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The review of results obtained on the investigation of orbits in non-stationary stellar systems at the Astrophysical
Institute is presented. The main interest is the theory of orbits in binary and triple systems of stars and the theory
of orbits in regular potentials of galaxies with variable mass.
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1 INTRODUCTION

In reviews on the theory of orbits in stellar systems (Timoshkova and Kholshevnikov, 1982;

Antonov, 1985) the work of the Fessenkov Astrophysical Institute on this problem is notable

in that it considers the non-stationarity of gravitational fields. The development of this work

at the Institute began from the investigation of the evolution of orbits of wide binary stars

with intensive corpuscular radiation in a new formulation which additionally takes into

account the effects of the behaviour of isotropically radiating particles (Idlis and Omarov,

1960). This ‘physical’ two-body problem with decreasing masses is sometimes called the

Idlis–Omarov problem (Gelfgat and Berkovic, 1975). Also a description of that problem

by other workers with reference to the original research by Idlis and Omarov may be

found in the fundamental review investigations by Hadjidemetriou (1967) and Mikhailov

(1985). In the analytical theory of that problem, Omarov (1964a) used for the first time

the perturbed variables of the aperiodic motion on conic section, later called Omarov–

Hadjidemetriou elements (Polyakhova, 1989). Omarov (1964b) also obtained qualitative esti-

mates for the value of the corresponding perturbed functions for real observable binary stars

with stationary mass loss. The importance of Omarov’s result was also noted in the scientific

literature (Schrivastava and Ishwar, 1983). For stellar dynamics the integrated problem

(Omarov, 1972a) on the motion of particle in the gravitational field of point mass and extend-

ing gravitational background, the density of which varies with time proportional to t�2, is of

interest (the solution evidently is valid according to the same law in the case of a pressing

background) (Antonov, 1985). On the basis of that problem the gravitational influence of
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the cosmological background with a critical density on the dynamics of ‘supergalactic’ scale

systems was investigated (Omarov, 1972b; 1975).

The indicated references suggested the development of investigations of non-stationary

dynamic problems of astronomy as one of the main directions of the activity of the laboratory

of the dynamics of gravitating systems of the Fessenkov Astrophysical Institute. Now we give

some of our results.

2 INTEGRABLE CASES OF THE NON-STATIONARY

HAMILTON–JACOBI EQUATION

For problems of celestial mechanics and stellar dynamics the integrability of canonical

equations of motion for corresponding non-stationary model schemes is important. Bekov

and Omarov (1978a) and Bekov (1986a) described the new integrable cases for the

Hamilton-Jacobi equation in the form

pþ
1

2

Xn
i¼1

giip2
i þ

Xn
i¼1

hipi � U ¼ 0 p ¼
qV
qt

, pi ¼
qV
qqi

� �
: (1)

They are the generalization of Jarov-Jarovoy’s (1963) results for the equation under consid-

eration and include the Demin (1968), the Liouville and the Stackel (Duboshin, 1975) cases

of integrability.

Here the Hamiltonian function of system in the form

H ¼
1

2

g(t)

b

Xn
i¼1

1

ai(qi)
pi � j

qF
qqi

� �2

� _jj(t)F�
g(t)

b

Xn
i¼1

Ui(qi), (2)

in which

b ¼
Xn
i¼1

bi(qi),

where ai; bi; Ui and F(q1; q2; . . . ; qn) are arbitrary functions of the generalized coordinates

qi and g and j are continuous functions of time, gives the generalization of the Liouville

cases of integrability; also the Hamiltonian function of system in the form

H ¼
1

2
g
Xn
i¼1

Ai

ai
pi � j

qF
qqi

�
qB
qqi

� �2

�Aibi

" #
� _jjF� g

Xn
i¼1

AiUi(qi), (3)

where

Ai ¼
1

D
qD
qji1

,

and ai; bi; F(q1; q2; . . . ; qn) and B(q1; q2; . . . ; qn) are arbitrary functions of the general-

ized coordinates qi, the determinant D ¼ jjij(qi)j is unequal identically to zero and g(t)

and j(t) are functions of time, gives the generalization of the Stackel cases of integrability.

Further development of the Hamiltonian formalism was obtained by Bekov (1986a). The

method of reducing of one-class non-autonomous dynamic systems to the canonical form is

given, and their integrable cases shown. The comparison theorems permitted by the form of

the Hamiltonian function to determine the integrability of dynamic systems are given. As

applications, the two-body problem, the problem of two fixed centres and the straight-line
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version of the restricted three-body problem with variable masses in addition to a resisting

and gravitating background are considered.

In the real astronomical two-body problem with variable mass the role of the factor

additional to the Newtonian gravitation factor, which is not directly connected to the mass

variation process but invariantly coexistent with concrete conditions of that process, for

example the resistance of accreting or radiating matter may be important. The

Hamiltonian formalism is used (Demchenko and Omarov, 1977) for the problem of two

similar bodies with variable mass. On this basis (Omarov and Omarkulov, 1982;

Minglibaev, 1992) the equations for the two-body problem with variable mass analogous

to Jacobi, Delaunay and Poincaré canonical elements are obtained.

The solution of non-stationary scheme of the generalized two-fixed-centres problem with

variable gravitation constant G is of interest (Bekov and Omarov, 1978b). The force function

U of the problem of a barycentric system of Cartesian coordinates Oxyz with an applicate

axis along the line of centres P1P2 have the form

U ¼
G(t)m

2

1 þ si

r1

þ
1 � si

r2

� �
, (4)

where

r1 ¼ x2 þ y2 þ [z� c(sþ i)]2
� �1=2

,

r2 ¼ x2 þ y2 þ [z� c(s� i]2
� �1=2

i ¼ ( � 1)1=2,

where m, s and c are constants and G(t) is a gravitational constant variable in time. On the

basis of this problem an intermediate orbit of a test body that moves in the gravitational field

of a non-spherical body taking into account the variability of the gravitational constant is

constructed (Bekov and Nurgaliev, 1979). The differential equations for elements of an inter-

mediate orbit are obtained. The importance of this result was noted in the review by

Timoshkova and Kholshevnikov (1982). The solution and results obtained are valid for the

problem under consideration with variable masses m(t) of centres and for the more common

case of variability of gravitational parameter of system m(t) ¼ Gm (Bekov and Omarov,

1978a; Bekov, 1986a,b).

3 THE EVOLUTION OF ORBITS IN NON-STATIONARY MODELS OF

MULTIPLE STARS AND STAR CLUSTERS

The non-stationary scheme of the three-body problem with Newtonian–elastic interaction

(Omarov, 1972a, 1975) may also be used for analysis of dynamics of the first-generation

binary stars in a freely pressing protogalaxy (Kozhanov, 1982). As result it is possible

to investigate the character of the test body motion at a sufficiently large distance from the

central gravitating body. The criteria for escape of a star from the system are found; the motion

of stars that had been in the deep regions of the system considered, are analysed.

Qualitative estimates for the coordinates of the relative orbits of the two bodies were

obtained by Glikman (1978). In this case an analysis of the motion of the two bodies is

made when the mass is decreasing according to the Eddington–Jeans law _MM ¼ �aMn.

The additional question of trapping in the two-body problem with variable masses was

dealt with by Omarov and Minglibaev (1983).

THE THEORY OF ORBITS IN NON-STATIONARY STELLAR SYSTEMS 147
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Using the autonomization method (Bekov, 1989) an analysis of integrable cases and

trajectories of motion in the Gylden–Mestschersky problem was made. For the laws of

mass variation obtained, all possible trajectories of motion were indicated; the class of orbits

with variable parameter and constant eccentricity were considered in detail. For this class of

orbits the law of mass variation both in the parameter form and in the explicit dependence on

time were established. For the case of the periodic law of mass variation in the same problem

(Bekov, 1993a)

[m(t)]2=3 ¼ Aþ B sin (at þ b), (5)

where m(t) ¼ GM (t) and A, B, a and b are constants, the orbit and its elements were obtained,

the qualitative peculiarities of the motion were adduced, and the disintegration and capture

time scales in the system were estimated. The parametric solutions of this problem were con-

sidered by Bekov (1990a) and Mychelkin (1990). Here, the mass m(t) of binary system may

be chosen, in particular, as the parameter. The connection between the Bertran and the

Gylden–Mestschersky problems and the analysis of the character of orbits was investigated

by Mychelkin and Mychelkin (1994, 1997).

In the Gylden–Mestschersky problem the intermediate motion, that is the aperiodic motion

on a quasiconical section with variable parameter

r ¼
m
m0

� �k
p

1 þ e cosj
,

ðj
0

dj
(1 þ e cosj)2

¼

ðt
0

m
m0

� �(1�3k)=2m1=2
0

p3=2
dt, (6)

where r and j are the polar coordinates, m(t) is the gravitational parameter and k is a constant,

was found (Bekov, 1993b). This intermediate motion is the most general of those proposed

earlier, and the Newton and Lagrange equations for osculating elements of that intermediate

motion obtained in this work contain, as special cases, the well-known results given earlier

(Minglibaev and Omarov, 1984; Bekov, 1993b).

In non-stationary gravitating systems with axis symmetry there is a definite class of circu-

lar and spiral orbits, which play an important role in the dynamics of those systems. Bekov

(1981, 1982) and Bekov et al. (1997b) considered circular and spiral orbits in gravitational

fields with an axial symmetry. Conditions of the existence and the stability of the circular and

spiral orbits were obtained. The development of these results was given by Bekov and

Omarkulov (1986), where the stability criteria of ring galaxies were established and the mod-

els of peculiar ring galaxies were generalized, taking into account the gravitational influence

of the corona of system.

The results of analysis of the straight-line restricted three-body problem with variable mass

are used to interpret the structure of some peculiar galaxies with cerns, the masses of which

vary with time. The exact solutions of the problem in different formulations and the detailed

analysis of particular solutions (the collinear L1, L2 and L3 solutions and the special L0

Lagrange ring) for various time dependences of the masses have been given by Bekov

(1987, 1991).

The collinear L1, L2 and L3 and the triangular L4 and L5 solutions in the classical three-

body problem with constant masses are well known. The meanings of these solutions, namely

the libration points in the analysis of motion in the restricted three-body problem, are also

well known. The existence of five libration points (collinear and triangular), analogous to

the classical Li (i ¼ 1; 2; ; 5), in a restricted three-body problem with variable masses

was established by Gelfgat (1973). Here it was proposed that the isotropic variation in the

masses of the main bodies takes place in accordance with the united Mestschersky law. In

this problem the new coplanar libration points L6 and L7, located outside the rotation

148 A. A. BEKOV AND T. B. OMAROV
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plane of the main bodies were found (Bekov, 1986c, 1988a). In the symmetrical case (equal

masses of the main bodies), in the rotating coordinate system OxZz, the libration points L6

and L7 settle down on the rotation axis Oz symmetrically relative to the origin of coordinates

(the barycentre), with the coordinates

L6 0, 0, þ r12

k
k� 1

� �2=3

�
1

4

� �1=2
 !

L7 0, 0, � r12

k
k� 1

� �2=3

�
1

4

� �1=2
 ! (k > 1), (7)

where r12 and k are constants determined by the motion of main bodies. In the general case,

the solutions

L6(x�, 0, þ z�), L7(x�, 0, � z�Þ (8)

with coordinates x ¼ x�; Z ¼ 0 and z ¼ �z�, where x* and z* are constants, gives the libra-

tion points L6 and L7, different from the classical Li (i ¼ 1; 2; . . . ; 5). The importance of

this result has been noted by Lukyanov (1989, 1992) and El-Shaboury (1990). Possible inter-

pretations for near-star bipolar jets (flows due to mass flow from coplanar libration points of

a close binary stellar system) were pointed out by Kardopolov et al. (1991). Further study of

the appearance and disappearance of collinear L1, L2 and L3, triangular L4 and L5, coplanar

L6 and L7, ring L0 and infinitely distant L�1 solutions in the restricted problem of three

variable-mass bodies for different time dependences of the masses of the main bodies and

for some additional conditions imposed on the system parameters were considered by

Bekov (1990b, 1993c).

An important role in the dynamic evolution of real gravitating systems is their non-

stationarity, connected with mass variation of the system and the additional influence of

the variable light pressure from the system’s components. The motion of a test body in the

field of the gravitating and radiating main bodies was considered on the basis of the non-

stationary photogravitational three-body problem, in which the masses and reduction

parameters of main bodies varied with time (Bekov et al., 2001). The existence of collinear

L1, L2 and L3, triangular L4 and L5 and coplanar L6 and L7 solutions in this problem was

shown. Accordingly the results of investigations on the three-body problem with variable

masses were generalized.

Minglibaev (1990) investigated the averaged restricted three-body problem with variable

masses.

The evolution of an n-body stellar system with variable mass, describing the behaviour of

the interacting groups of galaxies, was studied by means of numerical methods (Omarov and

Mukhametkalieva, 1982). It was shown that, if the module of the initial potential energy is

much greater than the initial kinetic energy, the evolution of system will explode and, as a

result, the velocities of individual galaxies may increase.

The Lagrange–Jacobi generalized virial equation for a dispersed stellar cluster plunged

into a gravitating background and rotating in the Galaxy plane on a circular orbit with respect

to its centre was determined by Kozhanov (1990a). From this a class of stellar orbits in the

plane of an ellipsoidal cluster, coinciding with the Galaxy plane, is based. The new approach

to investigation of stellar clusters dynamics, rotating in an elliptical orbit with respect to the

Galaxy centre, was proposed (Kozhanov, 1990b, 1992a). By the Poincaré small-parameter

method the solution of the third-order differential equation with periodic coefficients for

the inertia moment of an ellipsoidal stellar cluster was found. The necessary conditions of

equilibrium were established and the dependence of the stability zones of the considered

THE THEORY OF ORBITS IN NON-STATIONARY STELLAR SYSTEMS 149
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systems on their geometric forms was discovered. The equations of the stellar cluster com-

ponents rotating in an elliptical orbit with respect to the Galaxy centre, taking into account its

tidal forces and the regular field of clusters and averaged with respect to the true anomaly,

were derived (Kozhanov, 1992b, 1993). For this problem the analogy of the Jacobi integral,

the generalization of virial equation and the Sundman inequality were obtained. On this basis

the bifurcated curves, which separate the regions of possible and impossible motions of clus-

ter stars, are built.

4 INVERSE PROBLEM OF DYNAMICS WITH A NON-STATIONARY

LAGRANGIAN

The papers by Omarova and Kozhanov (1988), Omarov and Omarova (1998) and Omarova

and Omarov (2002) were devoted to constructing the intermediate orbits and to determining

the potentials for non-stationary problems of celestial mechanics and stellar dynamics by

generalized Szebehely methods. The inverse problem of dynamics for systems with a non-

stationary Lagrangian under a known integral of motion and given single-parameter family

of evolving orbits was studied. The analogy of the Szebehely equation (Omarov and

Omarova, 1998) for a non-stationary regular potential U(r, t) of a stellar system was derived:

qU
qr

¼ �
b2

r5f 3
r

(rfrrf
2
y þ rf 2

r fyy � 2rfrfyfry þ r2f 3
r þ 2frf

2
y )

�
2b
r2f 2

r

(frfyt � fyfrt) �
2bft
r3f 3

r

(frfy � rfrfry þ rfrrfy)

�
f 2
t frr

f 3
r

þ
2ftfrt

f 2
r

�
ftt � aft

fr
, (9)

where an integral of the form m(t)r2 _yy ¼ k, the family of orbits f (r; y; t) ¼ c in polar coor-

dinates r and y, b¼ k=m(t), and a ¼ _mm=m (the subscripts denote partial derivatives). With the

aid of this equation, one can obtain an integrable non-stationary problem of celestial

mechanics, in which various dissipative factors are taken into account (exact solutions

may be used as the intermediate motion for analysis of the evolution of orbits in real binary

systems). In particular, on the basis of this approach to the two-body problem with variable

mass, that is

€rr ¼ �m(t)
r

r3
�

_mm

m
_rr, (10)

its adiabatic invariants were obtained. One should especially emphasize a version of the

considered problem when the magnitude m is constant in analogy to the Szebehely equation.

This will enable a non-stationary spatially symmetric potential in the dynamics of central

motions, which might be of independent interest for the problems of evolution of

stellar and galactic systems, to be reconstructed. The general form of the evolving orbit

which is used to write the differential equations for non-stationary potential (Omarova and

Omarov, 2002),

qU
qr

¼ �
k2

p0r2
�

2k

p2
0

[ � r_ee sinjþ re _oo cosjþ (_ee cosjþ e _oo sinj)re sinj]

þ
2r3

p2
0

(_ee cosjþ e _oo sinj)2 �
r2

p0

(€ee cosjþ 2_ee _oo sinj� e _oo2 cosjþ e €oo sinj), (11)
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may also be interpreted as an osculating orbit of the perturbed Keplerian motion. In this case

an additional transformation of the basic equation of the problem was made and an

appropriate example of construction of a non-stationary potential of the gravitating system

was demonstrated. Thus, in the general case of the family of orbits f (x; y; t) ¼ c, the ana-

logy of the Szebehely equation for the inverse problem can be used also for constructing non-

stationary gravitational potentials, allowing a manifold of known osculating orbits under par-

ticular conditions. In particular, on the basis of this approach the non-stationary potential of

ring galaxies was reconstructed.

5 CONCLUSION

We now mention briefly some other non-stationary problems not included in the items under

consideration.

The generalized virial theorem for a system of fluctuating composition was obtained

(Omarov, 1985). For the case of a collection of gravitational particles having a non-stationary

composition and with the condition of self-coordination of these particles, the appropriate

generalization of the known Poincaré–Eddington equation was given. The development of

peculiar motion in an increasing gravitating environment taking into account the inhomogen-

eously distribution of mass was investigated (Kozhanov and Omarov, 1994). The formulae

describing the different between the kinetic energies of inhomogeneously gravitating masses

and its peculiar motions, depending on the inertia momentum of system, was deduced.

Now we consider the actual problems in which the mass variation and at the same time the

variations in other physical parameters of interacting bodies are taken into account. On this

topic the investigations by Bekov (1984, 1993d), Minglibaev and Mailybaev (1990) and

Bekov et al. (1997a) are of interest. New model problem of celestial mechanics and stellar

dynamics, namely the generalized problem of two centres with variable masses and variable

distance between centres, were studied by Bekov (1984, 1986b, 1993d). On this basis the

motion of the material point in the gravitational field of a non-spherical body with variable

mass, size and form were considered. The solution of the problem was given, and the inter-

mediate orbit of a test body in the gravitational field of a non-stationary non-spherical body

was constructed. Differential equations for the elements of an intermediate orbit were

deduced. The theory of motion of a material point (Bekov, 1993d) in the gravitational

field of a non-spherical body with variable mass, size and form was also constructed.

To investigate the structural and dynamic peculiarities in the vicinity of evolutionary stars

and galaxies the motion of test body in the external gravitational field of a rotating triaxial

ellipsoid with a slowly varying mass, size and form was considered. Families of the equator-

ial, polar, ring, coplanar and z solutions were found for this problem (Bekov, 1988b, 1992). A

qualitative analysis of the motion regions in this problem was given by Bekov (1990c). The

obtained solutions may be used in different problems of stellar dynamics, and also in astro-

physical applications. For example, the polar and z solutions may be considered as a possible

gravitational model of jets (astrophysical mass flow in the vicinity of young stars and

galaxies) (Bekov, 1995a), and the obtained libration points may serve as indicators of the

potential variations of the formed star (Bekov, 1995b); the positions of the libration points

simultaneously follow possible variations in the mass, size and form of the gravitating body.
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