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Connections between global and local potentials in two galactic models are described. The first model is a logarithmic
potential while the second is a four-component mass model. The first model describes plane motion in an elliptical
galaxy with a dense nucleus or bulge of radius c, while the second is a composite mass model. Expanding the global
potentials in the vicinity of a circular orbit, we find the potential of the corresponding two-dimensional perturbed
harmonic oscillator. In the first case, the local potential shows two interesting resonances: the 1:1 and the 4:3 resonances.
The appearance of these two cases depends on the flattening parameter of the global potential or the position of the
equilibrium point. Expressions connecting the parameters of the global and local potentials are obtained. The second
model produces a local potential that can show a large number of resonances depending on the position of the
equilibrium point. A relation between the global and local energies of the system is given in both cases.
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1 INTRODUCTION

It is well known in galactic dynamics that, to first order, local motion in a galaxy model can
be described by a two-dimensional perturbed harmonic oscillator potential

V (x, y) = 1
2 (ω2

1x
2 + ω2

2y
2) + εV1, (1)

where ω1 and ω2 are the unperturbed frequencies of oscillation along the x and y-axes
respectively, ε is the perturbation strength, while V1 is a polynomial containing the perturb-
ing terms. Furthermore, we note that the form of the potential (1) is not arbitrary but comes
from the expansion of potentials, relevant for actual galaxies, near an equilibrium point (i.e. a
circular orbit). This means that the parameters entering equation (1) are not arbitrary but can
be connected to the physical quantities of the global system. Note that, in order to obtain the
potential (1) for the local motion, we must have a time-independent three-dimensional global
potential describing motion in a galaxy with an axis and a plane of symmetry. This means
that the potential, in cylindrical coordinates, must be of the form V = V (r, z2) (Binney and
Tremaine, 1987, p. 121).

∗ E-mail: caranic@astro.auth.gr

ISSN 1055-6796 print; ISSN 1476-3540 online c© 2004 Taylor & Francis Ltd
DOI: 10.1080/10556790410001704668



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:5
2 

10
 D

ec
em

be
r 2

00
7 

242 N. D. CARANICOLAS

In this work, connections between global and local potentials are described. The motivation
for this work is as follows.

(i) It is useful to find relations between global physical quantities such as energy, angular
momentum or flattering, and local physical quantities such as energy, local resonances
and local zero-velocity curves. Therefore it is of interest to observe the differences in the
local parameters as the physical quantities of the global system change.

(ii) As the local system has a polynomial form, it is simple, and it is possible to find analytical
expressions describing the local physical or dynamic properties. For instance, it is easy
to find analytical expressions for a potential of the form (1) using action angle variables
(Caranicolas, 1989, 1990). Furthermore, it would be interesting to follow the evolution
of these analytical expressions as the physical parameters of the global system change.

(iii) It is also important to make a comparison between the characteristics of orbits of the
global and local systems. This comparison could be considered as a first step of study,
in future work, the effects on local motions of important features in the interior of our
Galaxy, such as a central bar or a non-axisymmetric spheroidal mass.

In the present paper we employ, as one of the global models, the logarithmic potential

U(r, z) = 1
2 ln(r2 + αz2 + c2), (2)

where r and z are the usual cylindrical coordinates while α and c are parameters. Potential
(2) is important for galactic dynamics and represents an elliptical galaxy with a nucleus or
bulge of scale size c, which displays a flat rotation curve at large radii (Binney and Tremaine,
1987). The parameter 1 < α < 2 defines the axial ratio of the equipotential ellipsoids. It is
important to note that the equipotential curves in the (r, z) plane are only a third as flattened
as the contours of equal density, and the density becomes negative on the z axis when α > 2.

Logarithmic potentials have been frequently used by many investigators, in order to model
galactic motion (see for example Richstone (1980, 1982) and Caranicolas and Vozikis (1986)).

The properties of the global motion in the potential (2) have been studied in a recent
paper (Karanis and Caranicolas, 2001). The primary aim of the present work is to study the
properties of the local potential (1) arising from the dynamic model (2). In particular, we
shall find the connection of the parameters of the potential (1) with the physical quantities
α and c. Of special interest are the possible local resonance cases: When ω1/ω2 is close to
a rational number q = n/m. Furthermore, we wish to find a relation between the global and
local energies. The derivation of the local potential and a connection between global and local
parameters are given in Section 2. In Section 3 we study the properties of global motion and
local motion in the resonance cases. A discussion and conclusions are given in Section 4.

2 CHARACTERISTICS OF THE LOCAL POTENTIAL

The Hamiltonian of the potential (2) is

HG = 1
2

(
p2

r + p2
z + L2

z

2r2

)
+ U(r, z) = 1

2 (p2
r + p2

z ) + Veff(r, z) = E, (3)

where pr and pz are the momenta per unit mass conjugate to r and z, Lz is the angular momen-
tum and E is the numerical value of H . The potential Veff = L2

z/2r2 + U(r, z), describing the
motion in the (r, z) plane, is called the effective potential.
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ORBITS IN GLOBAL AND LOCAL GALACTIC POTENTIALS 243

The local potential can be found by expanding the effective potential in the vicinity of a
circular orbit (r = r0, z = 0). Thus we have

Veff(r0 + �r, �z) = Veff(r0, 0) + 1
2A(�r)2 + 1

2B(�z)2

+ [α1�r(�z)2 + α2(�r)3 + · · ·], (4)

where

A = 3L2
z

r4
0

+
(

∂2U

∂r2

)
r0,0,

B =
(

∂2U

∂z2

)
r0,0,

α1 = 1

2

(
∂2U

∂r∂z

)
r0,0,

α2 = −2L2
z

r5
0

+ 1

6

(
∂3U

∂r3

)
r0,0,

(5)

and we have taken into account the condition for the circular orbit as well as the fact Veff is
symmetric about z = 0. Dividing both sides of equation (4) by A and writing V = [Veff(r0 +
�r, �z) − Veff(r0, 0)]/A, B/A = ω2, β = α1/A, γ = α2/A, x = �r and y = �z, we obtain

V (x, y) = 1
2 (x2 + ω2y2) + βxy2 + γ x3, (6)

which is the local potential. In this potential, only third-order terms in the variables have been
retained. The following arguments justify our choice.

(i) This potential has been used by many investigators in order to study local motion in
galaxies or the properties of nonlinear harmonic oscillators, for more than three decades
(see for example Henon and Heiles (1964), Saito and Ichimura (1974), Innanen (1985)
and Elipe et al. (1995)).

(ii) In spite of its simplicity, it is characterized by interesting resonance phenomena and large
chaotic regions for certain values of the parameters ω, β and γ .

Figure 1 shows a plot of the ratio q = 1/ω as a function of the flattening parameter α when
the position of the circular orbit is at r0 = 0.6. We see that the system can come close to the 1:1
and the 4:3 resonance cases. One notes that a change in the value of the scale size of the nucleus
c does not affect drastically the appearance of the above resonances. In Figure 2, q is shown
as a function of the position r0 of the circular orbit, when α = 2. Here the situation appears
different. One observes that the system can show phenomena connected with two resonance
cases, that is the 1:1 and the 4:3 cases, only when c = 0.15. For a dense nucleus with c = 0.01,

the system stays close to the 1:1 resonance.
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244 N. D. CARANICOLAS

FIGURE 1 Relationship between q and the flattening parameter α in the local expansion of the logarithmic potential
for two values of c. Note that the system shows similar behaviours for both values of c.

The above behaviour can be explained using the analytical expressions for q. In the
following we give the expressions for the parameters q, β and γ with respect to α and c.

These expressions are

A = 3L2
z

r4
0

+ c2 − r2
0

(c2 + r2
0 )2

,

B = α

c2 + r2
0

,

q =
[
c2 + r2

0

α

(
3L2

z

r4
0

+ c2 − r2
0

(c2 + r2
0 )2

)]1/2

,

β = −αr0

(c2 + r2
0 )2

[
3L2

z/r4
0 + (c2 − r2

0 )/(c2 + r2
0 )2

] ,

γ = −2L2
z/r5

0 + r0(r
2
0 − 3c2)/3(c2 + r2

0 )3

3L2
z/r4

0 + (c2 − r2
0 )/(c2 + r2

0 )2
.

(7)

As one can see, for a given value of r0, q decreases as α increases (see Figure 1). On the
other hand, when α is kept constant, q decreases as r0 increases (see Figure 2). Equations (7)
give interesting results for small values of c. Indeed, for c → 0, we have �0 → 1, Lz →=
r0�0 → r0, where �0 is the circular velocity. In equations (7), setting Lz = r0 and taking the
limits for c → 0, we obtain

A = 2

r0
, B = α

r2
0

, q =
(

2

α

)1/2

, β = −α

2r0
, γ = −5

6r0
. (8)
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ORBITS IN GLOBAL AND LOCAL GALACTIC POTENTIALS 245

FIGURE 2 Relationship between q and the position of the circular periodic orbit r0. Note that the system shows a
quite different behaviour for large values of c.

One observes that, for small values of c, q is only a function of the flattening parameter α (see
Figure 2), while the coefficients β and γ of the perturbing terms are always negative.

When α = 1, potential (2) is spherically symmetric and all three components of the angular
momentum are conserved. The corresponding effective potential is

Veff(ρ) = L2

2ρ2
+ 1

2 ln(ρ2 + c2) = L2

2ρ2
+ U(ρ), (9)

where ρ2 = x2 + y2 + z2 while

L2 = L2
x + L2

y + L2
z (10)

is the square of the total angular momentum. The global potential (9) is integrable. Expanding
the potential (9) in the vicinity of the circular orbit ρ = ρ0, we find that

V (ρ) = 1
2A1ρ

2 + γ1ρ
3, (11)

where

A1 = 3L2

ρ4
0

+ c2 − ρ2
0

(c2 + ρ2
0 )2

, γ1 = −2L2

ρ5
0

+ ρ0(ρ
2
0 − 3c2)

3(c2 + ρ2
0 )3

, (12)

where the higher-order terms have been omitted. Clearly the local potential (12) is also inte-
grable.
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246 N. D. CARANICOLAS

3 PROPERTIES OF MOTION IN THE LOCAL POTENTIAL

The properties of global motion in the potential (2) have been studied by Karanis and
Caranicolas (2001). In what follows, the properties of the local motion described by the
potential (6) are studied. We now connect some physical properties such as the energy and
axial ratio of the equipotential curves of the global and local potentials.

First, the global energy E, associated with the potential Veff , is connected to the local energy
h, associated with the potential V (x, y). It is clear that E00 = Veff(r0, 0) is the energy of the
circular orbit of a radius r0. The energy E0 = Veff(r0 + �r, �z) is the energy in the vicinity
of the circular orbit. In other words, E00 = constant represents a point in the r–z plane, while
E0 = constant represents a curve defining an area in the same plane. The motion takes place
inside this curve, usually called the equipotential curve or the curve of zero velocity. The
difference E0 − E00 defines the local energy. In order to avoid large numbers, we have divided
all parameters by A. Thus h = (E0 − E00)/A. On increasing �r and �z, E0 increases, so that
h also increases.

It is interesting to compare the equipotential curves of the logarithmic potential (2) with
those of the local potential (6). The axial ratio of the equipotential ellipses for the potential (2)
is a/b = α while the axial ratio of the equipotential curves of the local potential (6), which for
small values of h can be considered as ellipses, is a/b = A1/2/B1/2 = q. This is reasonable
because the axial ratio of the local potential depends not only on the flattening parameter but
also on c, Lz and the position r0 of the circular orbit. The axial ratio can be considered to be the
same for γ = 0 or for γ �= 0 for low local energies. For higher energies the axial ratio cannot
be defined because the zero-velocity curves are not ellipses.

The Hamiltonian for the potential (6) is

H = 1
2 (p2

x + p2
y + x2 + ω2y2) + βxy2 + γ x3 = h, (13)

where px and py are the momenta per unit mass conjugate to x and y respectively, while h is
the numerical value of H. In order to visualize the properties of motion in the local potential,
we computed the x–px(y = 0, py > 0) Poincaré phase plane, for the Hamiltonian (13) in the
1:1 and 4:3 resonance cases. To keep matters simple, only bounded local motion is consid-
ered. This means that zero-velocity curves V (x, y) = h are always closed in the x–y plane,
that is h < hesc, where hesc is the energy of escape (Caranicolas and Varvoglis, 1984) and is
given by

hesc = 1

54γ 2
. (14)

When r0 = 0.6, α = 2 and c = 0.01, we find that ω2 = 1, β = −1.67 and γ = −1.39. The
numerical results do not show resonance phenomena for all values of the local energy up to
hesc. All invariant curves are topological circles around a stable invariant point. In other words,
the local phase plane appears similar to the global r–pr phase plane, in the case where the
angular momentum in the effective potential is the circular angular momentum (see Figure
5 later). Similar results are observed when the local system is near the 4:3 resonance. This
happens when r0 = 0.6, α = 1.2 and c = 0.15. The corresponding local parameters are ω2 =
0.56, β = −0.88 and γ = −1.38. The situation appears quite different if we consider only the
first coupling perturbing term in the local potential (6). In this case, the last term in equation
(6) is neglected (Caranicolas and Innanen, 1992). For convenience, we call this potential VC.
Figures 3(a)–(d) show the x–px Poincaré phase plane for the above values of the parameters
and four values of the local energy h = 0.01, 0.03 and 0.04 and also h = hCesc = 0.0448. The
pattern has the characteristics of the 1:1 resonance. The motion is regular for small energies
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ORBITS IN GLOBAL AND LOCAL GALACTIC POTENTIALS 247

FIGURE 3 (a)–(d) The x–px phase plane for the local potential VC in the 1:1 resonance case. Note that resonance
phenomena are present for low energies, while the chaotic region increases for higher energies.

while, for h = 0.03, a small chaotic layer appears near the separatrix. For h = 0.04, the chaotic
layer increases and secondary resonances appear while, for h = hesc, there exists a chaotic sea
and small regular regions around the stable periodic points on the x axis. A similar behaviour
is observed in the case when the local system is near the 4:3 resonance. Note that the escape
energy for the potential VC is

hCesc = ω4

8β2
= 1

8q4β2
. (15)

The escape energy for the potential VC depends on the values of q and β, while the corre-
sponding escape energy for potential (6) depends only on the local parameter γ.

One could claim that all the above are characteristics of the logarithmic potential (2) and
that the behaviours of the local potentials V and VC could have been different if we had chosen
a different global potential. For this reason, we obtained the local potentials corresponding to
a composite mass model (CMM) composed of a disc halo, a nucleus, a bulge and a dark halo.
The parameters of this model and the corresponding effective potential can be found in the
paper by Caranicolas (1997). To help the reader to follow our reasoning, this CMM is described
in Appendix A. Figure 4 shows a plot of q as a function the position r0 of the circular periodic
orbit in the CMM. As one can see, the system can be, among others, near the 1:1, 1:2, 2:5 and
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FIGURE 4 Relationship between q and the position of the circular periodic orbit r0 in the local expansion of the
CMM. We observe that the system can show a large number of resonances.

1:3 resonance cases. So that the reader can obtain a better view of the local parameters we give
the corresponding values for the CMM in Table 1.

Figure 5 shows the r–pr(z = 0, pz > 0) phase plane in the CMM. The value of angular
momentum Lz is equal to Lzcir = 116, which is the value of the circular angular momentum
at r0 = 5.25. The energy is E0 = −1213, a value which is about 2% higher than the energy
E00 = −1242 of the corresponding circular orbit. This energy defines a zero-velocity curve
in the r–z plane between rmax = 6.76 and rmin = 4.21. Figure 5 suggests that there are no
resonant phenomena. Here we emphasize that resonance phenomena and chaos, in some global

TABLE 1 Parameters for the local poten-
tials V and VC derived from the Taylor series
of the the CMM.

r0 ω2 β γ q

1.30 1.0 −0.48 −0.61 1.0
5.25 4.0 −0.28 −0.15 0.5
8.50 6.27 −0.46 −0.10 0.4

15.0 9.0 −0.61 −0.06 0.33
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FIGURE 5 The r–pr phase plane for the CMM. The value of the angular momentum Lzcir = 116, while E = E0
= −1213. No resonance phenomena are present.

potentials, were observed only for low values of the angular momentum (Caranicolas and
Innanen, 1991; Caranicolas, 1997; Karanis and Caranicolas, 2001).

Figures 6(a)–(d) show the x–px phase plane for the local potentials V and VC in the case
q = 0.5 in Table 1. It is clear that the local system is in 1:2 resonance. In Figure 6(a), the x–px

phase plane is shown for the potential V when h = hesc = 0.8230. No resonance phenomena
are present. Figure 6(b) shows the x–px phase plane of the local potential VC for the same
value of h = 0.8230. Once again, no resonance phenomena are observed. In order to observe
resonance phenomena in the local potential VC, one must go close to hCesc. Figures 6(c) and
(d) show the x − px phase plane for this potential when h = 24.5 and h = hesc = 25.51,
respectively, where resonance islands and chaos are present.

Extensive numerical calculations, in the local potentials V and VC, derived from the loga-
rithmic potential or the CMM, when q = 1 or q = 1.33 in the first case, and for all values of
q shown in Table 1 in the second case, suggest that the potential V does not display resonance
phenomena for all values of the energy h < hesc. On the other hand, the potential VC always
displays resonance phenomena. Those phenomena appear for very low energies and are present
up to h = hCesc when q = 1, that is in the 1:1 resonance case, while, for the other resonance
cases, they appear only when the energy h of the system is close to hesc.

The above phenomena support the idea that there is a threshold for the parameters of the
local system to describe successfully the properties of motion of the global system. Such a
parameter is the energy of escape of the local system, which is connected, through equations
(14), (15) and (7) to the parameters of the global potential. Up to this energy, the orbital
behaviour of the local potential V is similar to that of the global potential (2). For resonance
cases different from the 1:1 resonance, the motion in the local potential VC is similar to the
global motion for low local energies, far from the escape energy.
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FIGURE 6 The x–px phase plane for the local potentials (a) V and (b)–(d) VC in the 1:2 resonance case. Note that
no resonance phenomena appear in V while resonance phenomena and chaos appear in VC only for values of the local
energy near hCesc.

4 DISCUSSION

In this paper we have tried to connect the parameters of local motion with physical quantities
in the global models. Such parameters for the global models used in this work are, among
others, the mass, angular momentum, the scale size of the nucleus or bulge and the flattening
parameter. In other words, the parameters ω, β, γ and the energy h are not arbitrary but are
functions of the above physical quantities of the global models.

Two global models were used: the logarithmic potential (2) and the CMM. In the local
potential derived from the logarithmic model, two resonance cases are possible: the 1:1 and
the 4:3 resonance. In the CMM (Figure 4), a large number of resonance cases are possible.
The parameters of the local potential for some of the resonance cases are given in Table 1.

Numerical calculations were carried out in the local potentials V and VC in the cases where
q = 1/ω was a rational number. In all the studied cases, it was observed that the potential VC

shows resonant phenomena and chaos, while the potential V behaves as if as it was far from
resonances even though q is rational. It seems natural then to ask: what is the reason for the
different behaviours of the above two local potentials? The answer can be found by observing
carefully the patterns given in Figures 5 and 6(a). The similarity between the two patterns is
clear. The same behaviours are observed for all values of q in both global potentials. We now
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give an explanation for this behaviour. In Figure 5, the properties of global motion for a value
of energy E = E0 close to the energy of circular orbit, and a value of the angular momentum
corresponding to that of the circular orbit are shown. As the expansion for the potential V is
carried to the vicinity of the circular orbit, it is reasonable to expect local motion similar to
global motion. Furthermore, if we consider as a value of the local energy that of Figure 6(a),
then hesc = 0.8230 = (E − E00)/A, which for A = 39 and E00 = −1242 gives E = −1210.

This means that the escape energy of the local system corresponds to an energy E very close
to that of the circular orbit. Elementary calculations for the global potential (2) show that γ

cannot be equal to zero. Indeed, the circular angular momentum is

Lz = r2
0

(c2 + r2
0 )1/2

(16)

Substituting this value of Lz in equation (7) for γ turns it into a function of r0 and c. If γ = 0,
we find only imaginary values for r0, meaning that γ �= 0.

On the other hand, in the potential VC, we did not take into consideration all third-order
terms. As a consequence, one loses information on going from the global to the local potential.
Note that, if the term γ is ignored at the same time, then all the information coming from the
angular momentum in the perturbing terms is lost. This happens because β in fact does not
depend on the value of the angular momentum while γ does depend on this value. This changes
drastically the behaviour of the global system. At the same time, this can be considered as a
very good example that shows the physical implication resulting from arbitrarily ignoring the
term depending on an important physical quantity, that is the angular momentum.

Going a step further, we can state that the resonance phenomena are a consequence of
the perturbing terms. If the value of the circular angular momentum is not present in the
perturbing terms, then the system displays resonance phenomena. This is reminiscent of the
chaotic phenomena in the global motion appearing in both global models for small values of
the angular momentum (Caranicolas, 1997; Karanis and Caranicolas, 2001).

The resonance phenomena in the potential VC are stronger and appear for low energies
in the 1:1 resonance case while, for other resonance cases, energies near hesc are required to
observe them. For low energies, resonance phenomena are not seen. This cannot be considered
a better agreement between global and local motion, because we know that in higher-order
resonances there are smaller islands and, for resonance phenomena to appear, higher energies
are required. Furthermore, the presence of the term γ affects the escape energy because it was
observed that in all cases hesc < hCesc. It is, therefore, evident that, ignoring γ, we change the
dynamics of the local potential because, among others, we increase the local escape energy,
which favours the presence of the reasonance phenomena.

In conclusion, the properties of local motion, in the two global models considered above, are
well described by the potential V but not by the potential VC. On the other hand, the potential
VC is very useful in order to study the properties of perturbed harmonic oscillators, while
V does not seem to give interesting results for the same purpose unless we choose arbitrary
values for the parameters β and γ . As a related case, we mention the Henon–Heiles (1964)
potential where β = 1 and γ = −1/3 were chosen after some trials. The complex sensitivities
of its parameters for the onset of chaos have been studied by Innanen (1985). Future studies
aim to examine the theoretical effects produced by perturbations of galactic bars and/or other
non-axisymmetric mass distributions.
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APPENDIX A

A1 The composite mass model

We consider an axially symmetric galaxy model consisting of four components, in the same
way as in the paper by Caranicolas and Innanen (1991). The first component is the disc-halo
represented by the potential

Φdh = −Mdh

R
, (A1)

with

R2 =
(

k +
3∑

i=1

λi(z
2 + h2

i )
1/2

)
2 + d2 + r2. (A2)

Here r and z are the traditional galatic cylindrical coordinates, Mdh is the mass, k and h are
the scale length and the scale height of the disc respectively, while d is the core radius scale
length of the halo component. λ1, λ2 and λ3 represent the fractional portions of the old disc,
dark matter and young disc respectively. The other three components are represented by the
spherically symmetric potentials

Φn = − Mn

(r2 + z2 + c2
n)

1/2
,

Φb = − Mb

(r2 + z2 + c2
b)

1/2
,

Φh = − Mh

(r2 + z2 + c2
h)

1/2
,

(A3)

where Mn, Mb and Mh, are the masses of the nucleus, bulge and dark halo respectively, and
cn, cb and ch are their corresponding scale lengths.

We use a system of galatic units where the unit of length is 1 kpc, the unit of mass is
2.325 × 107M and the unit of time is 0.977 748 × 108 year. The velocity unit is 10 km s−1

while G = 1. Using these units, we take Mdh = 9350, Mn = 400, Mb = 2000, Mh = 11 500,

k = 3.1 kpc, d = 10 kpc, λ1 = 0.4, λ2 = 0.5, λ3 = 0.1, h1 = 0.325 kpc, h2 = 0.090 kpc,
h3 = 0.125 kpc, ch = 0.25 kpc, cb = 3 kpc and ch = 40 kpc. This choice of units produces
a composite galactic mass model that reasonably replicates our Galaxy, with a flat rotation
curve.


