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Recent observational indications of an accelerating universe enhance the interest in studying models with a
cosmological constant. We investigate cosmological expansion (FRW metric) with L > 0 for a general linear
equation of state p ¼ wr, w > �1, so that the interplay between cosmological vacuum and quintessence is
allowed, as well.

Four closed-form solutions (flat universe with any w, and w ¼ 1=3, �1=3, �2=3) are given, in a proper compact
representation. Various estimates of the expansion are presented in a general case when no closed-form solutions are
available. For the open universe a simple relation between solutions with different parameters is established: it turns
out that a solution with some w and (properly scaled) L is expressed algebraically via another solution with special
different values of these parameters.

The expansion becomes exponential at large times, and the amplitude at the exponent depends on the parameters.
We study this dependence in detail, deriving various representations for the amplitude in terms of integrals and
series. The closed-form solutions serve as benchmarks, and the solution transformation property noted above
serves as a useful tool. Among the results obtained, one is that for the open universe with relatively small
cosmological constant the amplitude is independent of the equation of state. Also, estimates of the cosmic age
through the observable ratio OL=OM and parameter w are given; when inverted, they provide an estimate of w,
i.e., the state equation, through the known OL=OM and age of the universe.

Keywords: Cosmology; Cosmological vacuum; Quintessence; Exact solutions

1 INTRODUCTION

Recent data on the brightness of distant SN Ia (½1; 2�; see [3] and the references therein), as

well as evidence coming from the cosmic age, large scale structure, and cosmic microwave

background anisotropy combined with the cluster dynamics, indicate, most probably, that the

observed cosmological expansion is accelerating. Perhaps the most natural, although defi-

nitely not unique, reason for this acceleration is the presence of a cosmic vacuum of nonzero

energy and pressure; because of that, investigation of various cosmological models including

a positive cosmological constant becomes interesting, once again. In this paper we study one

such model involving matter with an arbitrary (linear) equation of state; in particular, an

interplay between vacuum and quintessence [4] is studied.

* E-mail: gleit@relgyro.stanford.edu
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We consider a Friedmann cosmology described by the Friedmann–Robertson–Walker

metric,

ds2 ¼ �dt2 þ a2ðtÞ
dr2

1 � kr2
þ r2 dO2

� �
; ð1Þ

where dO is the element of solid angle and k ¼ �1, 0, or 1, according to whether the universe

is open, flat, or closed (we use the units with G ¼ c ¼ 1). As usual, the energy-momentum

tensor, consistent with homogeneity and isotropy of the universe, is the one corresponding to

a perfect fluid, described by the energy density r and pressure p. The latter are assumed to

satisfy the linear equation of state

p ¼ wr; w ¼ const > �1: ð2Þ

The range of values of w is chosen on the grounds that w ¼ �1 corresponds to the vacuum

equation of state, and vacuum contributions are already included in our model with the cos-

mological constant L > 0. Moreover, no physical reasons seem to be known so far to justify

the values of w which are more negative that the vacuum one, w ¼ �1, and the cosmological

evolution in this range is very different. On the other hand, it is not easy to imagine the kind

of physics that would lead to matter with the pressure larger than its density, but the following

analysis does not depend at all on whether w is larger or smaller than one, so we do not limit

this parameter from above. Condition (2) allows for quintessence, that is, for �1 < w < 0;

investigation of its influence on cosmological expansion is one of the goals of this paper.

Under these assumptions, Einstein’s equations reduce to

3
1

a

da

dt

� �2

¼ 8prþ L� 3
k

a2
;

dr
dt

¼ �3
rþ p

a

da

dt
; ð3Þ

the second one expressing energy conservation. By (2), this equation is easily integrated giv-

ing the density in terms of the scale factor,

r ¼
M

a3ðwþ1Þ
; ð4Þ

where the constant M > 0 characterizes the abundance of matter in the universe. A substitu-

tion of (4) in the first of Eqs. (3) produces the equation for the scale factor aðtÞ only,

da

dt

� �2

¼
8pM

3

1

a3wþ1
þ
L
3

a2 � k; ð5Þ

we append it with the Big Bang initial condition

að0Þ ¼ 0: ð6Þ

As seen from (4), the initial value of the density, rð0Þ, is then infinite for w > �1=3, and zero

for �1 < w < �1=3; it is finite and positive for w ¼ �1=3, which value corresponds to the

so called Einstein quintessence.1

Equation (5) with the initial condition (6) constitute the problem studied below; its solu-

tion, together with formula (4), specifies completely the corresponding cosmological

expansion at all times.

1The term ‘Einstein quintessence’ was coined recently in [5] on the grounds of the effective equation of state for
Einstein’s cosmological solution [6] of 1917.
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2 LARGE-TIME EXPRESSION FOR THE SCALE FACTOR

2.1 Problem Reformulation and Parameter Range

For convenience, we rescale the variables according to

t ¼

ffiffiffiffi
3

L

r
t; aðtÞ ¼

8pM

L

� �1=3ðwþ1Þ

yðtÞ; ð7Þ

and introduce new parameters:

n � 3w þ 1; n > �2; o �
3

L
L

8pM

� �2=3ðwþ1Þ

¼ 3ð8pMÞ
�2=ðnþ2Þ

ðLÞ�n=ðnþ2Þ > 0: ð8Þ

Denoting by a dot the derivative with respect to t, we rewrite (5) and (6) as

_yy2 ¼ y�n þ y2 � ko; yð0Þ ¼ 0; n > �2; k ¼ 0;�1; o > 0; ð9Þ

since we are studying the expansion, a positive square root of the right hand side of (9) is, of

course, always taken for _yy.

The equation and initial condition (9) are consistent for any value of parameter kw if n is

positive, because at small times _yy2 � y�n > 0. For n ¼ 0 at small times one gets

_yy2 � 1 � ko, so o is limited by unity for the closed universe ðk ¼ 1Þ. When �2 < n < 0,

the governing equation in the beginning of the expansion becomes _yy2 � �ko, so only

open and flat universe ðk ¼ �1; 0Þ solutions are possible.

Moreover, we are interested only in the solutions describing an unbounded cosmological

expansion, i.e., those with yðtÞ ! 1 at t ! 1. A simple mechanical analogy helps to

establish parameter limits ensuring that. Namely, Eq. (9) describes the motion of a particle

of a unit mass along the positive y axis, starting at the origin, in the potential

V ð yÞ ¼ �ð y�n þ y2Þ � 0;

the total energy of the particle is �ko. When �2 < n < 0, the potential is monotonically

decreasing, with the largest value V ð0Þ ¼ 0. Hence any such motion with a non-negative

total energy (k ¼ �1, 0, open and flat universe) is infinite. The same monotonicity of the

potential holds for n ¼ 0, but the largest value now is V ð0Þ ¼ �1, which yields the already

known restriction o < 1 for any infinite motion in the case k ¼ 1 (closed universe).

Finally, for n > 0 the potential is strictly negative and non-monotonic: at y ¼ yn > 0 such

that V 0ð ynÞ ¼ 0 it reaches a unique maximum V ð ynÞ ¼ �on, given by

on � min
y�0

ð y�n þ y2Þ ¼ y�n
n þ y2

n ¼
nþ 2

n
y2
n; yn ¼

n
2

� �1=ðnþ2Þ

: ð10Þ

An infinite motion requires the total energy to be larger than that maximum, �ko > �on,

which is automatically fulfilled for the open and flat universe; however, for the closed uni-

verse ðk ¼ 1Þ, the parameter o proves to be limited from above, o < on. This constraint

has a clear physical meaning: to overwhelm the curvature effect in the closed universe and

get an unbounded expansion, one has to have enough vacuum repulsion, that is, a large

enough L. But for n > 0 the parameter o is proportional to a negative power of L
[see (8)], hence o cannot be too large.

Note that yn ! þ0 and on ! 1 þ 0 when n ! þ0, which allows us to describe the cases

of positive and zero n uniformly. Also, both yn and on tend to unity from above when

n ! 1, hence they have at least one maximum. In fact, each of the functions, plotted in

Figure 1, has one maximum exactly: maxon ¼ 2 at n ¼ 2 (for some reason, it is relativistic

ON COSMOLOGICAL EVOLUTION WITH THE L-TERM 173
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gas that has the largest ‘store of expansion’ in the closed universe), and max yn � 1:149 at

n � 7:182. Some values of particular interest are: for n ¼ 0 (w ¼ �1=3, Einstein quintes-

sence), yn ¼ 0, on ¼ 1; for n ¼ 1 (w ¼ 0, pressureless ‘dust’), yn ¼ 2�1=3 � 0:794,

on ¼ 3 � 2�2=3 � 1:890; for n ¼ 2 (w ¼ 1=3, relativistic gas), yn ¼ 1, on ¼ 2; for n ¼ 4

(w ¼ 1, Zeldovich’s superstiff fluid), yn ¼ 21=6 � 1:122, and again on ¼ 3 � 2�2=3 � 1:890.

Summarizing, the range of parameters of interest is

k ¼ 1: n � 0; 0 < o < on; k ¼ 0;�1: n > �2; 0 < o < 1: ð11Þ

2.2 Expansion Amplitude and Its Basic Properties

With parameters in the range (11), the cosmological expansion goes indefinitely [unique

solution to problem (9) grows unboundedly], and at large times it is exponential in time,

since for y 	 maxf1;og the equation becomes _yy � y [for k ¼ 0, 1 the large time condition

is apparently relaxed to just y 	 1]. Therefore

yðtÞ � yðt; n; koÞ ¼ AnðkoÞet½1 þ oð1Þ�; t ! 1; ð12Þ

and we are particularly interested in the behavior of the expansion amplitude AnðkoÞ for the

whole parameter range (11). For n � 0 and ko ¼ on (i.e., k ¼ 1, o ¼ on) the solution yðtÞ
reaches the (unstable) rest point yn in an infinite time, so AnðonÞ should be zero, which

remains to be proved.

FIGURE 1 Parameters for the closed universe solution.
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We derive an explicit expression for the amplitude by integrating Eq. (9),

tð yÞ � tð y; n; koÞ ¼
ðy

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n þ x2 � ko

p : ð13Þ

For y, t ! 1 the integral here diverges logarithmically, as it should. To get the desired

expression for the amplitude, one needs to extract this logarithm of y, that is, to add and

subtract something in the integrand allowing for a closed-form quadrature. The most natural

choice seems the same integrand with k ¼ 0, in which case one writes:

tð yÞ ¼
2

nþ 2
ln yðnþ2Þ=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ yðnþ2Þ

ph i
þ

ðy

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n þ x2 � ko

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�n þ x2
p

� �
dx

¼ ln½22=ðnþ2Þy� þ

ð1
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n þ x2 � ko

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�n þ x2
p

� �
dx þ oð1Þ; y ! 1 ð14Þ

[unlike (13), the integral here converges at infinity]. This expression can be combined with

the equality (12) to write the desired formula for the amplitude as

AnðkoÞ ¼ Anð0Þe
�fnðkoÞ; fnðkoÞ �

ð1
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n þ x2 � ko

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�n þ x2
p

� �
dx; ð15Þ

where

Anð0Þ ¼ 2�2=ðnþ2Þ

(note that, naturally, fnð0Þ ¼ 0).

Two features of the expansion amplitude behavior can be established immediately. First,

when ko ¼ o ! on � 0, the integral (15) for fnðkoÞ diverges at x ¼ yn, so fnðkoÞ goes

to þ1; therefore AnðonÞ ¼ 0, as expected.

Next, we have, for a given n:

dln AnðkoÞ
dðkoÞ

¼ �
dfnðkoÞ

dðkoÞ
; ð16Þ

and the latter derivative is readily found from (15):

dfnðkoÞ
dðkoÞ

¼
1

2

ð1
0

dx

ðx�n þ x2 � koÞ3=2
> 0: ð17Þ

Therefore AnðkoÞ is a decreasing function of ko for any given relevant n; in particular,

Anð�oÞ > Anð0Þ ½>AnðoÞ; n � 0;o < on�: ð18Þ

That means that, as one expects intuitively, for the same parameters w, M, and L, the ampli-

tude for the open universe is larger than that for the flat universe which, in its turn, is larger

than the amplitude for the closed universe, if n, exists. Generally, by figuring out the signs of

the curvature and parameter n and taking into account expression (8) for o, one can see that,

given k ¼ �1; n, and the matter abundance M, the growth amplitude is larger for larger cos-

mological constant L. That clearly makes physical sense: the larger the contribution of the

vacuum repulsion, the stronger the expansion is.

ON COSMOLOGICAL EVOLUTION WITH THE L-TERM 175
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3 CLOSED-FORM COSMOLOGICAL SOLUTIONS

The closed-form and, especially, elementary solutions are always most valuable; in the

context of this study, they specifically shed light on how the expansion amplitude behaves.

It is not difficult to see that all the integrals involved in the general cosmological solution

of the previous section prove to be elementary in the following four cases.

3.1 Flat Universe: k ¼ 0

For k ¼ 0 Eq. (13) gives the result presented in part in the previous section; here is how it

looks in full:

tð yÞ ¼
2

nþ 2
ln yðnþ2Þ=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ yðnþ2Þ

ph i
; yðtÞ ¼ sinh

nþ 2

2
t

� �� �2=ðnþ2Þ

: ð19Þ

Thus for flat universe the amplitude of the exponential growth of the scale factor is

Anð0Þ ¼ 2�2=ðnþ2Þ; 0 < Anð0Þ < 1: ð20Þ

Note also the small time asymptotics expression,

yðtÞ ¼
nþ 2

2
t

� �2=ðnþ2Þ

½1 þ oð1Þ�; t ! þ0;

which is valid for all the values of ko and n > 0 (the curvature and cosmological constant do

not play any role in the early universe). For n ¼ 0, and n < 0, k ¼ �1, the expansion

becomes linear with the time, in the beginning.

3.2 Relativistic Gas: w ¼ 1=3

Here n ¼ 2, and we have:

tð yÞ ¼
1

2
ln

2y2 � koþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 � koy2 þ 1

p
2 � ko

;

yðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ko

4
expð2tÞ �

2 þ ko
4

expð�2tÞ þ
ko
2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð2tÞ � ko sinh2 t

q
; ð21Þ

so that

A2ðkoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ko

p

2
ð22Þ

(all these results agree with the above ones for k ¼ 0). Note that o2 ¼ 2 [the definition of on

is given in (10)], and the expression (22) for the amplitude is well defined exactly up to

o ¼ o2 ¼ 2, for the closed universe ðk ¼ 1Þ.

3.3 Einstein Quintessence: w ¼ �1=3

In this case we have n ¼ 0, and

tð yÞ ¼ ln
y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � koþ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ko

p ; yðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ko

p
sinh t; ð23Þ
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hence

A0ðkoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ko

p

2
; ð24Þ

again in agreement with Section 3.1. Of course, as seen from (10), o0 ¼ 1.

3.4 Quintessence with w ¼ �2=3

Finally, here n ¼ �1, thus

tð yÞ ¼ ln
2y þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ y � ko

p
2

ffiffiffiffiffiffiffiffiffiffi
�ko

p
þ 1

; k ¼ 0;�1;

yðtÞ ¼
1 þ 2

ffiffiffiffiffiffiffiffiffiffi
�ko

p

4
expðtÞ þ

1

2
½expð�tÞ � 1� ¼

ffiffiffiffiffiffiffiffiffiffi
�ko

p
sinh tþ sinh2 t

2

� �
; ð25Þ

and

A�1ðkoÞ ¼
1 þ 2

ffiffiffiffiffiffiffiffiffiffi
�ko

p

4
; ð26Þ

Naturally these expressions remain physically meaningful only for k ¼ �1; 0, coinciding

with the results of Section 3.1 in the latter case of flat universe.

Note that all the above solutions are known (see c.f. ½7; 8�), although not always in exactly

the same form. In the proper current theoretical context, the state equation with w ¼ �1=3 is

called the equation of state for strings, while w ¼ �2=3 provides the equation of state for

domain walls (e.g. [9]).

3.5 Closed-form Solutions in Terms of Elliptic Functions

By definition, an elliptic integral is the integral of any rational function of the integration

variable and the square root of a polynomial of this variable whose degree is three or four.

Any elliptic integral can be reduced to a combination of elementary functions and three stan-

dard elliptic integrals (see c.f. [10]).

The form of integrals (13) and (15) determining our cosmological solution and its large-

time asymptotics prompts an arbitrary power change of the integration variable to try

reducing them to elliptic integrals. Such an attempt turns out to be successful for four differ-

ent positive values of parameter n. By the transformation property of Section 5, four recipro-

cal negative values should be added to the list, making a total of eight different exact

solutions in terms of elliptic functions. Since these representations are rather cumbersome

and not very informative, we choose not to give them here explicitly; instead, in Table I

below we show the corresponding values of n and w, and the proper substitution making

the integrals elliptic.

TABLE I Elliptic Function Solutions for n> 0.

n w Substitution

6 5=3 x¼ x1=2

4 1 x¼ x�1=2

1 0 x¼ x�1

2=3 �1=9 x¼ x2

ON COSMOLOGICAL EVOLUTION WITH THE L-TERM 177
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Note that w ¼ 0 describes pressureless matter (‘dust’), and w ¼ 1 corresponds to

Zeldovich’s superstiff fluid [11]. According to (39), the reciprocal negative values of n allow-

ing for the elliptic function solutions are n ¼ �3=2;�4=3;�2=3;�1=2; k ¼ �1.

4 ESTIMATES OF THE SCALE FACTOR AND EXPANSION AMPLITUDE

In the general case, no closed-form solution is available, so it is useful to have at least some

estimates illustrating the behavior of cosmological expansion. Here we derive two groups of

such estimates differing by the parameters involved in them. It is not difficult to check that all

the exact elementary solutions satisfy these estimates, as they must.

4.1 Estimates Independent of the State Equation

Some estimates of the scale factor and the expansion amplitude follow immediately from (9).

Indeed, we have

_yy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�n þ y2 � ko

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � ko

p
for all y � 0 when k ¼ �1; 0, and for y �

ffiffiffiffi
o

p
when k ¼ 1. From here we obtain:

d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � ko

p� �
> 1; y � 0; k ¼ �1; y �

ffiffiffiffi
o

p
; k ¼ 1: ð27Þ

In the case of an open universe we integrate this between zero and an arbitrary moment of

time, which, due to the initial condition (9), results in

y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ o

p
>

ffiffiffiffi
o

p
exp t:

Solving this inequality for y provides a simple lower bound of the open universe expansion at

all times:

yðtÞ ¼ yðt; n;�oÞ >
ffiffiffiffi
o

p
sinh t; t � 0 ðresp., y � 0Þ; k ¼ �1; ð28Þ

Sending t ! 1 and comparing to (12), we find the estimate for the growth amplitude:

Anð�oÞ �
ffiffiffiffi
o

p
=2; k ¼ �1: ð29Þ

In the case of closed universe we integrate inequality (27) up to an arbitrary moment of

time starting with [see (13)]

to � tð
ffiffiffiffi
o

p
; n;oÞ ¼

ð ffiffiffi
o

p

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n þ x2 � o

p ; ð30Þ

with y changing, respectively, from
ffiffiffiffi
o

p
to yðtÞ. Thus we arrive at

y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � o

p
>

ffiffiffiffi
o

p
expðt� toÞ;

solution of this inequality yields the estimate

yðtÞ ¼ yðt; n;oÞ >
ffiffiffiffi
o

p
coshðt� toÞ; t � to ðresp.; y �

ffiffiffiffi
o

p
Þ; k ¼ 1: ð31Þ
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Again, in the limit t ! 1 this inequality combined with (12) allows for the corresponding

estimate of the expansion amplitude:

AnðoÞ �
ffiffiffiffi
o

p

2

� �
expð�toÞ; k ¼ 1; n � 0: ð32Þ

Note that, by (30), to ! 1 when o ! on � 0, hence the estimate (32) does not contradict

the amplitude approaching zero at on. Clearly, all these estimates do not explicitly depend on

n, except the dependence on it of to in the case of a closed universe.

4.2 Estimates Independent of Parameter x

On the physical grounds, one expects that the time in which the expansion reaches a given

value of the scale factor, y, increases from open to flat to closed universe,

tð y; n;�oÞ < tð y; n; 0Þ ½<tð y; n;oÞ; n � 0�;

because of the curvature effect. Formally, this is easily derived from the general solution (13)

by dropping the term ko in the denominator of the integrand there, and choosing the inequa-

lity sign accordingly. Using the exact solution (19) for the flat universe, we thus obtain:

t <
2

nþ 2
ln yðnþ2Þ=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ yðnþ2Þ

ph i
; k ¼ �1; n > �2;

t >
2

nþ 2
ln yðnþ2Þ=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ yðnþ2Þ

ph i
; k ¼ 1; n � 0:

ð33Þ

By inverting these, we get the estimates for the scale factor:

yðtÞ > sinh
nþ 2

2
t

� �� �2=ðnþ2Þ

; k ¼ �1; n > �2;

yðtÞ < sinh
nþ 2

2
t

� �� �2=ðnþ2Þ

; k ¼ 1; n � 0:

ð34Þ

Naturally, the estimates for the growth amplitude implied by (34) are nothing else than (18),

in view of (20).

5 TRANSFORMATION PROPERTY OF COSMOLOGICAL SOLUTIONS

AND EXPANSION AMPLITUDE FOR THE OPEN UNIVERSE

5.1 Derivation of Transformation Property

A family of cosmological solutions describing an open universe turns out to have a useful

transformation property. It relates, in a rather simple algebraic way, a solution with a

given set of parameters n;o to another with different values of these parameters.

To establish this property, let us consider the initial value problem (9) with

k ¼ �1; ko ¼ �o, and introduce a new unknown function z ¼ zðtÞ ¼ zðt; n;�oÞ instead

of y ¼ yðtÞ ¼ yðt; n;�oÞ according to

y ¼ o1=2z2=ðnþ2Þ; _yy ¼
2o1=2

nþ 2
z�n=ðnþ2Þ_zz: ð35Þ

Since nþ 2 > 0, the initial condition for z is the same as for y,

zð0Þ ¼ 0: ð36Þ
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On the other hand, Eq. (9) after substitution (35) becomes

2

nþ 2

� �2

_zz2 ¼ o�ðn=2Þ�1 þ zð4þ2nÞ=ðnþ2Þ þ z�ð�2n=ðnþ2ÞÞ:

Introducing the new time,

~tt ¼
nþ 2

2
t; ð37Þ

and denoting by a prime the derivative, we rewrite the last equation as

ðz0Þ2 ¼ z�ð�2n=ðnþ2ÞÞ þ z2 þ o�ðnþ2Þ=2: ð38Þ

Clearly, the initial value problem (38), (36) coincides with the original problem (9) in

which t is replaced with ~tt; n with �2n=ðnþ 2Þ, and o with o�ðnþ2Þ=2, so that, by the unique-

ness theorem,

z ¼ zð~tt; n;�oÞ ¼ y
ðnþ 2Þt

2
;
�2n
v þ 2

;�o�ðnþ2Þ=2

� �
:

But then, according to (35) and (37)

yðt; n;�oÞ � o1=2 y
ðnþ 2Þt

2
;
�2n
nþ 2

;�o�ðnþ2Þ=2

� �� �2=ðnþ2Þ

; k ¼ �1; ð39Þ

where the identity sign stresses that the equality holds for all moments of time, as well as for

any n > �2 and o > 0. Sending t to infinity provides, by (12), the corresponding transfor-

mation property of the expansion amplitude,

Anð�oÞ � o1=2½A�2n=ðnþ2Þð�o�ðnþ2Þ=2Þ�
2=ðnþ2Þ; k ¼ �1: ð40Þ

In particular, our previous results (23) and (24) for n ¼ 0 satisfy (39) and (40), respectively.

Note also the corresponding transformation of cosmic ages as functions of the scale

factor y,

tð y; n;�oÞ ¼
2o1=2

nþ 2
t

y

o1=2

� �ðnþ2Þ=2

;
�2n
nþ 2

;�o�ðnþ2Þ=2

� �
; ð41Þ

which is easily obtained either by directly inverting (39), or by properly changing the inte-

gration variable in (13).

5.2 Parameter Duality Map

The correspondence of the indices involved in (39),

Mn: n ! �
2n

nþ 2
;

is a one-to-one map of the semiaxis n 2 ð�2;1Þ into itself with the only fixed point n ¼ 0,

so that ð0;1Þ is mapped into ð�2; 0Þ, and vice versa. Therefore in the case of the open uni-

verse it is enough to study cosmological solutions with either positive or negative n, getting

then the results for the opposite sign of this parameter immediately from (39) and (40); we

are intensively using this approach below.

Moreover, it is easy to see that Mn is a duality map, that is, Mn ¼ M
�1
n , or M2

n ¼ I ; I
being the unit map. The whole range of values of n is thus represented as a set of pairs of
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values reciprocal under the map Mn, with n ¼ 0 reciprocal to itself. In particular, one reci-

procal pair is n ¼ 2 (relativistic gas) and n ¼ �1; it is straightforward to see that A2ðkoÞ from

(22) and A�1ðkoÞ from (26) satisfy (40).

Note that for the physical parameter w entering the equation of state, the corresponding

duality relation is

Mw: w ! �
w þ 5=9

w þ 1
; w > �1:

It gives a one-to-one map of the interval ð�1;�1=3Þ into the semiaxis ð�1=3;1Þ and vice

versa; its only fixed point w ¼ �1=3 corresponds to the Einstein quintessence, which once

again separates one group of cases from the other. The reason for that is well known, and it is

seen from the equation for the universal acceleration, which is obtained by the obvious

manipulation with the governing Eqs. (3):

3

a

d2a

dt2
¼ �4pðrþ 3pÞ þ L ¼ �4pð3w þ 1Þrþ L: ð42Þ

Therefore matter with w < �1=3 enhances the accelerating effect of vacuum, while matter

with w > �1=3 diminishes it. It is only the Einstein quintessence, which is thus said to

have no gravitational mass, that does not contribute to the acceleration. So, given the matter

abundance M and k ¼ �1, an expansion with w > �1=3 and certain L can in principle be

related only to some expansion with w < �1=3 and smaller L, as it occurs according

to (39). Of course, the Einstein quintessence solution cannot reciprocate with any other

having a different equation of state.

5.3 Open Universe with x 	 1

As a first example of using the transformation property, let us consider the asymptotic beha-

vior of the expansion amplitude for the open universe ðk ¼ �1Þ when o is large, which is

easily found from (40) and (20). Indeed, in this case o�ðnþ2Þ=2 ! 0, and we have:

Anð�oÞ ¼ o1=2½A�2n=ðnþ2Þð0Þ�
2=ðnþ2Þ

½1 þ oð1Þ� ¼
o1=2

2
½1 þ oð1Þ�: ð43Þ

This result agrees with all the exact solutions (22), (24), and (26), as well as with the

estimate (29).

Thus the main term giving the large-time behavior of the open universe with o 	 1 does

not depend on the equation of state. The corresponding full asymptotic series, which proves

to be converging, is found in Section 7.5; all higher order corrections involved in it do

depend on n, i.e., on the state equation.

6 EXPANSION AMPLITUDE AT x NEAR THE CUTOFF VALUE

As explained in Section 2, cosmological expansion remains infinite, and its growth ampli-

tude is thus well defined, up to o ¼ on for n � 0 and closed universe ðk ¼ 1Þ, which

value forms thus a physical cutoff, in this case. For �2 < n < 0 and open universe the

solution exists for all positive values of ko, so ko ¼ 0 should be also treated as a cutoff.

The expansion amplitude behavior near the cutoff value, which cannot be smooth, is of

interest in both cases.

ON COSMOLOGICAL EVOLUTION WITH THE L-TERM 181



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:1
7 

11
 D

ec
em

be
r 2

00
7 

We first consider n > 0; k ¼ 1, and o near on, that is, on � o ! þ0. In this case the main

contribution to the integral (15) for fnðkoÞ comes from the vicinity of the point x ¼ yn, where

x�n þ x2 � ko � on � oþ ðnþ 2Þðx � ynÞ
2: ð44Þ

Using this approximation it is not difficult to find that

fnðoÞ ¼ �
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p lnðon � oÞ þ Oð1Þ; k ¼ 1; o ! on � 0;

and

AnðoÞ ¼ Anð0ÞKnðon � oÞ1=
ffiffiffiffiffiffi
nþ2

p

½1 þ oð1Þ�; k ¼ 1; o ! on � 0: ð45Þ

Calculation of the value of the constant Kn requires more tedious analysis carried out in

Section 7.4, which provides

Kn ¼ o�1=
ffiffiffiffiffiffi
nþ2

p

n exp
X1
n¼1

CnðnÞ

" #
; ð46Þ

where the coefficients CnðnÞ ¼ Oð1=n2Þ; n ! 1, are given explicitly in (54).

For Einstein quintessence, n ¼ 0, and any curvature, approximation (44) works uniformly

in n � 0 only for the function and its first derivative, but not for the second one. Therefore,

with n formally set to zero, it gives a wrong coefficient at the quadratic term (2 instead of 1).

So for n ¼ 0 the right answer is given not by (44) with n ¼ 0, but by the exact formula (24)

(rederived, by the way, in a different manner in Section 7.3).

Finally, when �2 < n < 0, we should consider the open universe only, k ¼ �1, in which

case we can write, for o ! þ0:

fnðkoÞ ¼
ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n þ x2 þ o

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�n þ x2
p

� �
dx

¼ o�1=2n
ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�n

þ o�ð2þnÞ=nx2
þ 1

p �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�n
þ o�ð2þnÞ=nx2

p
" #

dx ¼ Oðo�1=2nÞ

[recall that �1=2n;�ð2 þ nÞ=n > 0�. So, by (15) and (20),

Anð�oÞ ¼ Anð0Þ½1 þ Oðo�1=2nÞ�; Anð0Þ ¼ 2�2=ðnþ2Þ; o ! þ0; ð47Þ

The exact result (26) for A�1ðkoÞ agrees with this. Note that the remainder term in (47)

shows that at o ! þ0, the derivative of Anð�oÞ diverges as expected. Thus, in fact, the

behavior of the growth amplitude at both cutoffs, o ¼ on; n � 0, and o ¼ 0; n < 0, is simi-

lar, with the only difference that the limit value of the amplitude is zero in the first case and

positive in the second.

7 POWER SERIES IN kx FOR AnðkxÞ AND ITS IMPLICATIONS

7.1 Power Series in kx for n � 0

Repeated differentiation of the equality (16) in ko provides

½ln AnðkoÞ�ðnÞ ¼ �fðnÞ
n ðkoÞ; n ¼ 1; 2; . . . ; f ðnÞðkoÞ �

dnf ðkoÞ
dðkoÞn

: ð48Þ
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Also, repeated differentiation of (17) shows that, for n � 0,

fðnÞ
n ð0Þ ¼

1

2

� �
n

ð1
0

dx

ðx�n þ x2Þ
nþ1=2

; n ¼ 1; 2; . . . ; ð49Þ

where the Pochhammer symbol ðaÞn is defined in a usual way, ðaÞ0 � 1,

ðaÞn � Gðaþ nÞ=GðaÞ ¼ ðaþ n � 1Þðaþ n � 2Þ 
 
 
 ðaþ 1Þa, n ¼ 1; 2; . . . , and GðaÞ is the

Euler gamma-function. [Note that the integral in (49) diverges at the lower limit when

n < 0]. Therefore

ln
AnðkoÞ
Anð0Þ

� �
¼ �

X1
n¼1

fðnÞ
n ð0Þ

n!
ðkoÞn; ð50Þ

and the coefficients of this series are found to be (see Appendix)

fðnÞ
n ð0Þ

n!
¼

1

2
ffiffiffi
p

p
Gð2n=ðnþ 2Þ þ 1Þ Gðnn=ðnþ 2Þ þ ð1=2ÞÞ

n
; n ¼ 1; 2; . . . : ð51Þ

The radius of convergence and other properties of this series are studied below. Since the

radius proves to be non-zero, function AnðkoÞ is regular at ko ¼ 0. That means that, for a

given positive n, the expansion amplitude for the open universe is an analytical continuation

of that for the closed one, and vice versa.

7.2 Case m ¼ 2

The result (22) for n ¼ 2 is easily obtained from the series (50). Indeed, by (51) we have

fðnÞ
2 ð0Þ

n!
¼

1

2
ffiffiffi
p

p
Gððn=2Þ þ 1Þ G ððn=2Þ þ ð1=2ÞÞ

nGðn þ 1Þ
¼

1

2
ffiffiffi
p

p

ffiffiffi
p

p
Gðn þ 1Þ

n2nGðn þ 1Þ
¼

1

n2nþ1
;

where we have used the double argument formula for the gamma-function,

22z�1GðzÞGðz þ 1=2Þ ¼
ffiffiffi
p

p
Gð2zÞ, with z ¼ ðn þ 1Þ=2. Thus

ln
A0ðkoÞ
A0ð0Þ

� �
¼ �

1

2

X1
n¼1

ðko=2Þn

n
¼

1

2
ln

1 � ko
2

� �
;

and, according to (20), it is exactly the formula (24): A2ðkoÞ ¼ 0:5ð2 � koÞ1=2. Note that the

radius of convergence of the series (50) coincides with the cutoff value for this case, 2 ¼ o2.

7.3 Case m ¼ 0

In this case formula (51) gives immediately fðnÞ
n ð0Þ ¼ 1=2n, so

ln
A0ðkoÞ
A0ð0Þ

� �
¼ �

1

2

X1
n¼1

ðkoÞn

n
¼

1

2
lnð1 � koÞ;

that is, by (20), A0ðkoÞ ¼ 0:5ð1 � koÞ1=2, which is exactly the expression (24). Here again

the radius of convergence of series (50) coincides with the cutoff, 1 ¼ o0, hinting that this

should probably be a generic property.
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7.4 General Case m > 0

The general result for n > 0 comes from studying the behavior of the coefficients of the series

(50) with large numbers n. As demonstrated in the Appendix,

fðnÞ
n ð0Þ

n!
¼

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
1

n

1

on

� �n

1 þ O
1

n

� �� �
; n ! 1: ð52Þ

This means that the convergence radius of the series (50) always coincides, as one would now

expect, with the cutoff value on, and allows us to rewrite the series as

ln
AnðkoÞ
Anð0Þ

� �
¼ �

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
X1
n¼1

ðko=onÞ
n

n
þ
X1
n¼1

CnðnÞ
ko
on

� �n

¼
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ln 1 �
ko
on

� �
þ
X1
n¼1

CnðnÞ
ko
on

� �n

; ð53Þ

where, in view of (51) and (52),

CnðnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
1

n
1 �

on
n

2

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p

r
Gð2n=ðnþ 2Þ þ 1Þ G ðnn=ðnþ 2Þ þ ð1=2ÞÞ

n!

" #

¼ O
1

n2

� �
; n ! 1: ð54Þ

Expression (53) is useful for computing AnðkoÞ in the whole range ko � on. Also, for k ¼ 1

it determines completely the asymptotics of the amplitude near the cutoff on, whose main

term is given above in (45), (46).

7.5 Series in Inverse Powers of x for �2 < m < 0; k ¼ �1

To obtain some series for AnðkoÞ with negative n (and thus k ¼ �1), we combine the above

result (53) with the amplitude transformation property (40). Writing for brevity

m ¼ �2n=ðnþ 2Þ, the latter provides

ln Anð�oÞ ¼ ln o1=2 þ
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ln Amð�o�n=ðnþ2ÞÞ ¼ ln
o1=2

2
þ

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ln
Amð�o�n=ðnþ2ÞÞ

Amð0Þ

� �
;

where we used the value of Amð0Þ from (20). Since, by definition, m > 0, we can now replace

the last term by its series expansion (53) provided that o�n=ðnþ2Þ < om, or

o > �
nþ 2

n
�
n
2

� �2=ðnþ2Þ

ð55Þ

[recall ðnþ 2Þ; ð�nÞ > 0]. Under this condition we thus obtain the desired series for

�2 < n < 0; k ¼ �1 in the form [the series coefficients are given in (54)]:

ln Anð�oÞ ¼ ln
o1=2

2
þ

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p ln½1 þ knðoÞ� þ
X1
n¼1

CnðmÞ½knðoÞ�n;

m ¼ �
2n

nþ 2
; 0 < knðoÞ �

�n=2

½�no=ðnþ 2Þ�ðnþ2Þ=2
< 1: ð56Þ
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This series converges if condition (55) holds, and also provides the asymptotic formula

Anð�oÞ ¼
o1=2

2
½1 þ Oðo�ðnþ2Þ=2Þ�; o ! 1; �2 < n < 0; k ¼ �1; ð57Þ

which sharpens expression (43) by giving the exact order of the remainder.

It is worthwhile to note that similar power series representations can be obtained also for

the cosmological solution (13), tð y; n; koÞ. However, the y-dependent coefficients of these

series are no longer expressed via G-functions, but, instead, through the hypergeometric

functions.

8 DISCUSSION

8.1 Cosmological Applications

We have determined various significant properties of the cosmological solution, particularly,

those of the expansion amplitude, and provided different expressions for the latter. The plots

of AnðkoÞ as a function of ko for several ‘popular’ values of the parameter n, including posi-

tive, zero, and negative ones, are given in Figures 2, 3.

An interesting question is what information on the universe can be gotten if the value of

the expansion amplitude, say, A�, is known? Even if no other information is available,

but A� > 1, from (20) and the monotonicity of the amplitude established in Section 2, one

FIGURE 2 AnðkoÞ for nonnegative n: 0 – n ¼ 0; 1 – n ¼ 1; 2 – n ¼ 2, AS – lower bound 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�koÞ

p
.
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immediately concludes that the universe is open, since AnðkoÞ < 1 for k ¼ 1 (and, of course,

n � 0). If, on the other hand, 0 < A� < 1, but the equation of state, i.e., parameter n, is more

or less known, then equation

AnðkoÞ ¼ A�

provides, again due to the monotonic property, a unique solution for ko, which gives the sign

of the curvature, and a relation between M and L [see (8)].

One way of inferring the amplitude from observational data is as follows. Formula (4) for

the density combined with (7) reduces to 8pr ¼ L=ynþ2, therefore

OM

OL
¼

8pr
L

¼
1

ynþ2
;

so that

y ¼
OL

OM

� �1=ðnþ2Þ

ð58Þ

This equality holds at all moments of time. If, however, the expansion is in the asymptotic

regime, (58) and (12) allow for

AnðkoÞ �
OL

OM

� �1=ðnþ2Þ

expð�tÞ; yðtÞ 	 1: ð59Þ

FIGURE 3 AnðkoÞ for negative n: 1 – n ¼ �1=2; 2 – n ¼ �1; 3 – n ¼ �3=2, AS – lower bound 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�koÞ

p
.
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So, if the matter equation of state, the ratio OL=OM , and the properly scaled [see (7)] cosmic

age are known, the expansion amplitude is known as well, if the asymptotic stage of the

expansion is reached. By (58), the latter requires

OL

OM

� �1=ðnþ2Þ

	 1; ð60Þ

which, for n not much smaller than negative unity, means just OL=OM 	 1. But in case the

dominant form of matter in the universe is quintessence with the equation of state close to the

vacuum one, condition (60) might hold, and the expansion be in the asymptotic regime,

despite the fact that OL=OM > 1 is still of the order of unity.

For any moment of the expansion the estimates for the age of the universe come from com-

bining expression (58) for the scale factor via observables with ‘geometrical’ inequalities (33):

t < tFlðOL=OM ; nÞ; k ¼ �1; t > tFlðOL=OM ; nÞ; k ¼ 1: ð61Þ

Here

tFlðOL=OM ; nÞ �
2

nþ 2
ln

OL

OM

� �1=2

þ 1 þ
OL

OM

� �1=2
" #

ð62Þ

is the exact age of the flat universe with the same parameters. If n;OL=OM , and the cosmic

age are known accurately enough, its comparison with the bound (62) allows for an

immediate determination of the curvature of the universe. If, instead, only the last two

parameters and the sign of the curvature are known, the state equation parameter can be

estimated.

We now apply the above results to the currently favored cosmological model. It includes

baryonic and dark matter, both with the same equation of state w ¼ 0 and total

OM ¼ 0:3 � 0:1, and vacuum with OL ¼ 0:7 � 0:1. The third component is relativistic

particles ðw ¼ 1=3Þ, but its abundance OR < 0:001 is so small compared to the first two

that it should be neglected. This results in exactly the studied model with n ¼ 1 and

OL=OM ¼ 1:5–4. Thus

OL

OM

� �1=ðnþ2Þ

¼
OL

OM

� �1=3

¼ 1:1–1:6 � 1; ð63Þ

so, by (58), we are still rather far from the large time regime.

According to (62) and (63), for our universe

tFl ¼ 0:7–1:0: ð64Þ

The dimensional time is related to t by [see (7)]

T ¼ t

ffiffiffiffiffiffiffi
3

GL

r
¼ tð0:7–0:8Þ � 1018sec ¼ tð22:2–25:4Þ Gyr; ð65Þ

with

L ¼ 8prV ¼ 8pð0:7 � 0:1Þrc ¼ ð1:0–1:6Þ � 10�28 g=cm3

based on

rc ¼ ð0:7 � 0:08Þ � 10�29 g=cm3;
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which corresponds to the range of the Hubble constant H ¼ 70 � 10 km=sec 
 Mpc. By

virtue of (64) and (65), for our universe

TFl ¼ tFlð22:2–25:4Þ Gyr ¼ ð15:5–25:4Þ Gyr; ð66Þ

that is, its age in case the universe is flat. Globular cluster data independently give the lower

bound of the cosmic age as

Tu � ð12–16Þ Gyr: ð67Þ

According to these data, our universe is open if Tu ¼ ð12–15:5 � 0Þ Gyr, it could be either

open or closed if Tu ¼ ð15:5–25:4Þ Gyr, and only closed if Tu > 25:4 Gyr, which is rather

improbable. Therefore one can conclude that our universe most probably is open.

Under this assumption we can now obtain a lower bound of the cosmic age, to check the

consistency of our estimates. Indeed, using (28), we obtain an estimate of the parameter o for

our universe as

o <
y2

sinh2 tu

¼
ðOL=OM Þ

2=3

sinh2 tu

< 2:7 � oest: ð68Þ

This and the basic expression (13) for the solution immediately produce

t >
ððOL=OM Þ

1=3

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�1 þ x2 þ oest

p >

ð1:1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�1 þ x2 þ 2:7

p � 0:45;

or, by (65),
Tu > ð10:0–11:4Þ Gyr;

in a nice agreement with (67).

Finally, to check the consistency of the current cosmological data, we can convert the estimate

(61) for an open universe into an upper bound for the state equation parameter n, namely:

n < 2 t�1
u ln

OL

OM

� �1=2

þ 1 þ
OL

OM

� �1=2
" #

� 1

( )
: ð69Þ

By (67) taken as the real range of the cosmic age, (65) and (63), for our universe this provides

n < 0:5–10:

This is almost entirely consistent with the chosen n ¼ 1 ( pressureless dust), except for a

small range of parameters, when the ratio OL is close to its minimum observed value 0.6

and simultaneously the cosmic age is close to its maximum of 16 Gyr.

8.2 Some Generalizations

In conclusion, we point out two possible generalizations of the present study. The first of

them deals with the phase transition, that is, with a sudden change of the equation of

state, when the value of w changes abruptly at some moment of time. This case, as well

as the one with a whole sequence of phase transitions, can be investigated in a fashion similar

to the above.

The second way to generalize the study is to consider multicomponent matter, when

r ¼
XN

n¼1

rn; p ¼
XN

n¼1

pn; pn ¼ wnrn; wn > �1; n ¼ 1; 2; . . . ;N > 1;
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and the components do not interact. That means that the conservation equation in (3) holds

for every component separately, yielding rn ¼ Mn=a3ðwnþ1Þ;Mn ¼ const > 0, and thus the

analog of the governing problem (9) becomes

_yy2 ¼ y�n1 þ y2 � koþ
XN

n¼2

mny�nn ; yð0Þ ¼ 0;

with y, t and o normalized as in (7), (8) using o1 and M1; nn ¼ 3wn þ 1, and mn > 0

being the abundance of the nth component normalized appropriately. Writing

yðt; n1; n1; . . . ; nN ; koÞ for the solution, we have

yðt; n1; n1; . . . ; nN ; koÞ > yðt; nj; koÞ

for any pertinent j; generally, adding every new component enhances the expansion.

Assuming n1 is the smallest of all the powers, we see that at very large times the expansion

is described by the one-component Eq. (9) with n ¼ n1; however, the growth amplitude

depends essentially on the whole expansion history, in other words, on all the equations

of state.

As for the other results, all the estimates of Section 4 remain true, including inequalities

(33) for the ages of open, flat, and closed universe (of course, the expression for tFl depends

now on all the parameters involved). The properly generalized transformation property (39)

for the open universe solutions also holds; in fact, the number of such independent transfor-

mations is equal to the number of matter components, N.
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APPENDIX: ANALYSIS OF POWER SERIES OF AmðkxÞ

First we derive expression (50) for the derivatives fðnÞ
n ð0Þ. By (49), for n ¼ 1; 2; . . . we have:

ffiffiffi
p

p

Gðn þ 1=2Þ
fðnÞ
n ð0Þ ¼

ð1
0

xnð2nþ1Þ=2 dx

ð1 þ xnþ2Þ
nþ1=2

¼
1

nþ 2

ð1
0

sððnð2nþ1Þþ2Þ=2ðnþ2ÞÞ�1 ds

ð1 þ sÞnþ1=2
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The last integral is one of the known representations of the beta-function Bðx; yÞ with the

arguments

x ¼
nð2n þ 1Þ þ 2

2ðnþ 2Þ
¼

nn

nþ 2
þ

1

2
; y ¼ n þ

1

2
� x ¼

2n

nþ 2
;

which is easily verified by means of the substitution s ¼ t=ð1 � tÞ. Therefore

ffiffiffi
p

p

Gðn þ ð1=2ÞÞ
fðnÞ
n ð0Þ ¼

1

nþ 2
B

nn

nþ 2
þ

1

2
;

2n

nþ 2

� �

¼
1

2n

2n

nþ 2

Gðnn=ðnþ 2Þ þ ð1=2ÞÞ Gð2n=ðnþ 2ÞÞ

Gðn þ 1=2Þ

¼
1

2n

Gðnn=ðnþ 2Þ þ ð1=2ÞÞ Gð2n=ðnþ 2Þ þ 1Þ

Gðn þ ð1=2ÞÞ
;

and this is, in fact, expression (50).

We now prove the asymptotic formula (52) for the coefficients of the series (50) in the gen-

eral case. To do that, we use the large argument asymptotics of the gamma-function,

GðzÞ ¼
ffiffiffiffiffiffi
2p

p
exp z �

1

2

� �
ln z � z

� �
1 þ O

1

z

� �� �
; z ! þ1;

and convenient notations

u ¼
2

nþ 2
; v ¼

n
nþ 2

; u þ v ¼ 1:

We thus write:

fðnÞ
n ð0Þ

n!
¼

1

2
ffiffiffi
p

p
n

Gðun þ 1Þ Gðvn þ ð1=2ÞÞ

Gðn þ 1Þ
; ðA.1Þ

and then

Gðun þ 1Þ G ðvn þ ð1=2ÞÞ

Gðn þ 1Þ
¼

ffiffiffiffiffiffi
2p

p
expðQnÞ 1 þ O

1

n

� �� �
n ! þ1; ðA.2Þ

where

Qn ¼ un þ
1

2

� �
lnðun þ 1Þ � ðun þ 1Þ þ ðvnÞ lnðvn þ 1Þ

� vn þ
1

2

� �
� n þ

1

2

� �
lnðn þ 1Þ þ ðn þ 1Þ

¼ un þ
1

2

� �
lnðunÞ þ ðvnÞ lnðvnÞ � n þ

1

2

� �
ln n þ O

1

n

� �

¼ n lnðuuvvÞ þ
1

2

� �
ln u þ O

1

n

� �
:
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Introducing this into (A.2), and the resulting equality into (A.1), we end up with

fðnÞ
n ð0Þ

n!
¼

1

2
ffiffiffi
p

p
n

ffiffiffiffiffiffiffiffi
2pu

p
ðuuvvÞ

n 1 þ O
1

n

� �� �
¼

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
ðuuvvÞ

n

n
1 þ O

1

n

� �� �
; n ! þ1:

ðA.3Þ

It remains only to notice that

uuvv ¼
2

nþ 2

� �2=ðnþ2Þ n
nþ 2

� �n=ðnþ2Þ

¼
22=ðnþ2Þnn=ðnþ2Þ

nþ 2
¼

2

n

� �2=ðnþ2Þ n
nþ 2

¼
1

on
;

in order to see that (A.3) is identical to (52).
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