
of Mercury (or the Moon) and m∗ is the mass of the central body (the Sun for Mercury, and
the Earth for the Moon). X−3.0

0 (e) and X−3.2
N (e) are the Hanzen coefficients depending only

on the eccentricity of orbit e [33]. Dr < 0 is an elastic parameter having the dimensions of
moment of inertia and characterizing Mercury’s (the Moon’s) deformation due to its rotation.
−2Dr = �C. Here �C is an increment in the polar moment of inertia of the satellite due to
its rotational deformation. This parameter is calculated for the concrete model of the density
distribution of a satellite by well-known formulae [32]. Also this coefficient can be evaluated
on the basis of [34]

D(0)
r

mR2
= −k2

R3

9f m
�2 = −1

9
k2

�2

N2
0

= −1

9
k2

T 2
N0

T 2
rot

. (3)

In equation (3), k2 is the Love number characterizing the elastic properties and structure of the
satellite. N0 = (f m)1/2/R3/2 is a fundamental frequency and TN0 = 2π/N0 the corresponding
period of a celestial body. TN0 is equal to the period of orbital motion of some fictive satellite
on a circular orbit with a ‘surface radius’ R. Trot = 2π/� is an unperturbed (resonant) period
of planet rotation. Let us also introduce the orbital period of the satellite, Torb = 2π/n, where
n = [f (m∗ + m)]1/2/a∗3/2 is the mean motion.

Tidal deformations are characterized by the parameter D
(0)
t , which is similar to the elastic

parameter D(0)
r in equation (3). A simple relation between these two characteristics exists:

D
(0)
t

D
(0)
r

= −3

2

m∗

m∗ + m

T 2
rot

T 2
orb

. (4)

For Mercury’s motion we obviously have

3Trot = 2Torb, D
(0)
t = −2

3

m∗

m∗ + m
D(0)

r . (5)

The ratio of the mass of Mercury to the mass of the Sun, m/m∗, is small and we believe that
3D

(0)
t = −2D(0)

r . The ratios 〈δJ2〉/〈δC22〉 for models I–III of Mercury and for the Moon are
presented in table 2.
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66 Yu. V. Barkin and J. M. Ferrandiz

2.3 Tidal variations in Mercury’s gravitational field

Above we have discussed the constant components of the gravitational parameters J2 and C22

caused by tidal and rotational deformations of satellites. Here we also present the general
formulae for periodic tidal variations in the coefficients of the second harmonic of Mercury’s
gravitational potential (N = 3):

δJ2 = 3
Dt

mR2

∞∑
σ=1

X−3.0
σ (e) cos(σM),

δC22 = 3Dt

2mR2

∞∑
σ=1

[X−3.2
σ (e) cos(σM − 2g) + X−3.2

−σ (e) cos(σM + 2g)],

δS22 = 3Dt

2mR2

∞∑
σ=1

[X−3.2
σ (e) sin(σM − 2g) + X−3.2

−σ (e) sin(σM + 2g)].

(6)

By the summation in δC22 in equation (6) the resonant term is omitted.
The trigonometric series in equations (6) are given in multiples of the mean orbital anomaly

M = nt + M0 (M0 = M(0) is an initial value). Here X−3.0
σ and X−3.2

σ are known eccentricity
functions which have been presented in polynomial form by Jarnagin [33]. k2 = 0.37 is the
theoretical value of the Love number for Mercury [25]. Taking into account equations (3)–(5)
and the simple resonant relation 3M = 2g and using the values of necessary parameters
presented in table 3 on the basis of equations (6) we obtain the following expressions for tidal
variations in the gravitational coefficients C20, C22 and S22 of Mercury:

(δJ2)periodic = 10−8[2.6991 cos M + 0.8203 cos(2M) + 0.2450 cos(3M)

+ 0.0723 cos(4M) + 0.0211 cos(5M) + 0.0061 cos(6M)

+ 0.0018 cos(7M) + 0.0005 cos(8M) + 0.0002 cos(9M)],
(δC22)periodic = 10−8[5.0907 cos M + 0.1489 cos(2M) + 0.2220 cos(3M)

+ 0.0816 cos(4M) + 0.0283 cos(5M)],
(δS22)periodic = 10−8[−2.3734 sin M + 1.0012 sin(2M) + 0.2220 sin(3M)

+ 0.0816 sin(4M) + 0.0283 sin(5M)].

(7)

The results obtained describe marked changes in the dynamic structure of Mercury due to
the gravitational influence of the Sun. The curve of variations in the coefficients C22 and S22

with the orbital period of Mercury (87.97 days) on the (X = (δC22)periodic, Y = (δS22)periodic)
plane has a ‘whale’ form (figure 1).

The ratio 〈δJ2〉/〈δC22〉 = 7.85 for Mercury is sufficiently close to the similar relation in [3]:
J2/C22 = 8. In table 3 for comparison we present also the corresponding parameters for the
Moon. The variations 〈δJ2〉 and 〈δC22〉 were obtained here for a Love number k2 = 0.37 for
Mercury and for the known value k2 = 0.025 for the Moon [35]. The values of geopotential
coefficients (J2)hydro and (C22)hydro for hydrostatic equilibrium of the considered bodies were
obtained with the value k2 = 1. From our results it follows that the tide periodic variations in
the gravitational coefficients of Mercury and the Moon is a few orders of magnitude larger
than the corresponding tide variations in Earth’s geopotential coefficients [26].
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Dynamic structure and rotation of Mercury 67

Table 3. Parameters and dynamic characteristics of Mercury and the Moon.

Parameter Mercury Moon

k2 0.37 0.025
f m (km3/s2) 22,031.97 4902.801
R (km) 2439.7 1737.5
m∗/(m∗ + m) 1 0.987849
Trot (days) 58.6456 27.2122
Torb (days) 87.9684 27.2122
Trot/Torb 2/3 1/1
N2

0 (s−2) 1.517204 × 10−6 0.934695×10−6

N0 (s−1) 1.231749 × 10−3 0.966796 × 10−3

TN0 = 2π/N0 (days) 0.0590397 0.0752196
Dr/mR2 −k20.1126 × 10−6 −k20.8490 × 10−6

Dr/mR2 −0.4167 × 10−7 −0.2122 × 10−7

Dt/mR2 0.2778 × 10−7 0.3184 × 10−7

Dt/Dr −2/3 −(3/2)m∗/(m∗ + m)

Dt/(Dt)Earth 10.95 12.55
�C/mR2 0.8333 × 10−7 0.4245 × 10−7

X−3.0
0 (e) 1.066953 1.004622

X−3.2
N (e) 0.654261 0.992335

〈δJ2〉 2.139 × 10−7 1.585 × 10−7

〈δC22〉 0.2726 × 10−7 0.4681 × 10−7

〈δJ2〉/〈δC22〉 7.8469 3.3849
J2/(J2)hydro 103.8 31.98
(J2)hydro 0.5781 × 10−6 6.3383 × 10−6

X

Y

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
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Figure 1. The ‘whale’ form of the parametric curve of (δC22)periodic(M) against (δS22)periodic(M). 1 unit = 10−8.
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3. Rotation

3.1 Planar librations of Mercury with a liquid core and variations in its angular velocity

3.1.1 Reference systems and variables. Let us study the librations of Mercury in the
framework of the simple model of planar librations of a non-spherical rigid body with a liquid
core on an unperturbed elliptical orbit. Let Mercury move on a Keplerian elliptical orbit in
the gravitational field of the Sun. OXYZ is the Cartesian reference system with the origin at
the centre of the Sun. The centre of mass of Mercury moves in the fixed plane OXY of the
elliptical orbit and the axis OX is directed towards the pericentre of the orbit. CXYZ is a similar
reference system with the origin at the centre of the mass of Mercury and with axes that are
parallel to corresponding axes of the system OXYZ. We model here Mercury as a two-layer
planet consisting of a rigid non-spherical mantle and a liquid core. We assume that the liquid
is homogeneous and ideal and occupies an ellipsoidal central cavity with semiaxes a > b > c.
The axes of the Cartesian reference system Cxyz with the origin at the centre of mass of the
planet are directed along the corresponding axes of the cavity and coincide with the principal
axes of inertia of the mantle (and full Mercury). The axis Cz and shorter semiaxis c of the
cavity correspond to the maximal moment of inertia of the liquid core Cc and is orthogonal
to the orbit plane. We shall assume that the liquid in the cavity executes a simple Poincaré
motion. So, Mercury rotates about the axis Cz (CZ). The angle g is measured between the
axes CX and Cx. The angular velocity of Mercury’s rotation about the principal axis Cz is
r = rm = ġ. The simple motion of liquid is modelled as axial rigid rotation with respect to the
Poincaré reference system Cxcyczc with the origin at the centre of mass of Mercury. The axis
Czc coincides with the polar axes CX and Cx. The orientation of the cavity with respect to
the Cxcyczc reference system is determined by an angle gc between the axis Cxc and a cavity
axis Cx. The corresponding angular velocity of cavity rotation here will be equal to rc = ġc.
The main dynamic characteristics of the liquid core and the full planet, C and Cc, are the
principal polar moments of inertia of Mercury and its liquid core, mc is the mass of the liquid
core:

Cc = 1

5
mc(a

2 + b2), Dc = 2

5
mcab.

Here Dc is a characteristic of the core similar to the product of inertia of some fictive body. If
the cavity is axysimmetric, therefore a = b and Cc = Dc.

3.1.2 Force function of the problem. This function in the considered problem is identified
with the second harmonic of the gravitational potential of Mercury and the Sun. In accordance
with [18], for this function we have the following trigonometric development:

U2 = n2 m∗

m∗ + m

C

I

∞∑
σ=0

{
1

2
J2X

−3.0
σ cos(σM) + 3C22[X−3.2

σ cos(σM − 2g)

+ X−3.2
−σ cos(σM + 2g)]

}
. (8)

We shall consider the gravitational coefficients J2 and C22 of Mercury as small parameters
(table 2). The force function (8) is a periodic function of time with the period Torb = 2π/n

(table 4).
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Dynamic structure and rotation of Mercury 69

3.1.3 Canonical equations of the planar librations of Mercury on an elliptical orbit.
The kinetic energy of the body with a liquid core with variables g, gc, r and rc is given by the
expression [24]

2T = Cr2
m + Ccr

2
c − 2Dcrmrc. (9)

Let us assume that the body moves under the action of potential forces with a force function

U = U(g, t). (10)

The canonical momentums conjugated to introduced generalized coordinates (to Euler angles)
are defined by

G = ∂T

∂ġs
= νs, (11)

where

G = Crm − Dcrc (12)

and

Gc = Ccrc − Dcrm (13)

are the projections of the vector of the full angular momentum of the body with liquid core
(equation (9)) (with respect to its centre of mass) and of the angular momentum vector of the
liquid core (equation (10)) (with respect to the centre of mass of the liquid core) on the axes
of the Cartesian reference system Cxyz and Ccxcyczc respectively. In the canonical variables
(11)–(13), the equations of motion of the Poincaré problem have the following canonical form:

dgs

dt
= ∂K

∂Gs
,

dGs

dt
= −∂K

∂gs
. (14)

On the basis of equations (5)–(10) for the Hamiltonian K we obtain the following expression:

K = 1

2

(
G2 Cc

�
+ G2

c
C

�

)
+ GGc

Dc

�
− U(g, t), (15)

where the force function is defined by the trigonometric series (8), and � = CcC − D2
c . The

right-hand sides of equations (8), (14) and (15) are periodic functions of time. This means that
the Poincaré theory of periodic solutions can be applied to these equations.

Equations for variables G and g are separated from the canonical system (14) and (15) and
integrated independently:

dG

dt
= ∂U

∂g
,

dg

dt
= 1

�
(CcG + DcGc). (16)

The variables Gc and gc are determined from the first integral and a simple quadrature:

Gc = constant, gc = 1

�

∫
[CGc + DcG]dt + constant. (17)

3.1.4 Perturbations of the first order. If the small parameters of the problem are zero,
then U = 0, and from equations (14) and (15) we obtain the generating periodic solution

G = C�, 2� = 3n, g = nt + g0, Gc = −Dc�, g0 = M0. (18)

Here � is the resonant value of the angular velocity.
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70 Yu. V. Barkin and J. M. Ferrandiz

Periodic perturbations of the first order are determined by the simple quadratures

δG =
∫

∂U

∂g
dt + constant, δg = Cc

�

∫ (∫
∂U

∂g
dt

)
dt + constant, (19)

where
Cc

�
= 1

C − Cc(D2
c /C2

c )
≈ 1

C − Cc
= 1

Cm

and Cm is the polar moment of inertia of the mantle of Mercury. The integrals in equation (19)
are calculated for the generating values of variables in equation (18). For perturbations of the
first order of the angular velocity of Mercury and for its rotation period we have the simple
relations

δω = δG

C
, δT = −δω

�
Trot.

Calculating the integrals we obtain the following formulae for the perturbations (19):

δg = −6C22
C

I [C − Cc(D2
c /C2

c )]
∞∑
σ=1
σ �=3

(
X−3.2

σ

(σ − N)2
sin[(σ − N)M]

− X−3.2
−σ

(σ + N)2
sin[(σ + N)M]

)
,

δω = −6C22n
1

I

C

[C − Cc(D2
c /C2

c )]
∞∑
σ=1
σ �=3

(
X−3.2

σ

σ − N
cos[(σ − N)M]

− X−3.2
−σ

σ + N
cos[(σ + N)M]

)
,

(20)

or

δg =
∞∑

σ=1

gσ sin(σM),
δω

n
=

∞∑
σ=1

ωσ cos(σM),

gσ = −6C22
C

I [C − Cc(D2
c /C2

c )] (X
−3.2
σ+N − X−3.2

N−σ )
1

σ 2
, ωσ = σgσ .

In the considered Mercury case the first terms of perturbations δg in equation (20) can be
presented in the following, more detailed form:

δg = C22

I

C

C − Cc(D2
c /C2

c )

[
6

(
1 − 11e2 + 959

48
e4 − 3641

288
e6 + 11359

2880
e8

)
sin M

− 3

4
e

(
1 + 421

12
e2 − 32,515

384
e4 + 2,186,863

32,256
e6 − 428,399,713

15,482,880
e8

)
sin(2M)

− 1

24
e4

(
533 − 13,827

10
e2 + 728,889

560
e4

)
sin(3M)

+ 1

128
e3

(
1 − 57,073

20
e2 + 7,678,157

960
e4 − 298,080,597

34,560
e6

)
sin(4M) + · · ·

]
.

If C = Cm, perturbations in the rotation of the resonant satellite (equation (20)) are obtained as
a particular case from a more general treatment of the problem about a planar translatory–rotary
motion of the rigid satellite considered in [13, 15].
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Dynamic structure and rotation of Mercury 71

Equation (20) was obtained for the orbital–rotational resonances Nn = 2ω (the case N = 2
corresponds to synchronous motions of satellites and the case 3n = 2ω to Mercury’s motion).
For a construction of perturbations the Poincaré theory of periodic solutions has been used
in [13, 17, 18]. It was shown that the coefficients of perturbations proportional to C22/I and
the ratios of any from amplitudes in perturbations δg (and δω) for the concrete celestial body
depend only on the eccentricity of the orbit. For example

g1/σ = g1

gσ

= X−3.2
N+1 − X−3.2

N−1

X−3.2
σ+N − X−3.2

N−σ

σ 2, ω1/σ = ω1

ωσ

= X−3.2
N+1 − X−3.2

N−1

X−3.2
σ+N − X−3.2

N−σ

σ. (21)

So the ratios of the amplitudes of the main perturbations in the librations in longitude of
Mercury are A1/2 = −9.4850, A1/3 = 96.248 and A1/4 = −477.76 (see table 4 later).

For parameters of model I for Mercury (tables 2 and 3) on the basis of equation (20) we
obtain the following explicit expressions for the periodic perturbations of the angular rotation
g, the angular velocity ω and the instant period of the rotation of Mercury:

δg = 53"670 sin M − 5"658 sin(2M) − 0"558 sin(3M)

− 0"107 sin(4M) − 0"013 sin(5M),

δω

ω
= [1.7347 cos M − 0.3658 cos(2M) − 0.0541 cos(3M)

− 0.0139 cos(4M) − 0.0022 cos(5M) × 10−4,

δT = −Trot[1.7347 cos M − 0.3658 cos(2M) − 0.0541 cos(3M)

− 0.0139 cos(4M) − 0.0022 cos(5M)] × 10−4.

(22)

Here Trot = 58.64562241 days is the exact resonant value of the rotational period. The instant
period of the rotation of Mercury is the following periodic function of time:

T = 58.6456[1 − 0.0007347 cos M + 0.0000366 cos(2M)

+ 0.0000054 cos(3M) + 0.0000014 cos(4M)]. (23)

The curve of the time dependence of the period (23) is presented in figure 2. Two features
of Mercury’s rotation are shown here.

(i) Because of eccentricity variations in the gravitational moment of the Sun the angular
velocity of Mercury and the corresponding instant period of the rotation of Mercury are
varied with an amplitude of about 0.0341%. So the period of rotation has a minimal value
of 58.638 days at the moment of crossing the pericentre of the orbit and a maximal value
of 56.658 days at the moment of crossing the apocentre of the orbit.

(ii) In the time intervals of 7.4 days before passing the pericentre of the orbit and 7.4 days after
it, the angular velocity of Mercury with a high accuracy maintains a constant pericentre
value. This interval of time of 14.8 days can be called ‘the period of Mercury’s non-
perturbation’.

In reality the ratio of the change in the angular velocity in the afore-mentioned period to
the change in the angular velocity in the half-orbital period (at the pericentre and apocentre)
is about 0.869%.

In this paper we shall not discuss the question about the constant components of perturba-
tions of the first order the nature of which is connected to the third and higher harmonics of
the force function of the problem and to the tidal dissipation of the elastic energy of Mercury.
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72 Yu. V. Barkin and J. M. Ferrandiz

Table 4. Amplitudes of the planar librations of Mercury and the Moon.

Parameter, Mercury Mercury Mercury
amplitude (model I) (model II) (model III) Moon

C22 9.8566 × 10−6 10.0 × 10−6 12.94 × 10−6 22.3 × 10−6

I 0.34 0.34 0.34 0.392
e 0.205614 0.205614 0.205614 0.055
C/Cn 2 2 2 1.00060
g1 40"8813 41"4760 53"6700 −15"2070
g2 −4"3112 −4"3739 −5"6599 −0"4471
g3 −0"4249 −0"4311 −0"5579 −0"0228
g4 −0"0861 −0"0874 −0"1131 −0"0013
g5 −0"0191 −0"0194 −0"0250 −0"0001
ω1 1.3213 × 10−4 1.3405 × 10−4 1.7347 × 10−4 −0.7373 × 10−4

ω2 −0.2787 × 10−4 −0.2827 × 10−4 −0.3659 × 10−4 −0.0434 × 10−4

ω3 −0.0412 × 10−4 −0.0418 × 10−4 −0.0541 × 10−4 −0.0033 × 10−4

ω4 −0.0111 × 10−4 −0.0113 × 10−4 −0.0146 × 10−4 −0.0003 × 10−4

ω5 −0.0031 × 10−4 −0.0031 × 10−4 −0.0041 × 10−4 −0.00002 × 10−4

Evaluations of the amplitudes of the librations and variations in angular velocity for all
three considered models of Mercury are given in table 4. For a comparison of discussed
perturbed rotational effects in this table we also present similar characteristics of the librations
in longitude of the Moon. Mercury and the Moon present two different types of celestial body:
a body with a very large liquid core and a body with a small liquid core. The forced librations
of Mercury concern the case of a strong influence of the liquid core and the librations of the

X

Y

-5 -4.5 -4 -3.5 -3 -2.5-2 -1.5 -1-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

58.635
58.636
58.637
58.638
58.639
58.64

58.641
58.642
58.643
58.644
58.645
58.646
58.647
58.648
58.649
58.65

58.651
58.652
58.653
58.654
58.655
58.656
58.657
58.658

Figure 2. Seasonal variation in Mercury’s period: Y = T (in days); X = M (in radians).
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Dynamic structure and rotation of Mercury 73

Moon concern the case of a weak influence of the liquid core. This means that the amplitudes
of the Moon’s librations from table 4 are close to similar characteristics of the corresponding
rigid model of the Moon.

Firstly the evaluations of the amplitudes of the librations in longitude of Mercury have
been made in [18] on the basis of the model problem about resonant translatory–rotary
motion of the rigid body (Mercury) in the gravitational field of the central body (the Sun).
The hypothetical relation between the coefficients C20 and C22 has been obtained from the
Poincaré condition of the existence of periodic solution of the problem [13] and, as the
basic value of the coefficient, C20 = 80 × 10−6 has been used [29]. So the amplitudes of
librations of rigid Mercury have been evaluated as g1 = −10".098 and g2 = 2".414. The corre-
sponding amplitudes of variations in Mercury’s angular velocity are ω1/ω = −0.489 × 10−4

and ω2/ω = 0.119 × 10−4. The librations in longitude of Mercury (table 4) are character-
ized by the following values of the ratios of amplitudes (equation (10)): g1/2 = −9.4850,
g1/3 = 96.248, g1/4 = −477.76, ω1/2 = −4.7425, ω1/3 = 32.083 and ω1/4 = −119.44. In
[18], g1/2 = −8.37 and ω1/2 = −4.07 have been obtained.

For comparison of the dynamic effects in the last column of table 4 we present similar
characteristics of the planar resonant librations of the Moon. The librations in longitude of
the Moon (table 4) are characterized by the following values of the ratios of amplitudes
(equation (10)): g1/2 = 34.258, g1/3 = 677.8, ω1/2 = 17.12 and ω1/3 = 223.4. For the Moon’s
librations the ratios g1/2 = 34.0, g1/3 = 674, ω1/2 = 17.0 and ω1/3 = 218 have been evaluated
earlier in [15, 17].

In accordance with the Poincaré theory of periodic solutions we can confirm that periodic
perturbations of the first order also contain constant components. The dependence of the
above-mentioned corrections are determined from values of the coefficients of third and higher
harmonics of gravitational potential of corresponding satellite.

3.2 Resonant librations in longitude

The period of resonant librations in longitude of Mercury with a liquid core in the framework
of the considered planar problem about the rotational motion of a satellite on an elliptical orbit
is defined by the formula

T (liq)
res = Torb

2[m∗/(m + m∗)]1/2[3C22(C/ICm)X−3.2
N (e)]1/2

. (24)

From equation (24) the expression for the period T (rid)
res of librations of the rigid model of

Mercury is obtained from C = Cm [17]. Here the Hanzen coefficient X−3.2
N (e) is a known

function of orbital eccentricity e.
In table 5 are given the values of both periods T (rid)

res and T
(liq)

res for the three models of
Mercury (tables 1 and 2) and for the Moon. We have employed models for Mercury with a
liquid core using C = 2Cm to carry out calculations and for the Moon using C = 1.00060Cm

to carry out calculations [4–6]. Here we adopt a dimensionless moment of inertia I = 0.34 for
Mercury and I = 0.392 for the Moon. The values of resonant periods for the Mercury models
and for the Moon are given in table 5. In the Mercury case the existence of the liquid core
leads to a strong reduction in the resonant period and in the Moon case to a weak reduction.

So the differences between the resonant periods of librations for a rigid body and for a body
with a liquid core consist are about 29.3% for Mercury and 0.03% for the Moon. The earlier
evaluations of the resonant period of the rotation of the rigid Mercury model were 19 and 21
years [36].
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Table 5. Resonant periods for the Mercury models and for the Moon.

Parameter Mercury (model I) Mercury (model II) Mercury (model III) Moon

C22 9.857 × 10−6 10.0 × 10−6 12.942 × 10−6 22.3 × 10−6

T
(liq)

res (years) 11.288 11.207 9.851 2.891

T
(rid)

res (years) 15.964 15.849 13.932 2.892

T
(res)

rid − T
(rid)

res (years) 4.676 4.642 4.081 0.000857

T
(rid)

res (%) 29.289 29.289 29.292 0.0296

3.3 The Cassini–Colombo motion of Mercury

Let us consider now the space resonant rotational motion of a rigid celestial body (satellite) in
a central gravitational field assuming that it moves on an elliptical orbit with a precessing line
of nodes and with a moving pericentre of the orbit. This model problem was first formulated
by Colombo [7] and then has been intensively studied by Goldreich and Peale [8], Peale [10],
Beletskij [11], Ward [12] and Barkin [13, 15, 17].

Let OXYZ be the main reference system with the origin at the Sun’s centre. The coordinate
plane OXY is a unmoveable Laplacian plane. Let Oxyz be the orbital reference system con-
nected to the line of nodes of the orbit (axis Ox) on the plane OXY (ecliptic plane). Oxy is an
orbit plane and the axis Oz is orthogonal to it. Let the inclination of orbit plane i be a constant
which precesses with the constant angular velocity n� with respect to normal to the main
coordinate plane OXY . The major semiaxis a and eccentricity e of the orbit in the considered
model are constant. Let also Oξηζ be the axes of Mercury directed along its principal axes of
inertia. The axial moments of inertia of Mercury, A, B and C, correspond to the axes Cξ , Cη

and Cζ (B > A > C).
We shall describe the rotational motion of Mercury under the action of the gravitational

moments of the Sun in the Andoyer variables

l, g, h, θ, ρ, G, (25)

referred to the moving orbital plane [11, 14]. Here l, g and θ are the standard Euler angles
determining the orientation of the body axes Oξηζ with respect to the intermediate reference
system connected to the angular momentum G of the satellite. G = |G| is the modulus of the
angular momentum vector. ρ is the angle between the plane Q orthogonal to the vector G
and the orbit plane. h is the longitude of the ascending node of the plane Q calculated along
Mercury’s orbit from the ascending node of this plane on the ecliptic plane.

In [14, 17] the canonical forms of the equations of rotational motion of a rigid celestial
body have been used. As has been shown in the particular case of a precessing circular orbit
of a satellite (with a constant velocity of precession and with a constant inclination i to the
principal plane) the right-hand sides of the equations will be periodic functions of time, and
the Poincaré theory of periodic solutions can be applied to the study of resonant synchronous
rotation of a satellite. The existence of a definite class of periodic solutions of the problem
has been proved. The corresponding generating periodic solutions are obtained directly from
the analytical conditions of existence of periodic solutions and have allowed us to explain the
main regular features of the satellite motion which can be called the generalized Cassini laws
[14, 15].

The above-mentioned method is not applicable directly to the study of the resonant rotation
of a celestial body in an elliptical orbit. In this case the equations of motion described in
the Andoyer variables are not periodic on the time and the Poincaré theory is not applicable
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Dynamic structure and rotation of Mercury 75

directly.An effective approach can be realized for the study of the resonant rotation of Mercury
in an elliptical precessing orbit on the basis of the average methods of Beletskij [11] style.

The existence of a definite class of stationary solutions of the average equations of the
problem described in the Andoyer variables has been proved. These solutions correspond to a
definite class of periodic motions of Mercury with respect to the precessing orbital reference
system Oxyz. One of these solutions is determined by the formulae

l0 = 0, g0 = 0,
π

2
, h0 = 0, π, θ0 = π

2
, ρ0 = ρ0(χ, δ), (26)

and by the condition of commensurability of the unperturbed angular velocity � of Mercury
and its mean orbital motion:

3n = 2(� − nω), (27)

where � = G0/B and G0 are unperturbed values of the angular velocity of Mercury and its
angular momentum, n is the mean motion of Mercury and nω is an angular velocity of the
motion of the line of apses.

Solutions (26) and (27) describe the following regular features in Mercury’s motion.

(i) With respect to the orbital reference system connected to the line of nodes of the orbit,
Mercury rotates about its polar axis of inertia corresponding to the maximal principal
moment of inertia B with permanent angular velocity � − nω equal to 3/2 of its mean
orbital motion.

(ii) The largest axis of Mercury’s ellipsoid of inertia corresponding to the minimal moment
of inertia C is directed along the heliocentric radius vector of the Sun at the moment of
passages of the pericentre of the orbit. The middle axis of Mercury’s ellipsoid of inertia
corresponding to the middle moment of inertia A is directed along the heliocentric radius
vector of the Sun at the moment of passages of the apocentre of the orbit. Thus the
orientations of the above-mentioned axes’ (at the apocentre and the pericentre of the
orbit) in the orbital are changed in the opposite way in two consecutive orbital cycles.

(iii) The ascending nodes of the orbit plane and intermediate plane orthogonal to the angular
momentum vector of Mercury on the ecliptic plane coincide. This intermediate plane
coincides with the equatorial plane of the ellipsoid of inertia of the satellite. The angles
between the orbital plane, intermediate plane and main (Laplacian) plane are constant.

(iv) The angular velocity and angular moment vectors of Mercury coincide and form a constant
angle ρ0 = ρ0(i, n/n�, e) with the normal to the orbit plane. These vectors and the normal
to the orbit plane and to the Laplacian plane are situated in one plane orthogonal to the
orbit plane.

(v) The angle between the angular momentum vector of Mercury and the normal to its orbit
plane ρ0 = ρ0(i, n/n�, e) is constant and determined from the equation [11, 17]

cos i + ε1
cos ρ0

sin ρ0
sin i + 2n

INn�

[− cos ρ0C20X
−3.0
0 + (1 + cos ρ0)C22X

−3.2
3 ε2] = 0,

(28)
where ε1 = cosh 0 = ±1, ε2 = cos[2(g0 + h0 − ω0)] = ±1. ω0 is the unperturbed value
of longitude of the pericentre of the Mercury orbit. This equation is equivalent to the Peale
equation [20, 37].

So the inclination ρ0 can be evaluated on the basis of the known parameters of the mobility
n/n� of the orbit plane, the inclination of orbit plane and its eccentricity e and by the concrete
generating values g0 − ω0 of the angular Andoyer variables h0. The precession of Mercury’s
orbit relative to the normal to the Laplacian plane has a regressive character n� < 0.
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In the case of small values of inclination ρ0 the approximate solution of equation (28) will be

ρ0 = −ε1 sin i

cos i + (2n/INn�)[−C20X
−3.0
0 (e) + 2C22X

−3.2
3 (e)ε2]

. (29)

The period of orbital motion of Mercury is 87.969 days and the period of progressive
precession of the line of node of the orbit plane on the Laplacian plane is 278,898 years
[7, 10]. The inclination of the plane of Mercury’s orbit with respect to the ecliptic plane (the
Laplace plane) is about i = 7.0028806 and the eccentricity e = 0.205614. In equation (17)
we have

n�

n
= −0.863563 × 10−6, X−3.0

0 = 1.06365, X−3.2
3 = 0.6537974, I = 0.34,

and, for values ε1 = cosh0 = 1, ε2 = cos 2(g0 + h0 − ω0) = 1 and for accepted parameters
of the gravitational field of Mercury model II (tables 1 and 2), we obtain ρ0 = 0◦0268. This
means that the mean angle between the normal to the ecliptic plane and Mercury’s rotation
axis is ρ + i = 7.0297. The first evaluations of the inclination of Mercury’s rotation axis made
by Barkin in 1983–1985 gave ρ0 = 0◦0217 and 0◦0315 (1′27 and 1′67 respectively). All the
established characteristics of the Cassini–Colombo motion of Mercury (and the Moon for
comparison) are summarized in table 5.

The generating solution (26)–(29) describes the periodic rotational motion of a satellite with
respect to an orbital reference system Oxyz connected to the line of nodes of the orbit (axis
Ox) on the main fixed plane Oxy (ecliptic plane for the Moon). Then axis Oz is orthogonal to
the orbital plane.

3.4 Resonant librations

In accordance with the general properties of resonant rotational motion, Mercury executes
some free oscillations in the neighbourhood of the above-described stationary periodic solu-
tions of the problem (in the neighbourhood of the Cassini–Colombo motion). In this paragraph
we evaluate the periods of these librations. It is worth remarking that the amplitudes and
phases of these librations can be determined only on the basis of observational data. Only the
above-mentioned characteristics of the Moon were determined from laser ranging [37].

Analytical expressions for the resonant periods of librations in the considered problem are
obtained from general studies of the resonant translatory–rotary motions of rigid celestial
bodies presented in Barkin’s [17] dissertation (see also [16]):

Tl = T0

κ[(C20 − 2C22)(C20 + 2C22)]1/2[Λ1(ρ)Λ2(ρ)]1/2
, κ = 3

4N

(
1 + m

m∗
)

,

Λ1,2(ρ) = 2(2 − 3 sin2 ρ)X−3.0
0 + 2

3
N2

(
1 + m

m∗
)

± [sin2 ρ X−3.0
N

+ (X−3.2
N + X−3.2

−N )(1 + cos2 ρ) + 2 cos ρ(X−3.2
N − X−3.2

−N )], (30)

Tg = T0

[3(C22/I)ε2(1 + cos ρ)2X−3.2
N ]1/2

, (31)

Th = T0

{ε1(n�/n) sin i sin ρ0 [ε1(n�/n) sin i cosec3ρ0 + (1/I)(−C20X
−3.0
0 + C22X

−3.2
N ε2)]}1/2

(32)

In (30) and (31), ρ = ρ0 is the inclination of Mercury’s axis; X−3.0
N and X−3.2

N are the
Hanzen coefficients (functions of eccentricity of orbit); m and m∗ are masses of Mercury
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Table 6. Periods of resonant librations of Mercury and the Moon.

Parameter Mercury (model II) Moon

C20 −60 × 10−6 −202.7 × 10−6

C22 10 × 10−6 22.3 × 10−6

I 0.34 0.392
n�/n −0.86356 × 10−6 −3983.2 × 10−6

i 7.00288 5.1454
ρ 0.02677 6.7433
h0 0 π

Torb (days) 87.969 27.212
Tl (years) 1012.8 74.998

1066 (RamBo)
Tg (years) 16.087 2.871

15.847 (RamBo)
Th (years) 18.657 (e) 20.113

(RamBo)
TEul (years) 1447.6 147.70

964.88 (RamBo)

and the Sun. Equation (30) defines the period of perturbed pole motion, equation (31) the
period of librations in longitude and equation (32) the period of librations of the angular
momentum vector. It should be noted that the Euler periods in the case of small amplitudes of
the pole motion of synchronous satellites (N = 2) are approximately twice the corresponding
perturbed period (30) (table 6). For comparison in table 6 we present also similar characteristics
of resonant librations of the Moon (calculated also from equations (30)–(32)). The periods of
the Moon’s resonant librations are in good agreement with their values obtained on the basis of
laser ranging data, Tg = 2.9 years and Tl = 75 years [37], and with the periods from analytical
theories of the Moon’s rotation, Tl = 75.23, Tg = 2.88 and Th = 24.14 [38], Tl = 75.20, Tg =
2.88 and Th = 24.68 [17, 18], and Tl = 75.205, Tg = 2.916 and Th = 24.297 [28]. The values
of the periods of Mercury’s resonant librations are in good agreement with the values obtained
by numerical stimulations of the equations of translatory–rotary motion of Mercury [20] (they
are labelled RamBo in table 6).

In this section we are restricted by consideration of only the rigid-body model for Mercury.
In a future paper we plan to study the influence of the liquid core on the resonant librations of

the Mercury in the neighbourhood of the Cassini–Colombo motion using the general approach
developed by Barkin and Ferrandiz [5, 6, 24].

4. Conclusions

In this paper, new results about the variations in the dynamic structure of Mercury and about its
resonant rotation are reported. Model parameters of the second harmonic of the gravitational
potential of Mercury are constructed on the basis of theoretical constructions and therefore on
the basis of observational data. The obtained results describe some new aspects and features
of Mercury’s rotation in comparison with similar characteristics of the resonant rotation of
the Moon. Tidal variations in the gravitational potential are sufficiently significant and can be
studied in the framework of the planned missions to Mercury.

We assume also that the amplitudes and phases of resonant librations in longitude and in the
space position of angular momentum can be observed in the close future from radio-location
ground observations of Mercury and also as the result of space missions. The significant role
of a liquid core in the expected forced resonant librations of Mercury are confirmed by our
studies.
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The obtained results present important interest for the effective realization of future missions
to Mercury, the Moon and Titan [1, 2] and for study of the inner structure of these celestial
bodies. The prediction of the high endogenous activity of Titan has been given earlier on
the basis of the shell dynamics mechanism [21, 22]. For the considered model, Titan has the
third highest value of endogenous energy (power) after the very active satellite Io and Europa.
This means that sufficiently high tectonic activity of the Titan can be observed in reality. This
conclusion is very important and some confirmation of it can be obtained from data from the
Cassini–Huygens expedition to Saturn in 2005.
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