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We re-examine the spherically-symmetric collapse of the nonuniformly distributed dust-like cold matter. The
necessary and sufficient condition for the shell-crossing spherical singularity arising is rigorously derived. The
system of algebraic equations is obtained which determines the instant of appearance of the singular sphere and
its radius. The explicit asymptotic solutions in the Eulerian variables describing the structure of the point-like
central and spherical shell-crossing primordial singularities are found. Multiplication of flows arising after
splitting the first shell-crossing singularity is investigated numerically.

Keywords: Gravitation; Hydrodynamics; Dust matter; Collapse; Large-scale structure of Universe

1 INTRODUCTION

Owing to the Jeans instability the self-gravitating interstellar gas tends to break up into

separate lumps. At the non-linear stage of the instability the gas lumps collapse forming pro-

tostars (see, e.g., Spitzer, 1978). The similar processes occur at formation of star clusters

from ‘gas’ of stars, clusters of galaxies from ‘gas’ of galaxies and so on, up to the formation

of the large-scale structure of the Universe (Pibbles, 1980; Zel’dovich and Novikov, 1983;

Shandarin, Doroshkevich and Zel’dovich, 1983).

It is well known that for sufficiently large gas lumps the dynamics of the collapse is mainly

determined by the gravity, so that in the first approximation one can neglect the pressure

(Zel’dovich and Novikov, 1983). Obviously, the gas of stars or galaxies can be also treated

as a pressureless dust-like medium. The same is true for the non-baryonic dark matter

which plays a leading part in formation of the large-scale cosmic structures (Shandarin

et al., 1983; Gurevich, Zybin and Sirota, 1997).

In the present paper we consider evolution of an isolated self-gravitating cloud. The char-

acteristic size of the cloud is assumed to be sufficiently large to neglect the effect of pressure,

but, at the same time, sufficiently small compared with the horizon, which means we can
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ignore the cosmological expansion and validity of the Newtonian approximation. The

dynamics of such a cloud is described by the equations

qv
qt

þ ðvHÞv ¼ �Hj;

qr
qt

þ divðrvÞ ¼ 0;

Dj ¼ 4pGr: ð1Þ

Here vðr; tÞ and rðr; tÞ are the velocity and the density of matter, jðr; tÞ is the gravitational

potential.

As is known, in the course of the gravitational contraction of an inhomogeneous dust cloud

the singularities occur at the centre of the cloud or on some caustic surface (Zel’dovich and

Novikov, 1983; Pibbles, 1980; Shandarin et al., 1983). Such singularities also arise in the

general relativistic dust collapse described by the Tolman solution (Papapetrou and

Hamoui, 1967; Newman, 1986; Dwivedi and Joshi, 1997). The present paper is devoted

to the detailed investigation of the structure of these singularities in the framework of the

Eqs. (1), as well as to establishing the conditions for their formation. With the help of qua-

litative analysis these conditions were previously formulated by Hunter (1962). In our paper

we derive them rigorously, using the properties of a two-dimensional surface determined by

an implicit solution of the Eqs. (1) in the spherically-symmetric case. As to the structure of

singularities, the first investigation was pursued in Penston (1969) where the singularities at

the centre were considered. For this reason our main concern is with the singularities in the

form of caustic spheres arising from the shell-crossing. Nevertheless, we show that the solu-

tion obtained by Penston (1969) for the central singularity is not complete because of the

absence of the terms which can be of the same order as the kept ones.

The knowledge of the structure of the singularities plays a leading part in determining the

general picture of matter distribution in the Universe. In the papers of Gurevich and Zybin

(1988; 1995) the singularities of the central type were considered as primordial in developing

the theory of non-dissipative gravitational turbulence. By hypothesis of the authors, the

multiflow motion arising after formation of the first point-like singularity at the centre

gives rise to a stationary dynamical structure. The motion and interaction of these structures,

having different velocities and scales, result in formation of a turbulent state determining the

hierarchy of the cosmic clustering. From this viewpoint the motion and interaction of the

shell-crossing singularities can determine the cellular structure of the Universe observed at

the superscales (Shandarin et al., 1983; Gurevich and Zybin, 1995).

Finally, note the following. It is known that the spherically-symmetric collapse of a dust

cloud is unstable in respect to both azimuthal perturbations (Lin, Mestel and Shu, 1965)

and formation of small-size fragments with enhanced density (Hunter, 1962; 1964; Mestel,

1965). We assume that the processes of formation of the singularities we consider proceed

much faster than these instabilities develop. For example, this takes place for initial distribu-

tions having well-defined maxima of the density (at the centre or on a spherical shell).

Taking the above into account, we first reconsider the general dynamics of formation of the

singularities from an initial smooth distribution of dust-like matter (Section 2). We derive

rigorously the conditions under which the singularities of the each kind occur. In Section 3

the explicit asymptotic solution describing in Eulerian variables the primary structure of the

central singularity is found. Similarly, the solution for the spherical shell-crossing singularity

is found in Section 4. In Section 5, equations describing the multiflow motion are obtained.

Based on these equations the multiplication of flows arising just after splitting the first

198 V. A. KOUTVITSKY AND E. M. MASLOV
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shell-crossing singularity is investigated numerically. In Section 6 we summarize the obtained

results and show that they are also applicable to the ellipsoidal distributions.

2 FORMATION OF SINGULARITIES: GENERAL ANALYSIS

In the spherically-symmetric case the system (1) becomes

qv
qt

þ v
qv
qr

¼ �
Gm

r2
; ð2Þ

qr
qt

þ
1

r2

q
qr

ðr2rvÞ ¼ 0; ð3Þ

m ¼ 4p
ðr

0

rr2 dr; ð4Þ

where mðr; tÞ is a mass enclosed in a sphere of the radius r.

Since qm=qt þ vqm=qr ¼ 0, the Eq. (2) is easily integrated in Lagrangian variables (see,

e.g., Spitzer, 1978). Obviously, the first integral is

H ¼
v2

2
�
Gm

r
; ð5Þ

where H(m) is an arbitrary function of m. It is determined by the initial values (say, at t ¼ 0)

of the coordinate rðm; 0Þ and the velocity vðm; 0Þ of the given infinitesimally thin layer m.

The function rðm; 0Þ is the inverse of mðr; 0Þ and is determined by the initial mass distribu-

tion, in accordance with (4).

Integration of (5) gives rise to a relationship between r, t and m. For the motion to the cen-

tre it can be written in the form

Fðzðm; tÞÞ þ
j2HðmÞj3=2

2Gm
t ¼ Fðzðm; 0ÞÞ; ð6Þ

where

FðzÞ ¼ arcsin z� zð1 � z2Þ
1=2

ðH � 0Þ; ð7Þ

FðzÞ ¼ �arsh zþ zð1 þ z2Þ
1=2

ðH > 0Þ; ð8Þ

zðm; tÞ ¼
jHðmÞjrðm; tÞ

Gm

� �1=2

ð9Þ

It should be emphasized that the Eqs. (2)–(4) and, hence, the solution (6) are valid only in

that space-time region where the falling layers do not cross each other.

In the coordinates r, t, m the solution (6) describes a two-dimensional surface. To obtain

the solution in Eulerian variables one needs to resolve (6) with respect to m. Evidently, this is

generally impossible. Nevertheless, we can obtain some characteristic features of the motion

knowing the structure of the surface (6) only, without an explicit formula for mðr; tÞ. In

particular, it turns out to be possible to find the formulas determining the instant of

THE STRUCTURE OF SINGULARITIES 199
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appearance of the spherical shell-crossing singularity and its radius for rather general initial

conditions.

Let us consider a spherical dust cloud having a finite mass M. We assume that initially, at

t ¼ 0, the cloud was at rest and had a mass distribution rðr; 0Þ vanishing at infinity. Then

H ¼ �Gm=rðm; 0Þ � 0, so that

v2 ¼
2Gm

r
ð1 � z2Þ; ð10Þ

0 � z ¼
rðm; tÞ

rðm; 0Þ

� �1=2

� 1: ð11Þ

Hence, in accordance with (7), Fðzðm; 0ÞÞ ¼ Fð1Þ ¼ p=2, and the Eq. (6) becomes

t ¼ sðm; zÞ � tf ðmÞ 1 �
2

p
FðzÞ

� �
; ð12Þ

where

tf ðmÞ ¼
pr3=2ðm; 0Þ

2ð2GmÞ1=2
ð13Þ

The quantity tf ðmÞ has the sense of the time needed for a given layer m to fall down on the

centre (provided that the shell-crossing does not occur). For the considered non-singular

initial distributions with non-zero density at the centre the function tf ðmÞ does not become

zero and remains finite in the range 0 � m < M .

The solution rðm; tÞ of the Eq. (12) is a t-parameterized family of contour lines of the sur-

face sðm; zÞ considered over the plane ðm; rÞ (Fig. 1). The singularity appears at that instant

and at that point where r2qr=qm � 1=r becomes zero.

Differentiating (12) with respect to m and taking into account that

dF

dz
¼

2z2

ð1 � z2Þ
1=2

; ð14Þ

qz
qm

¼
z

6m
3m

q
qm

ln rðm; tÞ � Y ðmÞ

� �
; ð15Þ

dtf

dm
¼

tf ðmÞ

2m
½Y ðmÞ � 1�; ð16Þ

Y ðmÞ ¼ 3m
q
qm

ln rðm; 0Þ; ð17Þ

we get

r2 qr
qm

¼
4G

p2
t2f ðmÞz

3 2

3
z3 � ð1 � Y ðmÞÞ z�

z3

3
þ ð1 � z2Þ

1=2 arccos z

� �� �
: ð18Þ

200 V. A. KOUTVITSKY AND E. M. MASLOV
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The right hand side of (18) becomes zero when z or=and squared brackets become zero. Let

us suppose, first, that for a given initial matter distribution

Y ðmÞ � 1 ð0 � m < M Þ: ð19Þ

Then (18) becomes zero only if z ¼ 0, i.e., in accordance with (11), (12), when r ¼ 0,

t ¼ tf ðmÞ. This implies that under the condition (19) the singularity appears at the centre

only. Indeed, as is seen from (16), tf ðmÞ does not decrease with increasing m. Therefore,

all layers reach the centre one after another, and without crossing each other, the layer

with infinitesimally small mass being the first. From this it follows that the singularity at

the centre appears at the instant

ts ¼ tf ð0Þ ¼
3p

32Grð0; 0Þ

� �1=2

ð20Þ

This fact is well-known for monotonically decreasing mass distributions (see, e.g., Hunter,

1962). We show that this is also true for some non-monotonic distributions. Indeed, the con-

dition (19) can be rewritten as

ðr
0

qrðr; 0Þ

qr
r3 dr � 0 ð0 � r < 1Þ: ð21Þ

This inequality is obviously fulfilled for monotonically decreasing rðr; 0Þ. It is clear, how-

ever, that it can also be fulfilled for some initial distributions having, besides the mandatory

FIGURE 1 The Lagrangian particles (spherical layers) falling in accordance with the solution (12). The initial
conditions are vðr; 0Þ ¼ 0; rðr; 0Þ ¼ ð1 þ 5r5Þ=ð1 þ r8Þ

2. The axes are normalized to the total mass M and the
averaged radius R of the matter distribution, R ¼ ð4p=M Þ

Ð1
0

rðr; 0Þr3 dr. The curves 1, 2 (indicated by a short dash)
are determined by the Eqs. (24), (26), correspondingly.

THE STRUCTURE OF SINGULARITIES 201
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maximum at the centre, other local maxima. Physically, this means that, despite the non-

monotonicity of rðr; 0Þ, all layers do have a chance to reach the centre without crossing.

Let now there exist such m, that

Y ðmÞ < 1; ð22Þ

or, correspondingly, such r, that

ðr
0

qrðr; 0Þ

qr
r3 dr > 0: ð23Þ

Then the expression in the squared brackets in (18) becomes zero when

Y ðmÞ ¼ PðzÞ; ð24Þ

where

PðzÞ ¼
z� z3 þ ð1 � z2Þ

1=2 arccos z

z� z3=3 þ ð1 � z2Þ
1=2 arccos z

: ð25Þ

On the plane ðm; zÞ the Eq. (24) determines a curve z ¼ zðmÞ. On the plane ðm; rÞ this

curve is a point set r ¼ rðmÞ of extrema of the t-parametrized family of curves rðm; tÞ con-

sidered formally in the range t > ts. In Figure 1 these curves rðm; tÞ are depicted by dashed

lines, in order to emphasize a failure of Eqs. (2)–(4) in describing the layer dynamics at t > ts
in the whole space (see Section 5). In accordance with (12), the instants ts, at which the sin-

gularities appear, are the minimal values of the function sðm; zÞ on the curve z ¼ zðmÞ. Thus,

the singularities arise at those layers ms, where dsðm; zðmÞÞ=dm ¼ 0, d2sðm; zðmÞÞ=dm2 > 0.

On the plane ðm; rÞ this corresponds to the maxima of the function r ¼ rðmÞ (curve 1 in

Fig. 1, as an illustration).

Calculating the first derivative of sðm; zðmÞÞ with respect to m and equating it to zero, one

obtains

mðln Y ðmÞÞ0 ¼ �
z

6
P0ðzÞ ð26Þ

(hereinafter the primes mean derivatives with respect to an indicated argument). In deriving

(26) we have used the Eq. (24), the expression for z0ðmÞ,

z0 ¼
Y 0

P0
; ð27Þ

and the identity

p=2 � F

F 0
¼

zP

3ð1 � PÞ
: ð28Þ

The Eq. (26) determines a curve z ¼ ~zzðmÞ (in Fig. 1 the example of such a curve is marked

off by 2). The plots of P(z) and �ðz=6ÞP0ðzÞ are shown in Figure 2.

202 V. A. KOUTVITSKY AND E. M. MASLOV
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For a given initial matter distribution the Eqs. (24), (26) constitute a set of algebraic equa-

tions determining the points on the plane ðm; zÞ where the singularities can arise. Let

ðms; zs ¼ zðmsÞÞ be one of these points. We calculate now the second order derivative of

sðm; zÞ along the curve z ¼ zðmÞ and require its positivity. In calculation we use the formulas

(27), (28), the expression

z00 ¼
Y 00

P0
�
Y 02P00

P03
ð29Þ

and the identity

�
F 00

F 0
¼

P0

Pð1 � PÞ
þ

3 � 2P

zP
: ð30Þ

If, in addition, Eqs. (24), (26) are taken into account, the resulting inequality can be written as

36½mðmðln Y Þ0Þ0�ms
> ½zPðzP0Þ

0
�zs : ð31Þ

Thus, if ðms; zsÞ is a solution of the set (24), (26) and satisfies (31), then at the instant

ts ¼ sðms; zsÞ ¼
2

p
tf ðmsÞ½zsð1 � z2

s Þ
1=2

þ arccos zs� ð32Þ

FIGURE 2 The dependance on z of the right hand sides of the Eqs. (24), (26). For the chosen initial conditions the
solution of the Eqs. (24), (26) (the intersection point of the curves 1 and 2 in Fig. 1) is ms ¼ 0:325 M, zs ¼ 0:736. In
accordance with (32), (33) this gives ts ¼ 1:28R3=2 ðGM Þ

�1=2, rs ¼ 0:48R.

THE STRUCTURE OF SINGULARITIES 203
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the density becomes infinite on a sphere of the radius

rs ¼ z2
s rðms; 0Þ: ð33Þ

The inequality (22) (or, interchangeably, (23)) is the necessary and sufficient condition for

arising the spherical shell-crossing singularity. A rigorous proof of this statement is given in

the Appendix. The physical meaning of the condition (22) is clear. Indeed, as is seen from

(16), tf ðmÞ decreases with increasing m over those intervals where (22) holds. Therefore,

the farther away a layer is the smaller is the time it takes to fall to the centre. This obviously

leads to the crossings of the layers, the first one happening at t ¼ ts; r ¼ rs. The singular

sphere, arising at this instant, splits immediately into two singular spheres which continue

to contract. In the interspace between them the three-flow motion takes place, so that the stan-

dard hydrodynamic Eqs. (2)–(4) are invalid there. In Section 5 we derive equations, govern-

ing the dynamics of the layers in the multiflow regions, and also give results of the numerical

integration. But before that, in the next two Sections, we investigate the structure of the pri-

mordial singularities, arising at t ¼ ts.

Note that potentially it is possible for several singularities to occur at different instants ts
and with different radii rs, the Eqs. (24), (26) can formally have several solutions correspond-

ing to the minima of the function sðm; zðmÞÞ. However, this possibility does not imply that all

singularities do really occur, because certain of the layers ms can find themselves in a multi-

flow region (formed, e.g., due to the splitting of a primordial singularity arising before) in a

time smaller than ts for a given layer. For example, if for an initial mass distribution the time

of appearance of the shell-crossing singularity (32) is smaller than the time of appearance of

the central singularity (20), then for this distribution the multiflow region can reach the centre

before the conventional singularity at the centre forms. In this case the density at the centre

becomes infinite in a time smaller than ts (20), just due to the lower boundary of the multi-

flow region falling at the centre.

3 THE STRUCTURE OF THE PRIMORDIAL SINGULARITY ARISING

AT THE CENTRE

Let us consider the initial matter distribution having an enhanced density near the centre, so

that for small r

rðr; 0Þ

rð0; 0Þ
¼ 1 � x2

þ Oðx4
Þ; ð34Þ

where

x ¼
r

r0

; r0 ¼
2rð0; 0Þ

r00ð0; 0Þ

����
����1=2

; ð35Þ

r0 is the characteristic scale of an inhomogeneity.

204 V. A. KOUTVITSKY AND E. M. MASLOV
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To determine the structure of the singularity in the Eulerian coordinates r; t one should

resolve the Eq. (12) with respect to m assuming that m and z are small and t is close to ts
(20). Introducing the dimensionless variables

t ¼
t

ts
; m ¼

mðr; tÞ

ð4p=3Þr3
0rð0; 0Þ

; ð36Þ

when x2
� 1, m2=3 � 1, z2 � 1 one has

rðm; 0Þ ¼ r0m1=3 1 þ
1

5
m2=3 þ Oðm4=3Þ

� �
;

tf ðmÞ ¼ ts 1 þ
3

10
m2=3 þ Oðm4=3Þ

� �
;

FðzÞ ¼
2

3
z3 1 þ

3

10
z2 þ Oðz4Þ

� �
;

z2 ¼
x

m1=3
1 �

1

5
m2=3 þ Oðm4=3Þ

� �
: ð37Þ

With these formulas the Eq. (12) becomes

4x3=2

3pm1=2
1 þ

3

10
z2 þ Oðz4Þ

� �
¼ 1 � tþ

3

10
m2=3 þ Oðm4=3Þ: ð38Þ

Suppose, first, that in the right hand side of (38) m2=3 � 1 � t. Then, in the first approxi-

mation, we find

m �
16x3

9p2ð1 � tÞ2
: ð39Þ

With this result it is seen from (37), that z2 � ð1 � tÞ2=3. Hence, our assumption is justified in

the region

x4=7
� ð1 � tÞ2=3

� 1; ð40Þ

where, evidently, z2 � 1, x2
� m2=3 � 1 � t � 1.

Consider the next approximation assuming the condition (40) is fulfilled. Magnitudes of

the terms in (38) are now estimated with the help of (39). As a result, we obtain

m ¼
16x3

9p2ð1 � tÞ2
½1 þ eðx; tÞ þ Oðe2Þ�; ð41Þ

where

eðx; tÞ ¼
3

5

3p
4

� �2=3

ð1 � tÞ2=3
�

3

5

3p
4

� ��4=3 x2

ð1 � tÞ7=3
: ð42Þ

THE STRUCTURE OF SINGULARITIES 205
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Let now

ð1 � tÞ2=3
� x4=7

� 1: ð43Þ

In this region in the first approximation the Eq. (38) gives

m �
40

9p

� �6=7

x9=7: ð44Þ

In the next approximation we use (44) and the fact that in the region (43) z2 � x4=7. Thus,

we get

m ¼
40

9p

� �6=7

x9=7
½1 þ dðx; tÞ þ Oðd2; x6=7

Þ�; ð45Þ

where

dðx; tÞ ¼
9

35

9p
40

� �2=7

x4=7
�

20

7

9p
40

� �4=7
1 � t

x6=7
: ð46Þ

With the found mass m the density and the velocity of the matter are determined by the

formulas (4), (10), (35)–(37). Introducing the characteristic velocity v0 ¼ r0=ts we finally

obtain

rðr; tÞ
rð0; 0Þ

¼
16

9p2ð1 � tÞ2
1 þ

3

5

3p
4

� �2=3

ð1 � tÞ2=3
�

3p
4

� ��4=3 x2

ð1 � tÞ7=3
þ Oðe2Þ

" #
; ð47Þ

vðr; tÞ

v0

¼ �
2x

3ð1 � tÞ
1 �

1

5

3p
4

� �2=3

ð1 � tÞ2=3
�

3

10

3p
4

� ��4=3 x2

ð1 � tÞ7=3
þ Oðe2Þ

" #
ð48Þ

for x4=7
� ð1 � tÞ2=3

� 1, and

rðr; tÞ
rð0; 0Þ

¼
3

7

40

9p

� �6=7

x�12=7 1 þ
13

35

9p
40

� �2=7

x4=7
�

20

21

9p
40

� �4=7
1 � t

x6=7
þ Oðd2; x6=7

Þ

" #
; ð49Þ

vðr; tÞ

v0

¼ �
p
2

40

9p

� �3=7

x1=7 1 �
13

35

9p
40

� �2=7

x4=7
�

10

7

9p
40

� �4=7
1 � t

x6=7
þ Oðd2; x6=7

Þ

" #
ð50Þ

for ð1 � tÞ2=3
� x4=7

� 1.

It is easy to verify by substitution that, within the accuracy of the analysis, the expansions

(47)–(50) satisfy the basic Eqs. (2)–(4). They describe in Eulerian variables the structure of

the solution near the centre. The leading terms of the expansions were obtained by Penston

(1969). Also, the third term of (47) was written down there (but unfortunately, with an erro-

neous numerical coefficient), however in the region (40) the second terms in (47), (48) can

make even greater contributions and, hence, must be taken into account. As to the second
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terms in (49), (50), their role when substituting in (2)–(4) becomes important in the next

approximation.

4 THE STRUCTURE OF THE PRIMORDIAL SPHERICAL SINGULARITY

Now we shall treat the right hand side of (12) as a function of m; r. Denoting sðm; rÞ ¼
sðm; zðm; rÞÞ, near the singular sphere we can write the expansion

t � ts �
qs
qr

� �
s

ðr � rsÞ ¼
1

2

q2s
qr2

� �
s

ðr � rsÞ
2
þ

q2s
qrqm

� �
s

ðr � rsÞðm� msÞ

þ
1

6

q3s
qm3

� �
s

ðm� msÞ
3
þ

1

24

q4s
qm4

� �
s

ðm� msÞ
4

þ Oððr � rsÞ
3; ðr � rsÞ

2
ðm� msÞ; ðr � rsÞðm� msÞ

2
Þ: ð51Þ

Here we took into account that

qs
qm

� �
s

¼ 0;
q2s
qm2

� �
s

¼ 0

because of (24), (26) and hence kept the terms of the third and fourth orders in m� ms.

Using again (24), (26) and the identity

zP0 ¼ �ð1 � PÞ 3 þ
z2P

1 � z2

� �

for the remaining derivatives we obtain

qs
qr

� �
s

¼
1

vs
;

q2s
qr2

� �
s

¼
1

2rsvsð1 � z2
s Þ
;

q2s
qrqm

� �
s

¼
1

6msvs

zP0

1 � P

� �
s

;

q3s
qm3

� �
s

¼
ts

2m3
s

mðmðln Y Þ0Þ0 �
1

36
zPðzP0Þ

0

� �
s

;

q4s
qm4

� �
s

¼
ts

2m4
s

mðmðmðln Y Þ0Þ0Þ0 þ
1

216
zPðzPðzP0Þ

0
Þ
0

� �
s

�
6

ms

q3s
qm3

� �
s

1 �
1

36
zP0

� �
s

: ð52Þ
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Here

vs ¼ �
2Gm

r
ð1 � z2Þ

� �1=2

s

ð53Þ

is the velocity of the singular sphere at the instant t ¼ ts (32) it arises. The functions Y ðmÞ

and PðzÞ are defined in (17), (25). The label s indicates that a quantity is taken at m ¼ ms,

r ¼ rs, z ¼ zs. Recall that the primes denote the derivatives with respect to m or z.

Suppose that in the right hand side of (51) the term � ðm� msÞ
3 is the leading one.

Then, in the first approximation

ðm� msÞ
3
�

6ts

ðq3s=qm3Þs
D; ð54Þ

Dðr; tÞ ¼
rs � r � vsðts � tÞ

vsts
: ð55Þ

Note that, according to (31), the quantity ðq3s=qm3Þs is always positive (see (52)), as it

must in agreement with the physical meaning of (54).

Using (54) it is easy to check that the term ðm� msÞ
3 plays a leading part in the region

1 �
r

rs

����
����1=2

� jDj1=3 � 1: ð56Þ

Consider the next approximation assuming the condition (56) is satisfied. Taking account

of the terms ðr � rsÞðm� msÞ and ðm� msÞ
4 one finds

m� ms ¼
6ts

q3s=qm3

� �1=3

s

D1=3
ðr; tÞ½1 þ Zðr; tÞ þ OðZ2Þ�; ð57Þ

Zðr; tÞ ¼
1

12

6ts

q3s=qm3

� �1=3

s

4rs

ts

q2s
qrqm

� �
s

1 � r=rs

D2=3
�

q4s=qm4

q3s=qm3

� �
s

D1=3

� �
: ð58Þ

Differentiating (57), (58) with respect to r we finally obtain the expression for the density in

the region (56):

rðr; tÞ ¼
gs

4pr2D2=3
1 � as

1 � r=rs

D2=3
� bsD

1=3
þ OðZ2Þ

� �
; ð59Þ
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where the constants as; bs; gs are calculated with the help of (52)–(53) by the formulas

as ¼ rsjvsjgs
q2s
qrqm

� �
s

;

bs ¼ 3tsv
2
s gs

q2s
qrqm

� �
s

þ
3

4
t2s v

2
s g

3
s

q4s
qm4

� �
s

� �
;

gs ¼
1

3jvsjts

6ts

q3s=qm3

� �1=3

s

: ð60Þ

With (57) the velocity follows from (10):

vðr; tÞ ¼ vs 1 þ
3tsjvsj

rs
asD

1=3
þ OðZ2Þ

� �
: ð61Þ

At t ¼ ts the formulas (59)–(61) describe the structure of the spherical singularity in the

vicinity of rs. It is seen that in the main order we have r � ðr � rsÞ
�2=3, as in the case of

planar symmetry (Penston, 1969).

Figure 3 shows the dynamics of formation of the primordial spherical singularity in the

interval 0 � t � ts resulting from (59). For comparison the numerical solution of the starting

Eq. (12) is depicted by the solid lines. As expected, the density profiles asymptotically fit

together at t � ts; r � rs.

FIGURE 3 Formation of the spherical shell-crossing singularity. The initial conditions are the same as in Figure 1.
The ordinate axis is normalized to the averaged density �rr of the initial distribution, �rr ¼ M ðð4=3ÞpR3Þ

�1. Solid lines
indicate the numerical solution of the Eq. (12), dashed lines show the asymptotic solution (59).
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5 WHAT HAPPENS AT t > ts?

As it was mentioned in Section 2, at t > ts a spatial region arises in which a multiflow motion

takes place. Such a motion can be described by the system of hydrodynamic Eqs. (2)–(4)

written down for each individual flow (Gurevich and Zybin, 1988). It turns out however

that for numerical integration the system of equations in Lagrangian variables is more

convenient.

Let rðm; tÞ be the Lagrangian coordinate of an infinitesimal layer, m – its label coinciding

at t > ts with the mass of a ball of radius r. The dynamics of the layer is described by the

Newtonian equation,

q2rðm; tÞ

qt2
¼ �G

Mðrðm; tÞ; tÞ

r2ðm; tÞ
: ð62Þ

Here Mðr; tÞ is the mass determining the gravitational potential at the radius r. It is equal

to the sum of the masses of the all layers having Lagrangian coordinates less than r. At t > ts
the layers can intersect each other and, hence, can belong to the different flows. In this case

Mðr; tÞ is no longer the integral of motion and equals the mass m plus the total mass of the

layers, which in the course of falling the layer m have entered into the sphere of the radius r,

and minus the mass of the layers which have escaped from this sphere (see Fig. 1). Thus, for

a given layer m moving in a ð2nþ 1Þ-flow region one has

Mðr; tÞ ¼
Xn
j¼0

ðm2jþ1 � m2jÞ; ð63Þ

where miðr; tÞ ð1 � i � 2nþ 1Þ are the roots of the equation

rðm; tÞ ¼ rðmi; tÞ; ð64Þ

ordered as

0 ¼ m0 � m1 � m2 � 	 	 	mk ¼ m � 	 	 	m2nþ1

Obviously, at t < ts, when a one-flow motion takes place, Mðr; tÞ ¼ m1 ¼ m.

The Eqs. (62)–(64) constitute a complete system determining the Lagrangian coordinate r

of an arbitrary layer m. With the known function rðm; tÞ the velocity of each partial flow at the

point ðr; tÞ is determined by

vi ¼
qr
qt

� �
mi

; ð65Þ

and the total density of matter is found as the sum of all partial densities,

r ¼
X2nþ1

i¼1

ri; ri ¼
1

4pr2

qr
qm

����
�����1

mi

: ð66Þ
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FIGURE 4 The Lagrangian particles falling in accordance with the Eqs. (62)–(64). The initial conditions and
instants of time are the same as in Figure 1. For comparison the formal solutions of the Eq. (12) at t > ts are depicted
(the dashed lines from Fig. 1).

FIGURE 5 The radial distribution of the mass M. The initial conditions and instants of time are the same as in
Figure 1.
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The mass Mðr; tÞ is related to the total density in the ordinary way,

M ¼ 4p
ðr

0

rr2 dr: ð67Þ

The existence theorem for the system (62)–(64) in the case of planar symmetry was

recently proved by Swatton and Clarke (1998). In the present paper we report the numerical

solution of this system in spherical symmetry obtained by the direct modelling of the motion

of the Lagrangian particles for the discrete version of the Eq. (62). The region of integration

was broken down into thin spherical layers considered as collisionless particles on a line.

FIGURE 6 Formation of the multiflow regions in the matter falling to the centre at t � ts.
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Thereafter we calculated the motion of each layer in the gravitation field created by the layers

arranged below the given one. The results are presented in Figures 4–6.

As one would expected, when t � ts the curves rðm; tÞ in Figure 4 coincide with the cor-

responding curves in Figure 1. For t > ts the solution of the system (62)–(64) differs essen-

tially from the solution of the Eq. (12) because since t ¼ ts the gravitational potential at the

radius r is generated by the mass M no longer coinciding with m. In Figure 5 is presented the

distribution of M along the radius calculated in accordance with (62), (63). For t > ts it is

seen that qM=qr ! þ1 at the boundaries of the multiflow region. This implies that the sin-

gular sphere arising at t ¼ ts splits instantaneously into two singular spheres. The appearance

of the three-flow motion between the spheres is well seen from the velocity distribution

(Fig. 6a, b, c). In the interior of the three-flow region a new peak of the density progressively

forms (Fig. 6c) which then becomes a new singular sphere. In its turn this sphere also splits

into two ones with the region of the five-flow motion between them (Fig. 6d, e). The bound-

aries of the multiflow regions embedded into each other are determined by the condition

jdv=drj ¼ 1. From Figure 6e it is seen that in the five-flow region the formation of a

new singularity begins, which will lead to the appearance of the seven-flow motion.

So, we observe the multiplication of flows already when moving the dust matter to the

centre. Further development of the process will essentially depend on the model of behaviour

of the matter at the centre. Thus on the assumption of the reflection of the matter from the

centre it seems likely that some quasi-stationary oscillating structure arises near the centre,

with the number of flows in it increasing indefinitely (Gurevich and Zybin, 1988; 1995).

It may be suggested that the intersection of the shell-crossing singularities belonging to

the different structures of a maximum size is responsible for the observed large-scale cellular

structure of the Universe (Shandarin et al., 1983).

6 CONCLUSION

The implicit solution of the hydrodynamic equations describing the spherically-symmetric

collapse of a dust cloud determines some two-dimensional surface in the space of variables

m, r, t. We have investigated in detail the behaviour of the contour lines of this surface on the

plane m, r. As a result, we have rigorously derived the condition (22) (or, interchangeably,

(23)) on the initial matter distribution under which the shell-crossing spherical singularity

occurs. It turned out that this condition is both necessary and sufficient for the shell-crossing

singularity arising (see Appendix). If this condition is not fulfilled, only the point-like singu-

larity at the centre will arise. We have obtained the system of algebraic Eqs. (24), (26), the

solution of which enables one to calculate the instant of appearance of the first shell-crossing

singularity and the radius of the singular sphere (formulas (32), (33)). Also, we have found

the explicit asymptotic solutions describing in Eulerian variables the structure of the central

and spherical self-crossing singularities (formulas (47)–(50), (59)–(61)).

Further, we have obtained the system of Eqs. (62)–(64), describing the multiflow motion of

the dust-like matter. With these equations we have investigated the formation of the spherical

singularities in the multiflow regions. As shown in Figure 6, each new-formed spherical sin-

gularity, beginning with the primordial singularity, splits instantaneously into two new sphe-

rical singularities which become the boundaries of a new multiflow region embedded into the

old one. We have observed this process up to the lower boundary of the total multiflow region

falling on the centre.

Up to this point we considered the spherically-symmetric collapse. Nevertheless, all our

results can be easely extended to the ellipsoidal matter distributions which seem more
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realistic. For example, the matter distribution near an arbitrary maximum of the density can

be written as

r
r0

¼ 1 þ
1

2

q2r
qx2

� �
0

x2 þ
q2r
qy2

� �
0

y2 þ
q2r
qz2

� �
0

z2

� �
þ 	 	 	 ¼ 1 � x2

þ 	 	 	 ;

where

x ¼
x2

a2
þ

y2

b2
þ

z2

c2

� �1=2

;

a, b, c are constants. It easy to check (see, e.g., Gurevich and Zybin, 1988) that in general

case the transformation

r ¼ rðx; tÞ; v ¼
r

x
V ðx; tÞ; Hj ¼ 4pG

r

x3

ðx
0

rx2 dx

brings the system (1) again to the form (2)–(4), where one should now replace

r ! x; v ! V :

Thus, with this replacement, all our results hold for the ellipsoidal distributions as well.
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7 APPENDIX

Let us prove that the inequality (22) is the necessary and sufficient condition for arising the

shell-crossing singularity.
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The necessity follows obviously from the fact that when 0 < z � 1 the function PðzÞ in the

Eq. (24) is less than unity.

To prove the sufficiency we first show that under the condition (22) the system (24). (26)

has non-zero solutions. Geometrically, this means that the curves z ¼ zðmÞ and z ¼ ~zzðmÞ,
determined by (24) and (26) correspondingly, cross each other on the plane ðm; zÞ.

Consider the function Y ðmÞ. From the definition (17) it follows that for non-singular initial

distributions with a finite mass M the function Y ðmÞ is positive, differentiable in the region

0 < m < M , and Y ð0Þ ¼ 1, Y ðmÞ ! þ1 ðm ! M Þ. Therefore, if the inequality (22) holds

in some range of m, an interval ½m1;m2� will exist such that

Y ðmÞ < 1 ðm1 � m < m2Þ; Y ðm2Þ ¼ 1; Y ðmÞ > 1 ðm2 < m < M Þ;

Y 0ðmÞ > 0 ðm1 < m < m2Þ; Y 0ðm1Þ ¼ 0; Y 0ðm2Þ � 0

with Y 0ðm2Þ ¼ 0 when there is an inflection point at m ¼ m2. Hence

Y ðmÞ � 1 þ aðm� m2Þ
2nþ1

ða > 0;m ! m2Þ:

The function PðzÞ in the right hand side of (24) is defined in the interval 0 � z � 1 and

decreases monotonically with PðzÞ � 1 � ð4=3pÞz3 ðz ! 0Þ, Pð1Þ ¼ 0, P0ð1Þ ¼ �6 (see

Fig. 2). Hence, in the interval ½m1;m2� the Eq. (24) determines uniquely a non-negative

function z ¼ zðmÞ. It is easy to see that

0 < zðm1Þ < 1; z0ðm1Þ ¼ 0; z0ðmÞ < 0 ðm1 < m < m2Þ; zðm2Þ ¼ 0:

Consider now the Eq. (26). Its right hand side is defined in the interval 0 � z � 1 and

increases monotonically from zero at z ¼ 0 to unity at z ¼ 1 (Fig. 2). The left hand side

of (26) is positive in m1 < m < m2 and becomes zero at m ¼ m1. Suppose, first, that it

does not achieve unity anywhere in ½m1;m2�. Then (26) determines a single-valued non-

negative function z ¼ ~zzðmÞ everywhere in ½m1;m2�. Obviously, ~zzðm1Þ ¼ 0, 0 � ~zzðm2Þ < 1

with ~zzðm2Þ ¼ 0 if Y 0ðm2Þ ¼ 0. Taking into account the behaviour of zðmÞ we hence conclude

that if 0 < ~zzðm2Þ < 1 then the curves z ¼ zðmÞ and z ¼ ~zzðmÞ will necessarily cross each other

on the plane ðm; zÞ in the domain m1 < m < m2, 0 < z < 1. This statement holds with

~zzðm2Þ ¼ 0 as well. Indeed, in this case from the behaviour of the functions PðzÞ and Y ðmÞ

as z ! 0, m ! m2 it follows that

zðmÞ

~zzðmÞ
� ðm2 � mÞ1=3

! 0 ðm ! m2Þ;

and, hence, in the domain m1 < m < m2, 0 < z < 1 the intersection points exist again.

Suppose now that in the interval ½m1;m2� the left hand side of (26) achieves unity for the

first time at m ¼ m
 ðm1 < m
 < m2Þ. Then

0 < m ðln Y ðmÞÞ0 < 1 ðm1 < m < m
Þ;

so that the function ~zzðmÞ is uniquely defined in ½m1;m

� with ~zzðm
Þ ¼ 1. It is clear that in

this case the curves z ¼ zðmÞ and z ¼ ~zzðmÞ have intersection points in the domain

m1 < m < m
; 0 < z < 1.

Let us show that among the intersection points there are those which correspond to the

minima of the function sðm; zÞ (12) on the curve z ¼ zðmÞ. Consider the interval ½m1;m2�.
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As it follows from the above, it contains an odd number of values of m, abscissae of the inter-

section points, where the function sðm; zðmÞÞ has extrema. Let us calculate the derivatives of

sðm; zðmÞÞ at the boundaries of the interval. With z0ðm1Þ ¼ 0 and (16) we obtain

ds
dm

� �
m1

¼
qs
qm

� �
m1

¼
sðm1; zðm1ÞÞ

2m1

ðY ðm1Þ � 1ÞÞ < 0:

Using (27), (28) and the asymptotic behaviour of PðzÞ ðz ! 0Þ, Y ðmÞ ðm ! m2Þ we find

ds
dm

� �
m!m2

�
2

p
tf ðm2ÞY

0
m!m2

� aðm2 � mÞ2n;

so that

ds
dm

� �
m2

> 0 ðn ¼ 0Þ;
ds
dm

� �
m!m2

! þ0 ðn � 1Þ:

It follows that sðz; zðmÞÞ has at least one minimum on ½m1;m2�. This completes the proof.
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