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We present a new model of large-scale multilayer convection in solar type stars. This model allows us to understand
such self-similar structures observed at solar surface as granulation, supergranulation and giant cells. We study the
slow-rotated hydrogen star without magnetic field with the spherically-symmetric convective zone. The photon’s flux
comes to the convective zone from the central thermonuclear zone of the star. The interaction of these photons with
the fully ionized hydrogen plasma with T>105 K is carried out by the Tomson scattering of photon flux on protons
and electrons. Under these conditions plasma is optically thick relative to the Tomson scattering. This fact is the
fundamental one for the multilayer convection formation. We find the stationary solution of the convective zone
structure. This solution describes the convective layers responsible to the formation of the structures on the star’s
surface.

Keywords: Large-scale convection; Tomson scattering; Solar atmosphere structures

1 INTRODUCTION

The systematic extreme ultraviolet and X-ray emission observations from Skylab station,

Yohkoh, SoHO and Trace satellites give us the very interesting images of solar corona.

After the previous images modifications (the partial gain of some interesting details) we

can see large-scale corona structures around the solar disk and these structures are not asso-

ciated with active regions (Priest et al., 1990; Chertoc, 2002). The structures are similar to

standard coronal loops that connected separate active regions together (Beck, 1998), but

their ‘‘foots’’ lean on the photosphere out of active regions. These regular structures cover

the whole solar disk as the more large-scale chromospheric network. The lifetime of such

loops is about a week for relatively small loops with length approximately equal to

2 � 104 km and with plasma concentration approximately equal to 1015 m�3 but for the

most great loops with length approximately equal to 3 � 105 km and with plasma concentra-

tion approximately 2 � 1014 m�3 the lifetime is about some months. These large-scale struc-

tures (chains, loops) are observed for some years. We see that all the observed loop systems

associated with quiet Sun permanently exist as a regular part of solar corona. It is necessary

to note that photosphere and chromosphere have regular structures such as grains, super-

grains and giant grains. The giant grains are discovered by the helioseismology’s methods
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(Beck, 1998). These giant grains have the regular structure, their sizes are about 3 � 105 km

with regular plasma speeds of 100 m=s. It’s well known that granulation, chromospheric net-

work, supergranulation and giant loops is the consequence of under-photosphere convective

zone existence. The solar-like stars photospheres have the similar structures as Sun has:

grains and supergrains.

In this paper we present the simple model of the hydrogen star convection zone.

The necessary condition of free convection (rises in plasma layers with thickness of only

some times smaller then solar radius) is the Schwarzschild criterion – the specific entropy of

plasma decreases with moving away from the star center. Such convection will develop when

the temperature inside of small convective volume (convective cell) decreases slower than the

temperature decreases in neighboring plasma (Rudiger, 1989).

We use the Schwarzschild criterion later in our paper.

If solar convection is laminar so such processes as granulation, chromosphere network and

supergranulation may exist in the convective layers of different thickness. Therefore solar

convective zone consists of the three layers at least.

Under large-scale laminar convection conditions the small-scale turbulent convection

appears owing to development of different plasma instabilities. The ejections of matter at

granulation and supergranulation scales are connected more than likely with instabilities

dynamics. The lifetime of these ejections is small and they can’t change the regular structure

of quiet Sun but these ejections outline this structure by effective way.

In this paper we propose the laminar convection model. In this model all the structures –

granulation, chromosphere network, supergranulation and regular large-scale coronal structure –

are examined as result of laminar convection action. We suppose that these structures are the

different realizations of solution spectrum.

Let’s consider the main assumptions of this model: The convective zone is the layer with

the spherically symmetry distribution of plasma around the radiative transfer energy zone. In

this layer the condition of real hydrostatic equilibrium is carried out.

In this paper we consider a case when the layer under study consists of the ionized

hydrogen plasma only (protons and electrons). This consideration may not be applied for

the Sun atmosphere conditions but it significantly simplifies the mathematical description

of convection and allow us understand the mechanism of convection zone structures forma-

tion. In our model this layer is open system through which the energy flux moves upwards.

So let’s consider that the plasma conditions can be described as polytropic equation:

N

N0

¼
T

T0

� �n

; ð1Þ

where n is the polytropic index, N and T are the plasma concentration and temperature. These

values are N0 � 5 � 1027 m�3 and T0 � 2 � 106 K at the bottom border of the layer. The layer

thickness (the convective zone depth) is approximately 0:3R�, where R� is the solar radius.

The energy emission come to convective zone, the temperature Tr � T0 near the bottom border

of the convective zone. This flux is the reason of the development of laminar convection.

The emission and ionized plasma interaction is carried out by photon scattering on elec-

trons and protons in case where the photon energy don’t exceed the value kT. The time of

energy transmission from photons to plasma don’t excess the value (Kaplan and

Tsytovich, 1973):

t0 ¼
3mpc

8sT er
; ð2Þ

28 I. K. ROZGACHEVA AND E. A. BRUEVICH
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if kTr � mpc
2, where k is the Boltzmann’s constant, sT is the Tomson probability section of

scattering, mp is the proton mass, er ¼ ð4sB=cÞT4
r , sB is the Stephan–Boltzmann constant. If

Tr ¼ T0 then t0 � 0:1 s.

The distance of free run for photons is equal to D � ðsTN Þ
�1. If N ¼ N0 then D � 3 m.

In D3 volume plasma and emission are in thermodynamic equilibrium almost because of

the radiation is connected with matter.

The thermal conductivity mechanism is made available by the next processes in our case.

The plasma (heated by radiation in value D3) loses the energy by bremsstrahlung. The speed

of these losses is eep ¼ 1:6 � 10�40N2
ffiffiffiffi
T

p
J m�3 s�1. The characteristic time of this process is

equal to (Kaplan and Tsytovich, 1973): t2 ¼ 2:6 � 1017
ffiffiffiffi
T

p
N�1 s. If N ¼ N0, T ¼ T0 we

derive t2 � 10�6 s. At the other hand the bremsstrahlung heats up the electrons in the vicinity

of the volume D3. The time taken for this process

t1 ¼
3mec

8sTE
; ð3Þ

where E ¼ 3=2NkTme=mp is the electron energy density. If T� � T � T0 and N� � N � N0,

N� ¼ 2:5 � 1026 m�3 we find 20 s<t1<160 s.

The characteristic rate of thermal conductivity is equal to Vw ¼ D=t1. So the thermal con-

ductivity coefficient for the process described (for the same order of magnitude) is equal to:

w ¼ Vwl ¼
lD
t1

; ð4Þ

where l is the thickness of the shell warmed up.

The convectional energy transfer is carried out thanks to macroscopic transports of the

value D3. The temperature inside the volume D3 is higher than the plasma temperature in

the layers which are situated higher than the bottom border of the convective zone, see

Section 1. Thus the Archimedean raising force acts on this value and gives him the accelera-

tion g � DT=T , where g is the free fall acceleration on the bottom border of the convective

zone, DT ¼ T0 � T , T<T0.

The flotation process is retarded by viscosity. In our case the viscosity is the consequence

of the Tomson scattering. The value D3 is full of plasma and radiation. When this value

moves the radiation is scattered by electrons of neighboring plasma. Thanks to the scattering

the equalization of electron momentum takes place inside the volume D3 and outside of one.

This viscosity they called radiation viscosity. It is characterized by the viscosity coefficient

n ¼
1

3

c

sTN
: ð5Þ

If N ¼ N0 then n � 6 � 109 m2=s. This value is similar to the value estimation taken from

the analysis of observations. The floating is ended when the raising force is in equilibrium

with viscosity forces. The characteristic time of convective floating is equal to

t2 ¼
n

glðDT=T Þ
;

where l is correspond to characteristic scale of the convective layer (the mixing length). If

l � 2 � 108 m, T ¼ T0 and DT=T � 1, g ¼ 2g�, where g� � 274 m=s2 is the gravity

force acceleration on the solar surface then we have t2 � 0:05 s. So at the bottom border

MODEL OF LAMINAR CONVECTION IN SOLAR TYPE STARS 29
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of the convective zone the relation t1>t2 takes place. In this case the convective transfer is

more effective than the heat conduction.

Near the top border of the convective zone N ¼ 4 � 1022 m�3 and D� ¼

ðsTN Þ
�1

� 103 km. In this case we can ignore the Tomson effect. The radiation of plasma

propagates free up to solar photosphere.

In Section 2, we give the solutions of stationary convective zone structures in the hydro-

dynamics approximation with the heat conduction (4) and viscous (5) coefficients.

These solutions have the solitary wave structure and describe the model of multi-layer con-

vection. All the convective cells have the torus contour.

2 THE EQUATIONS OF THE STATIONARY CONVECTIVE ZONE STRUCTURE

The set of simultaneous equations for the spherically symmetric stationary convective zone

which rotates about z axis (because the hydrodynamics approximation is correct) have

the form:

ð~vv;HÞ~vv ¼
Hðpþ prÞ

r
þ ~gg þ n � H~vv� 2½~vv; ~oo	 ð6Þ

is the motion equation, where ~oo is the angular velocity of convective zone rotation, r is the

plasma density, p is the plasma pressure, pr is the pressure of radiation.

ð~vv;HÞT ¼ w � DT ð7Þ

is the heat conduction equation,

Hðpþ prÞ þ r~gg ¼ 0 ð8Þ

is the hydrostatics equilibrium equation,

dpr

dr
¼ �

sTN
c

1

4pr2
L ð9Þ

is the radiation transfer equation outside of the volume D3,

dL

dr
¼ 4pr2eep ð10Þ

is the bremsstrahlung of plasma equation inside the volume D3,

dM ¼ 4pr2r � dr ð11Þ

is the mass conservation equation.

In the Eq. (8) we don’t take the density of radiation rr because of rr � r in solar-like

stars.

The set of simultaneous equations (8)–(10) have been used by A. S. Eddington in 1926

(Eddington, 1926).

30 I. K. ROZGACHEVA AND E. A. BRUEVICH
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Let p ¼ NkT , N ¼ N ðrÞ, T ¼ T ðrÞ and state of plasma is described by the polytropic

equation (1). Let’s take the variable x ¼ r=z, where

z ¼
kT0

4pGmpr0

� �1=2

� 13 � 105 km>R�:

Then function t ¼ T=T0 with Eqs. (8)–(11) can be transformed to the following equation

ðnþ 1Þ
1

x2
ðx2txÞx ¼ �tn þ at2nþð1=2Þ; ð12Þ

where index x means the differentiation with respect to x and

a ¼
sT eepðN0; T0Þ

4pGmpr0

� 1017:

Let velocity vector ~vv has the fV ;W ; Zg components in spherical coordinate system. The

vector of angular velocity ~oo has the following components: fo cos y;�o sin y; 0; 0g.

Let y � 1. From the equations of the structure

ð~vv;HÞ~vv ¼ n � D~vv� 2½~vv; ~oo	

ð~vv;HÞT ¼ w � DT ; ð13Þ

one can find the equation for V ðxÞ and tðxÞ:

VVx ¼
n
z
�

1

x2
� ðx2VxÞx

Vtx ¼
w
z
�

1

x2
� ðx2txÞx: ð14Þ

The Eqs. (12) and (14) are simplified when we assume that the component of velocity V is

decreased with the depth. This condition is in agreement with solar observations: the plasma

spread out velocity in the photosphere decreases with the scale increasing from grains to

giant grains.

We choose the solution in the next form:

V ¼
s
z
n; ð15Þ

where s is the free parameter.

This permits us to simplify Eq. (14) and transform it to the following:

ðnþ 1Þbtx ¼ �t2nþ1ð1 � atnþ1=2Þ; ð16Þ

where b ¼ 7:5s ¼ ðn0=w0Þs. The Eq. (16) has different solutions for the different values of n.

Let’s choose the value n (use the Schwarzschild criterion). According to this criterion the

temperature inside the small element D3 has to decrease with increasing of the distance

from the star center slower then decreasing of plasma temperature occurs. The plasma is

in the hydrostatic equilibrium and the radiation is absent.

MODEL OF LAMINAR CONVECTION IN SOLAR TYPE STARS 31
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Substitute pr ¼ 0, p ¼ NkT and r ¼ mp � N to (8).

Using the polytropic equation (1), we find the relative change of the plasma temperature

(radiation doesn’t take into account)

Tx

T

����
����
0

¼
mpgz

ðnþ 1ÞkT0

t�1:

In the volume D3 the temperature changes according to (16). Also let’s take into account

a 
 1 and t � 1. Then atnþ1=2 
 1 and relative change of the temperature inside the volume

D3 is approximately equal to:

Tx

T

����
���� � a

ðnþ 1Þb
t3nþ1=2:

In our case of the evolution of the convective instability jTx=T j0>jTx=T j the number b is

evaluated as: b>ða=233Þt3nþ3=2. In this case we have tn 
 ða
ffiffiffiffi
T

p
Þ
�1. Therefore

b>ð223a2Þ
�1.

At the other hand one can integrate the Eq. (16) because of ignoring the first member of

the right part of the equation.

Thus we obtain the next algebraic equation:

t�3n�1=2 � 1 ¼
a
b

3nþ 1=2

nþ 1
ðx� x0Þ:

Using this equation and the consideration that tn 
 ða
ffiffiffiffi
T

p
Þ
�1 we find that b<

ðð3nþ 1=2Þ=ðnþ 1ÞÞððx� x0Þ=a2tÞ. The value of polytropic index n (1) is necessary to

choose as to make up the next inequality:

1

223a2
<b<

3nþ 1=2

nþ 1

x� x0

a2t
: ð17Þ

For the solar-like star we have 1=303 � t � 1 and 10�4 � x� x0 � 2=57. In this case the

inequality (17) is realized for all n having the positive values. Let’s choose n ¼ 3=2. Then

the accurate solution of the Eq. (16) for tðxÞ one can find from the next algebraic equation:

2

5b
ðx� x0Þ ¼

1

3
1 �

1

t3

� �
þ a 1 �

1

t

� �
�
a3=2

2
ln
a1=2 þ 1

a1=2 � 1
� ln

a1=2tþ 1

a1=2t� 1

� �
: ð18Þ

We have taken into account that tðx0Þ ¼ 1 here.

The solution for tðxÞ has the solitary wave form. It’s clear from the form of the Eq. (16).

If a1=2t 
 1 we have the asymptotic solution

T0

T

� �5

�
2a
bz

ðr � r0Þ: ð19Þ

For x ! x0 one can find that

t � e�ð2=3abÞðx�x0Þ ! 1:

32 I. K. ROZGACHEVA AND E. A. BRUEVICH
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At last we can find the expression for the speed components W and Z. Then we examine

the most simple case of the symmetric spreading out on the sphere surface when W ¼ Z.

Let’s consider also that the angular velocity o we can take from the equation

V
qW
qx

þ 2W � o � cos y ¼
n

z2
�

1

x2
�
q
qx

x2 qW
qx

� �
: ð20Þ

As follows from the Eq. (20) the convective zone rotates differently. Thanks to the convection

the redistribution of the rotatory moment inside the star takes place. This effect is accurately

studied in (Rudiger, 1989).

Under conditions selected in our paper we can find the equation for W from the first equa-

tion of the set of simultaneous equation (14). His form becomes simple enough

dW 2

dl
¼

n

z2
�
1

x
�
dW 2

dl2
; ð21Þ

if we change the y and f angular variables to l variable and dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy2

þ sin2 y dj2
p

. Among

the multiple numbers of solutions of the Eq. (21) there is periodic solution. This periodic

solution has the next form:

W ¼ W0 � tg W0

z2

n
� x � ðl � l0Þ

� �
; ð22Þ

where W0 is the speed peak value W, the point l0 is situated at the radius x and is the start

reading for l coordinate. On the surface of sphere with radius x� plasma spreads out from

l0 point. So our model is symmetric there are many points l0;i on the surface of the sphere

of radius x�. The distance between the neighboring points is equal to 2x ¼

x0ðl0;i � l0;i�1Þ ¼ x� � Dl ¼ pn=W0z
2. Between these points there are two opposing plasma

streams with velocities of opposite direction. These streams compensate each other at the

distance x from each point.

So all the surface of the radius x� breaks-down to the cells with diameters which are equal

to x. All the number of these cells L we can calculate when we the surface square px2
� divide

by the cell square pðx=2Þ2 : L ¼ 4 � ðx�=xÞ
2. Then the velocity amplitude is equal to

W0 ¼ pn=2x2x�
ffiffiffi
L

p
. The kinetic energy density e is proportional to W 2

0 . So the convective

streams have the spectral energy distribution e � L � e�2. The solutions of the convective

zone structures (21) and (22) describes the stationary convection when all zone of the con-

vective energy transfer consists of the layers with the different thickness. Every convective

cell have the torus form. These solutions of this important problem are made for the first

time. From the Eq. (19) follows the next conclusion: the convective zone differently rotates.

Thanks to the convection the rotation moment redistribution inside the star is taken place.

This effect is studied in detail in (Rudiger, 1989).

3 SUMMARY AND CONCLUSIONS

This model qualitatively describes the deep convective layers of the star under the super-

grains layer. In case of the star’s convective transfer it’s important that plasma at these layers

is the fully ionized. We don’t study star’s plasma at the highest convective under-photospheric

layer where the turbulent processes are possible. In this turbulent layer there are necessary

MODEL OF LAMINAR CONVECTION IN SOLAR TYPE STARS 33
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conditions for the generation of the long-scale magnetic field of the star. At the layers under

this turbulent under-photospheric layer the convection is the stationary convection.

Let’s use the asymptotic solution (19) for the convective zone analysis. We have the con-

vective zone consists of some layers with thickness of li, i ¼ 0; 1; 2; . . .. The temperature on

FIGURE 1 The convective zone structure.

34 I. K. ROZGACHEVA AND E. A. BRUEVICH
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the lower part of the layer’s border is equal to Ti, on the top part is Ti� . If we take the depen-

dence of parameters from (15) and (19) on T0 into account so we can find the relation

between the velocity and temperature at the bottom and top borders of the neighboring layers:

Vi�1

Vi

¼
li�1

li

� �2
Ti

Ti�1

� �3=2
Ti�1�

Ti�

� �5

: ð23Þ

For the qualitative estimation let’s substitute the characteristics of the convective layers

associated with giant cells and supergrains into (23):

V0 ¼ 10 m=s; T0 � 2 � 106 K; l0 � 3 � 105 km

V1 ¼ 100 m=s; T1 � 106 K; l1 � 3 � 104 km:

In this case we obtain that T0� � 0:47T1� and the temperature on the top border of the layer l0

is smaller than the temperature on the top border of the layer l1<l0. So we can see that l1

torus are situated into l0 torus.

This qualitative analysis of the formulae (23) allows us to make the conclusion about rela-

tively disposed convective layers in the hydrogen star. The layers are put one into another as

we can see at the Figure 1.
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