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The present paper surveys some results on the collisionless system evolution that were obtained by the Gravitating
System Dynamics Laboratory team from the Fessenkov Astrophysical Institute.
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The first self-consistent phase models of collisionless gravitating systems were described in

the monographs by Chandrasekhar (1942) and Ogorodnikov (1958). The main features of the

models determined by a particular characteristic of the media, namely that the size of the sys-

tem is much less than the free path of particles that it consists of, were displayed but not yet

realized by scientists at that time. In fact, a phase model of the stellar systems was considered

to be rather exotic and artificial until the 1960s when Antonov (1960, 1961, 1962) investi-

gated the stability of such models. Antonov was probably the first to study the stability

of collisionless gravitating systems as a whole, unlike others who studied the stability of

individual orbits. Such a ‘collective’ approach to collisionless systems were developed

and popularized also by Fridman and co-workers; the work by A. M. Fridman,

V. L. Polyachenko, A. G. Morozov and I. G. Schuhman was devoted to the investigating

of the collisionless systems with non-spherical geometry (see for example the monograph

by Polyachenko and Fridman (1976)).

Since the beginning of the 1980s, computer simulations have provided the main results in

studies of the collisionless systems (Aarseth and Binney, 1978; Klypin, 1980) and pure ana-

lytical methods were abandoned. However, it should be said that a long series of numerical

experiments always produces a long series of pictures but very seldom does it produce con-

clusions that one can accept as new information: It is certainly very difficult to describe the

collisionless collapse in terms of fundamental principles, and not only as a sequence of pic-

tures. However, one should use not only a keyboard to obtain results but also a pen from time

to time. On the other hand, numerical experiments that have not been planned properly cost
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much time and money and it seems reasonable to use some qualitative analytical results to

plan them.

In the present paper, we recall some results on the collisionless system evolution that have

been obtained by analytical methods.

It is possible to build exact analytical phase models of non-stationary stellar systems. This

possibility is provided by the existence of the non-conservative integrals of the movement

equations of motion of a particle in a variable gravitating field. Chandrasekhar (1942) was

the first to present the integral like that in his book. Later, Schürer (1943) showed that

Chandrasekhar’s integral can be obtained by space–time transformations from Jacobi’s inte-

gral, which is the energy integral in non-rotating systems. Kurth (1949) established that the

potential permitting such an integral must be quadratic in the self-consistent case when the

phase density satisfies the Poisson equation. With the help of Schürer transformations, Kurth

investigated spherical oscillations of homogeneous stellar systems. He found that the radius

of such a system is changed like the radius vector in Kepler’s problem. Schürer’s transforma-

tions and the corresponding integrals were rediscovered by physicists later (1949). The exis-

tence of Schürer’s transformations is connected with the invariant properties of Langrangian

and non-conservative integrals and can be obtained directly with the help of the Nother the-

orem. Let the potential of a gravitating system explicitly depend on time. What is the form of

the potential Fðt;X Þ when there is a group of transformations that conserve the form of the

action operator? What is the form of the first integrals in that case? The connection between

the transformation groups permitted by the Lagrange function (or the action operator when

the Lagrange function depends on time) and the first integrals of the Euler equations is set by

the Nother (1959) theorem which can be formulated as follows. Let a group of transforma-

tions X ðx1; . . . ; xnÞ be determined in the space of variables t:

X 0 ¼ X 0ðt;X ; sÞ; X 0ðt;X ; 0Þ

t0 ¼ t0ðt;X ; sÞ; t0ðt;X ; 0Þ
ð1Þ

The infinitesimal vector Nðx; y1; . . . ; ynÞ has the components

x ¼
qt0ðt;X ; sÞ

qs

����
s¼0

; yi ¼
qx0iðt;X ; sÞ

qs

����
s¼0

: ð2Þ

Let also a function L ¼ Lðt;X ; dX=dtÞ be determined. We say that the operator

l½X � ¼

ðt2
t1

L t;X ;
dX

dt

� �
dt ð3Þ

is invariant with respect to the group (1) if

ðt2
t1

L t;X ;
dX

dt

� �
dt ¼

ðt0
2

t0
1

L t0;X 0;
dX 0

dt0

� �
dt0; ð4Þ

and it does not depend on the integration path [t1, t2]. The equality (4) under the condition

that it does not depend on the integration path is equivalent to the following equality:

d

dt

qL
qX

Y�
dX

dt
x

� �
þ Lx

� �
¼ 0: ð5Þ
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So, the following theorem (the Nother theorem) is true: if the operation (3) is invariant under

the transformation group with the infinitesimal vector (2), then the Euler equation has the first

integral

J ¼
qL
qX

Y�
dX

dt

� �
þ Lx: ð6Þ

As is known, the Lagrange function is determined accurately up to the the full derivative

(Landau and Lifshitz, 1973). Thus leads to some generalization of the Nother theorem;

the first integral of the equations of motion of the form

J ¼
qL
qX

Y�
dX

dt

� �
þ Lxþ C; ð7Þ

exists when there is the full derivative of the function Cðt;X Þ in the right-hand side of equa-

tion (5) (Ibragimov, 1972).

In the case of the equation of motion of a particle in a field with potential Fðt;X Þ the

Lagrange function has the form

L ¼
1

2

X
i

x2
i � Fðt;X Þ: ð8Þ

The condition for the correspondence operator to be invariant under the group transformation

(1) is expressed as the following equalities:

qx
qxi

¼ 0;

1

2

qx
qt

�
qyi
qxi

¼ 0;

qyi
qxj

þ
qyj
qxi

¼ 0; i 6¼ j ð9Þ

qyi
qt

�
qx
qxi

F ¼
qC
qxi

;

x
qF
qt

þ
X
i

yi
qF
qxi

þ F
qx
qt

¼
qC
qt

:

After the analysis of equations (9), one can make the following conclusion: the group trans-

formation exists in only two essentially distinct cases.

The first is when

Fðt;X Þ ¼
1

xðtÞ
~FF

X

½xðtÞ�1=2

� �
: ð10Þ

Then the infinitesimal vector has the form

N ¼ xðtÞ;
1

2

dx
dt

x1;
1

2

dx
dt

x2;
1

2

dx
dt

x3

� �
; ð11Þ
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where d3x=dt3 ¼ 0 and the first integral,

J ð1Þ ¼
X 1

2

dx
dt

xi �
dxi

dt
x

� �
dxi

dt
þ

1

2

X dxi

dt

� �2

�F

" #
x�

1

4

d2x
dt2

X
x2
i : ð12Þ

It should be noted that it is always possible to transform to the variable ~ttðt;X Þ and ~XX ðt;X Þ
where the transformation group is simply the parallel shifts group along ~tt in the case of

one-parameter group. The infinitesimal vector has the form ~NN ¼ ð1; 0; 0; 0Þ in this case. It

is obvious that the transformation equations for the system where the equatiosn of motion

are stationary have the form

x
q~tt
qt

þ
1

2

dx
dt

X
xi

q~tt
qxi

¼ 1;

x
q~xxi
qt

þ
1

2

dx
dt

X
xj
q~xxi
qxj

¼ 0:

ð13Þ

So, the transformation functions are independent functions of the first integrals of the follow-

ing system:

dt

x
¼

dxi
1
2
ðdx=dtÞxi

¼ d~tt: ð14Þ

Let us choose those functions as follows:

~tt ¼

ð
dt

x
; ~xxi ¼

xi

x1=2
: ð15Þ

The transformations (15) are called the Schürer transformations in stellar dynamics. The inte-

gral (12) has the form of the energy integral in new variables.

In the second case when the transformation group exists, the potential has the form

Fðt;X Þ ¼
1

2

X
AiðtÞx

2
i : ð16Þ

The three-dimensional transformation group is determined by the following vectors:

N1 ¼ x1ðtÞ;
1

2

dx1

dt
x1; 0; 0

� �
;

N1 ¼ x2ðtÞ; 0;
1

2

dx2

dt
x2; 0

� �
; ð17Þ

N1 ¼ x3ðtÞ; 0; 0;
1

2

dx3

dt
x3

� �
:

The functions xiðtÞ obey the equality

d3xi
dt3

þ 4
dxi
dt

þ 2xi
dAi

dt
¼ 0; ð18Þ

where dAi=dt 6¼ 0.

240 E. A. MALKOV
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The integrals have the form

Ji ¼
1

2

qxi
qt

xi �
dxi

dt
xi

� �
dxi

dt
þ

1

2

dxi

dt

� �2

�
A

2
x2
i

" #
xi �

1

4

d2xi
dt2

x2
i : ð19Þ

After the substitution ai ¼ x1=2
i the integrals take the more convenient form

Ji ¼
1

2
a2
i

dxi

dt
�

1

ai

dai

dt

� �2

þ
a2
i

2a2
i

x2
i ; ð20Þ

where ai obey the equations

d2ai

dt2
¼

a2
i

a3
i

� AiðtÞai; ai ¼ constant: ð21Þ

There is an additional condition in the case of the self-gravitating field: AiðtÞ / 1=a3
i .

It is rather simple to find the non-stationary distribution functions with the help of the

stationary functions and the non-conservative integrals (12). Let us present some examples.

The distribution function of the non-stationary Camm sphere has the form

f /
L2

r2
0þ

2a2r2
0 � 2

X3

i¼1

Ji

 !�1=2

; ð22Þ

where a ¼ a1 ¼ a2 ¼ a3 and r0 is some constant.

The Freeman spheriod is described by the function

f /
BþdðJ1 þ J2 þ a1L3Þ þ b�dðJ1 þ J2 � a1L3Þ

ða2
3 � 2J3 þ a3L3Þ

1=2
; ð23Þ

where bþ and b� are constants (bþ þ b� ¼ 1) and L3 is the angular momentum with respect

to the x3 axis.

The elliptical discs studied by Bisnovatyi-Kogan and Zeldovich (1970) with the boundary

equation x2
i a

2
1ðtÞ þ x2

2=a
2
2ðtÞ ¼ 1 are described by the function

f / 1 �
2J1

a2
1

�
2J2

a2
2

� ��1=2

: ð24Þ

So, it is necessary to substitute the conservative integrals by the non-conservative integrals in

the known distribution functions to obtain new non-stationary analytical models. It is rather

easy to obtain the non-stationary models of the Freeman (1966) ellipsoids, the turned-over

Kondratyev (1986) discs and the ellipsoid with oblique rotation (Kondratyev, 1984) in that way.

There arises the question: what is the use of models with such an exotic and non-realistic

distribution in phase space? We think that the non-stationary models with homogeneous

space density as well as their stationary analogies have to be considered as approximate mod-

els with three-dimensional geometry which still permit analytical investigations and estima-

tions. So, these models are intended for studies of the origin of the shape of the stellar

system. Their existence proves the possibility of three-dimensional models with positive

phase density. As for the behaviour of large-scale oscillations which form the system geome-

try as a whole, it needs to be borne in mind that it depends only on the second-order

momenta, and the results are valid for any distribution function with the same second-

order momenta. Investigations of this kind of evolution can be made with the help of the non-

COLLISIONLESS COLLAPSE OF STELLAR SYSTEMS 241
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linear equations of ellipsoidal oscillations that have been obtained by Kondratyev and

Malkov (1986). In the explicit form these equations are as follows:

d2ai

dt2
¼ �Aiai þ

1

2

ðLj þ CjÞ
2

ðai � akÞ
3
þ
ðLj � CjÞ

2

ðai þ akÞ
3
þ
ðLk þ CkÞ

2

ðai � ajÞ
3
þ
ðLk � CkÞ

2

ðai þ ajÞ
3

 !
þ
Pii

a3
i

; ð25Þ

dLi

dt
¼

1

2

ðLk þ CkÞLj

ðaj � aiÞ
2

�
ðLj � CjÞ

2Lk

ðak þ aiÞ
2

þ
ðLk þ CkÞLj

ðaj � aiÞ
2

�
ðLj � CjÞLk

ðak þ aiÞ
2

 !
; ð26Þ

dCi

dt
¼ Pjk �

1

2

ðLj þ CjÞLk

ðak � aiÞ
2
�
ðLk � CkÞLj

ðaj þ aiÞ
2

�
ðLj þ CjÞLk

ðak � aiÞ
2
þ
ðLk � CkÞLj

ðaj þ aiÞ
2

 !
; ð27Þ

dPii

dt
¼ ðLk � CkÞ

1

a2
j

�
1

ðai þ ajÞ
2

 !
� ðLk þ CkÞ

1

a2
j

�
1

ðai � ajÞ
2

 !" #
Pij

þ ðLj þ CjÞ
1

a2
k

�
1

ðai � akÞ
2

� �
� ðLj � CjÞ

1

a2
k

�
1

ðai þ akÞ
2

� �� �
Pik; ð28Þ

dPij

dt
¼

1

2
ðLk þ CkÞ

1

a2
i

�
1

ðai � ajÞ
2

 !
� ðLk � CkÞ

1

a2
i

�
1

ðai þ ajÞ
2

 !" #
Pii

þ
1

2
ðLk � CkÞ

1

a2
j

�
1

ðai þ ajÞ
2

 !
� ðLk þ CkÞ

1

a2
j

�
1

ðai � ajÞ
2

 !" #
Pjj

þ
1

2
ðLj þ CjÞ

1

a2
k

�
1

ðak � aiÞ
2

� �
� ðLj � CjÞ

1

a2
k

�
1

ðak þ aiÞ
2

� �� �
Pjk

þ
1

2
ðLi � CiÞ

1

a2
k

�
1

ðaj þ akÞ
2

 !
� ðLi þ CiÞ

1

a2
k

�
1

ðaj � akÞ
2

 !
�Pik : ð29Þ

Here ai are the semi-axes, Ai ¼
3
2
GM

Ð1
0

ds=ða2
i þ sÞ½ða2

1 þ sÞða2
2 þ sÞða2

3 þ sÞ�1=2, M is the

ellipsoid mass, L is the angular momentum, C is the rotation, Pij ¼ aiajPij and Pij is the

double kinetic energy tensor (all of these values are divided by M=5).

FIGURE 1 Shape evolution during collisionless collapse.
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The results on the shape evolution during collisionless collapse obtained by different meth-

ods with the help of non-stationary analytical models are summarized in Figure 1. The

unstable zone of the stationary spheroids is presented in the left-hand diagram (shaded

area); Erot=Ech is the ratio of the rotation energy to the heat (chaotic) energy. The dashed

curve presents Maclaurin’s spheroids. The right-hand diagram shows the unstable zone of

the pulsating rotating spheres (shaded area). The parameter e can be expressed via the virial

ratio V ¼ 2T=jU j (where T and U are the kinetic and potential energies respectively) in the

initial state: e¼ 1�V. The instability due to the parametric resonance 4 : 1 when the period of

the ellipsoidal mode oscillation is exactly four times the rotation period is labelled Rotation

resonance. It occurs when Erot=Ech� 0.165. The bar-like instability exists when Erot=Ech

varies from approximately 0.35 (Erot=jU j � 0:13) (disc) to approximately 0.62

(Erot=jU j � 0:19) (sphere). It should be noted that the bar-like instability of the pulsating

sphere occurs at the same value of the Erot=Ech and, so does not depend on the virial ratio.

Equations (25)–(29) can be used to investigate the nonlinear evolution of ellipsoidal mod-

els in a more detailed way. The sample picture in Figure 2 shows some details of the devel-

opment of an instability in the vicinity of a point (Omarov, 1999).

As it has been mentioned above, this paper is intended to remind researchers whose work

is based on computer simulation about some analytical results concerning the dissipationless

collapse investigations. We have tried to present a list of references (which is not totally com-

prehensive naturally) that could be useful for studying that topic.
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