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ORDER AND CHAOS OF LOW- AND HIGH-ENERGY
STARS IN A GALAXY WITH A STRONG NUCLEAR BAR

N. D. CARANICOLAS∗ and N. J. PAPADOPOULOS

Department of Physics, Section of Astrophysics, Astronomy and Mechanics,
University of Thessaloniki, 540 06 Thessaloniki, Greece

(Received 14 January 2004)

We study the global and local motion in a barred galaxy model with a massive nucleus. The local model is made up
of a two-dimensional perturbed harmonic oscillator and can be derived by expanding the global model in the vicinity
of a stable Lagrange point. Low- and high-energy stars in the global model display chaotic motion. Comparison with
previous work shows that, for the chaotic motion of low-energy stars, the massive nucleus is responsible. In the local
motion, low-energy stars show resonance phenomena while the chaotic phenomena, if any, are negligible. On the
other hand, the high-energy stars do not show bounded motion in the local model. This is an indication of particular
activity near the centre of galaxies with massive nuclei.

Keywords: Order; Chaos; Low-energy stars; High-energy stars; Barred galaxy

1 INTRODUCTION

In an earlier paper (Caranicolas, 2002) (hereafter called paper P1) we have studied connections
between global and local parameters in a barred galaxy model. In the present paper we add to
that potential a spherically symmetric nucleus and the total potential becomes

�(r, φ) = − Md

(r2 + α2)1/2
− Mb

{r2[1 + (b2 − 1) sin2 φ] + c2
b}1/2

− Mn

(r2 + c2
n)

1/2
, (1)

where r, φ are polar coordinates. Equation (1) describes motion in a barred galaxy with a
massive nucleus (see below). Here Md, Mb and Mn are the masses of the disc, bar and nucleus
while α, cb and cn represent the scale lengths of the disc, bar and nucleus respectively. b > 1
stands for the strength of the bar. We use a system of galactic units where the unit of length
is 1 kpc, the unit of time is 0.977 46 × 108 year and the unit of mass is 2.325 × 107M�. The
velocity and the angular velocity units are 10 km s−1 and 10 km s−1 kpc−1 respectively while
G is equal to unity. Our test particle is a star of mass 1. Therefore, the energy unit (per unit
mass) is 100 km2 s−2. In these units the values of the parameters are α = 12 kpc, b = 2 kpc,
cb = 1.5 kpc, Md = 9500, Mb = 3000 and Mn = 400.
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230 N. D. CARANICOLAS AND N. J. PAPADOPOULOS

As in paper P1, we consider the case where the bar rotates clockwise at a constant angu-
lar velocity, �b. The corresponding Hamiltonian, which is known as the Jacobi integral, in
rectangular Cartessian coordinates x and y, is

HJ = 1

2
(p2

x + p2
y) + �(x, y) − 1

2
�2

b(x
2 + y2)

= 1

2
(p2

x + p2
y) + �eff(x, y)

= EJ, (2)

where px and py are the momenta, per unit mass, conjugate to x and y,

�eff(x, y) = − Md

(x2 + y2 + α2)1/2
− Mb

(x2 + b2y2 + c2
b)

1/2

− Mn

(x2 + y2 + c2
n)

1/2
− 1

2
�2

b(x
2 + y2), (3)

is the effective potential and EJ is the numerical value of the Jacobi integral. If we expand the
effective potential (3) in a Taylor series near the centre, we shall find a potential describing
local motion.

The motivation for the present work is, firstly, to study the properties of global and local
motion in the corresponding potentials and, secondly, to compare the results with those obtained
in paper P1 where we had only the bar while the massive nucleus was absent.

In Section 2 we study the properties of orbits in the global model. The local potential, the
connection between the local and global parameters and the properties of the local motion are
presented in Section 3. We close with a discussion and the conclusions of this work, which are
given in Section 4.

2 PROPERTIES OF ORBITS IN THE GLOBAL MODEL

The contours of the constant effective potential (3) are shown in Figure 1. The value of �b is
1.25 in the above-mentioned galactic units. This corresponds to 12.5 km s−1 kpc−1. There are
five stationary points, labelled L1 to L5, at which

∂�eff

∂x
= 0,

∂�eff

∂y
= 0. (4)

These points are called Lagrange points. The central stationary point L1 is a minimum of
�eff . At the other four points L2, L3, L4 and L5 it is possible for the test particle to travel
in a circular orbit while appearing to be stationary in the rotating frame. For this orbit the
centrifugal and gravitational force precisely balance. The points L2 and L3 are saddle points
while L4 and L5 are maxima of the effective potential. The annulus bounded by the circles
through L2 and L3 and through L4 and L5 is known as the region of corotation.

Our study is based on the numerical integration of the equations of motion

ẍ = −2�bẏ − ∂�eff

∂x
, ÿ = 2�bẋ − ∂�eff

∂y
, (5)

where the dot indicates derivative with respect to the time. We use the classical method of the
x–px(y = 0, py > 0) Poincaré phase plane. Figure 2 shows the structure of this plane for the
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ORDER AND CHAOS IN A GALAXY WITH A STRONG NUCLEAR BAR 231

FIGURE 1 Contours of the constant effective potential (3) when cb = 1.25. The values of the parameters are α =
12 kpc, b = 2 kpc, cb = 1.5 kpc, cn = 0.25 kpc, Md = 9500, Mb = 3000 and Mn = 400. There are five stationary
points labelled L1 to L5.

global Hamiltonian (2) when EJ = −1000. There are regular orbits, forming the ‘central set’
of invariant curves as well as a triple set of islands. Furthermore, one can see several sets of
smaller secondary islands belonging to orbits starting near periodic orbits of higher resonance.
In addition to the regular region, there is a large chaotic sea formed by the chaotic orbits. It is
important to note here that this chaotic sea is obviously larger than that observed in the case in
paper P1 where the massive nucleus was absent. Also note that the presence of a nucleus gives
rise to a large number of secondary islands. The outermost curve is the limiting curve defined
by the equation

1

2
p2

x + �eff(x) = EJ. (6)

Figures 3(a)–(d) show four typical orbits. The orbits shown in Figure 3(a) produce one of
the central invariant curves. This orbit is a quasiperiodic orbit starting near the stable retrograde
periodic orbit which is nearly circular. Such orbits support the disc. The orbit shown in Figure
3(b) produces the set of three outer islands. This orbit belongs to a family of elongated orbits
that support the bar. The orbit shown in Figure 3(c) produces two of the three elongated islands
embedded in the chaotic sea, while the orbit given in Figure 3(d) is a chaotic orbit. It is evident
that the two last types of orbit support both the bar and the disc.

Let us now proceed to see the behaviour of orbits, in the global model, near the cen-
tre, that is close to the nuclear region. Figure 4 shows the x–px phase plane when EJ =
−2900. One observes regions of regular motion and chaotic regions as well. In fact, there are
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232 N. D. CARANICOLAS AND N. J. PAPADOPOULOS

FIGURE 2 The x–px phase plane for the global Hamiltonian (2) when EJ = −980. The values of the parameters
are as in Figure 1.

two main regular regions consisting of invariant curves that are topologically circles clos-
ing around the two invariant points. Those two stable invariant points belong to the two
main periodic orbits: the retrograde on the right, and the direct on the left. These periodic
orbits are characteristics of the 1:1 resonance and are similar to ellipses around the ori-
gin. The rest of the regular region consists of smaller islands produced by quasiperiodic

FIGURE 3 (a)–(d) Orbits in the global Hamiltonian (2). The values of parameters are as in Figure 2.
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FIGURE 4 Same as Figure 2 when EJ = −2900.

FIGURE 5 (a)–(f) Orbits in the global Hamiltonian (2) when EJ = −2900.
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234 N. D. CARANICOLAS AND N. J. PAPADOPOULOS

orbits belonging to higher resonances. The chaotic region consists of a large chaotic sea
with several sticky regions. It is well known that the phenomenon of stickiness is com-
mon in barred galaxy models (Caranicolas and Karanis, 1998; Karanis and Caranicolas,
2002).

Comparing the present results with those given in paper P1 we see that the presence of the
massive nucleus changes dramatically the properties of motion in our barred galaxy model.
There we had only regular motion; strictly speaking, there were only box orbits forming regular
invariant curves while, in the present case, we have resonant periodic or quasiperiodic orbits
producing large or small islands. Furthermore the larger parts of orbits are chaotic. We return
to this point in the discussion.

In order to visualize the structure of motion near the nuclear region we present six typical
orbits which are shown in Figures 5(a)–(f). Figures 5(a) and (b) show two orbits starting near
the starting points of direct and the retrograde stable periodic orbits. Each of those orbits
produces one invariant curve belonging to the main set of invariant curves and closing around
one of the fixed invariant points on the left- or the right-hand side respectively in Figure 4. The
orbit shown in Figure 5(c) produces the set of the two small islands embedded inside the main
set of invariant curves on the right-hand part of Figure 4 while the orbit shown in Figure 5(d)
produces one of the islands that intersects the px axis. Finally Figure 5(e) shows a box orbit
producing the outer invariant curve in Figure 4 while the orbit shown in Figure 5(f) is a chaotic
orbit.

3 MOTION IN THE LOCAL POTENTIAL

Expanding the effective potential (3) in a McLaurin series near the stable Lagrange point L1,
we obtain the local effective potential which is

Ueff(�x, �y) = Ueff(0, 0) + 1

2
A(�x)2 + 1

2
B(�y)2

− 3

8
[α1(�x)4 + 2α2(�x)2(�y)2 + α3(�y)4]

− 1

2
�2

0[(�x)2 + (�y)2], (7)

where we have set

Ueff = α

Md
c2

n�eff , (8)

in order to avoid large numbers. Writing, for convenience, x = �x, y = �y, Veff =
Ueff(x, y) − Ueff(0, 0), equation (7) becomes

Veff = 1

2
Ax2 + 1

2
By2 − 3

8
(α1x

4 + 2α2x
2y2 + α3y

4) − 1

2
�2

0(x
2 + y2), (9)

where

A = c2
n

α2
+ αc2

nMb

Mdc
3
b

+ αMn

Mdcn
,

B = c2
n

α2
+ αb2c2

nMb

Mdc
3
b

+ αMn

Mdcn
,
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α1 = 1

α4
+ αMb

Mdc
5
b

+ αMn

Mdc3
n

,

α2 = c2
n

α4
+ αb2c2

nMb

Mdc
5
b

+ αMn

Mdc3
n

,

α3 = c2
n

α4
+ αb4c2

nMb

Mdc
5
b

+ αMn

Mdc3
n

,

�2
0 = αc2

n�
2
b

Md
. (10)

As one can see, from equations (10), the coefficients of the local effective potential are functions
of the physical quantities entering the global effective potential.

The local Hamiltonian is

HL = 1

2
(X2 + Y 2) + Veff(x, y) = hL, (11)

where X and Y are the local momenta, per unit mass, conjugate to x and y while hL is the
numerical value of the local energy.

In order to connect the global energy EJ to the local energy hL we proceed as follows. The
equation EJ0 = �eff(0, 0) defines a point in the (x, y) plane while EJ = �eff(x, y) defines
a curve in the same plane. The global motion takes place inside this curve which is known
as the zero-velocity curve. On the other hand, hL = Veff(x, y) defines a curve in the (x, y)

plane inside which the local motion takes place. This curve is the local zero-velocity curve.
We consider only bounded motion; that is, the zero-velocity curves are always closed curves.
The local energy hL is connected to the global energy through the relation

hL = Ueff(x, y) − Ueff(0, 0)

= αc2
n

Md
[�eff(x, y) − �eff(0, 0)]

= αc2
n

Md
(EJ − EJ0). (12)

Let us now study the properties of local motion. For the adopted values of the global
parameters and �b = 1.25 we find that A = 2.1, B = 2.3, α1 = 32.4, α2 = 32.5, α3 = 32.8
and �0 = 0.011. For the value of global energy EJ = −2900 we find that, using equation (12),
hL = 0.117 76. It is amazing that this value of local energy is much larger than the energy of
escape for the corresponding local potential (Caranicolas and Karanis, 1998), which is given by

hesc = (B − �2
0)

2

6α1
. (13)

For the above values of the parameters, equation (13) gives hesc = 0.022 522. This value is
less than hL/5. Therefore, one concludes that near the nucleus we do not have local motion
or what are equivalent local orbits escape the nuclear region because they possess a high local
energy. In order to obtain an idea of the local motion near the nucleus, one must go to very
low energies, that is h � hL.

Figure 6 shows the x–X(y = 0, Y > 0) Poincaré phase plane for the local motion when
h = 0.0225. The motion is regular, and the phase plane has all the characteristics of the 1:1
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FIGURE 6 The x–X phase plane for the local Hamiltonian (11) when h = hL = 0.0225.

resonance. There are two stable periodic points corresponding to the direct and the retrograde
resonant periodic orbits respectively. The unstable periodic point gives an orbit which, in the
absence of rotation, is the y axis. Thus, one concludes that local motion near the nucleus
consists of a low-energy 1:1 resonant periodic orbit; chaotic phenomena, if any, are negligible.

FIGURE 7 (a)–(d) Orbits in the global Hamiltonian (11) when h = 0.0225.
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This situation is completely different from that displayed in paper P1 where the nucleus was
not present. There, all orbits in the local potential were box orbits without any resonance
phenomena.

Figures 7(a)–(d) show four orbits for the local Hamiltonian (11). Figure 7(a) and (b) show
two quasiperiodic orbits starting near the retrograde and direct periodic points respectively.
Figure 7(c) shows an orbit starting near the unstable periodic point while the orbit shown in
Figure 7(d) is a box orbit and produces one of the outer invariant curves shown in Figure 6.

4 DISCUSSION

One of the most important approaches for understanding the dynamic behaviour of a galactic
dynamic model is based on the knowledge of the chaotic versus ordered nature of its orbits. In
the present work we tried to achieve this with a global and local potential describing a barred
galaxy with a massive nucleus. The corresponding local potential was found by expanding the
global model in a McLaurin series around a stable Lagrange point which coincides with the
origin. This local potential is a potential made up of a two-dimensional perturbed harmonic
oscillator. The study of motion in those potentials has been an active field of research in the last
decades (see for example Saito and Ichimura (1979), Caranicolas (1984, 1994, 2000), Innanen
(1985) and Caranicolas and Karanis (1999)). In the last few years the study of the properties of
motion in those systems has been made using precise and modern analytical (Elipe, 1999, 2001;
Elipe and Deprit, 1999) or numerical (Lara et al., 1999; Karanis and Caranicolas, 2002) tools.

As expected, the local parameters and the corresponding local energy are functions of the
global parameters and the global energy. Our numerical experiments in the global model, for
high energies, suggest that more than 50% of orbits are chaotic. Comparing this outcome with
those of paper P1 we see that, in the present case, we have a sharp increase in the chaotic
orbits. It is evident that the massive nucleus is responsible for this phenomenon. It is easy to
see that the chaotic region in Figure 2 is very much extended. This means that the nucleus
affects not only the region near the centre but also areas far from that. Another interesting
observation is that the presence of massive nucleus does not seem to affect the figure-of-eight
quasiperiodic orbits which are building blocks of the barred structure of the galaxy. This result
agrees with recent observations made by the Hubble Space Telescope which showed that a
number of Seyfert galaxies display strong nuclear bars (Regan and Mulchaey, 1999).

On the other hand, the global motion near the nucleus has the characteristic of 1:1 resonance.
Furthermore the chaotic sea seems to be larger than that observed in Figure 2. This is natural
because of the presence of the nearby massive nucleus. The above results are completely
different from the corresponding results in paper P1, where the motion was regular and where
all orbits for the global motion near the centre were box orbits.

In order to estimate better the degree of chaos displayed by the orbits in Figures 2 and 4
we decided to compute the maximal Lyapunov characteristic number (LCN) (for details see
Lichtenberg and Lieberman (1983)). The results are shown in Figure 8. The dotted curve shows
the LCN for a chaotic orbit with initial conditions in a chaotic sea in Figure 2 while the solid
curve is the LCN for a chaotic orbit with initial conditions in the chaotic sea of Figure 4. The
LCN represented by the solid curve is about ten times the LCN indicated by the dotted curve.
Therefore, one can say that in this case we have not only fast chaos (Caranicolas and Vozikis,
1987) where the LCN is of the order of unity but very fast chaos where the LCN is about three
times larger. It is evident that this is an indication of strong activity in the nuclear region.

Let us now consider the local motion. The local potential (9) has characteristics of the
1:1 resonance. Such potentials are known as perturbed elliptic oscillators (Deprit, 1991).
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FIGURE 8 LCNs for the two chaotic orbits. (. . . . . .), LCN for an orbit in the chaotic sea of Figure 2; ( ), LCN
for an orbit in the chaotic sea of Figure 4.

It is interesting that for the corresponding local energy given by equation (12) the local motion
is not bounded. In order to obtain bounded local motion, one must go to very low local energies.
Strictly speaking, the presence of the massive nucleus makes the local energy increase dramat-
ically, so that considering all the local zero-velocity curves results in unbounded local motion.
For local energies slightly lower than the energy of escape we observe resonance phenomena,
namely the 1:1 resonant periodic orbits. Extensive numerical calculations in the local potential
suggest that chaotic phenomena, if any, are negligible.

Bearing all the above in mind we can say that this situation is completely different from
that observed in paper P1 where the properties of local motion were the same as those of the
global motion near the centre (see Figures 4 and 5 in paper P1). Here the corresponding local
motion does not appear to exist, and only very-low-energy local motion seems to be present.
Furthermore, the fact that the corresponding LCN, which was computed in the chaotic sea
near the nuclear region, is much more than unity suggests that there is particular activity in the
motion in the central parts of galaxies with strong nuclear bars.
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