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The IAU (1976) luni-solar precession constant was derived by Fricke from intensive study of the catalog of 512
FK4–FK4=Sup distant stars. At present, when the data from the catalog HIPPARCOS is available, it is helpful to
reconsider Fricke’s analysis. This paper presents a redetermination of precession based on the following new
factors: (a) the accurate parallaxes of stars have been taken into account; (b) galactic rotation and other
kinematics have been eliminated from the proper motions of 512 stars; (c) the systems of the FK5 and improved
GC catalog were used in combination with the HIPPARCOS catalog; (d) a new method (the MOTOR) of
studying stellar kinematics was used. This method is based on the decomposition of proper motions on a set of
orthogonal functions. The MOTOR, in contrast to the commonly used Least Squares Procedure, provides a test
for whether or not the model is compatible with the data.

Derived corrections to the IAU (1976) luni-solar precession constant are consistent with the results from VLBI
observations and kinematic study of modern catalogues of proper motions.

Keywords: Luni-solar precession; HIPPARCOS; MOTOR method

1 INTRODUCTION

Newcomb’s value of the luni-solar precession constant

p ¼ 5024:6400=cy; 1900:0

was revised by W. Fricke (1977). From the kinematic analysis of the 512 FK4=FK4 Sup stars

(combined solution mcos d and m0 in the system of the FK4) he found:

Dn ¼ 0:44 � 0:0600=cy;

Dk ¼ �0:19 � 0:0900=cy;
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where Dn and Dk are corrections of the precessional constant in DEC, and R.A. respectively.

These values yield:

Dp ¼ 1:10 � 0:1500=cy;

DE ¼ 1:20 � 0:1600=cy;

where Dp is the correction to the luni-solar precession in longitude and DE ¼ Dlþ De;Dl is

the correction to the planetary precession and De is the rate of the fictitious equinox motion.

The IAU (1976) value of general luni-solar precession in longitude

p ¼ 5029:096600=cy; J2000:0

is based on Fricke’s analysis.

Working with the VLBI technique is expected to improve precession further. The first pro-

visional results (McCarthy et al., 1983) say that Fricke over-corrected Newcomb’s precession

and the IAU (1976) precession must be reduced by the value 0:300=cy.

This paper gives evidence that the same result also follows from the catalog of 512 stars

(henceforth F512) provided that the data from the HIPPARCOS catalog is added to the

ground based proper motions.

2 STATISTICS OF THE CATALOG F512

This catalog contains positions and proper motions mcos d and m0 in the systems of catalog

GC, N30, FK3, and FK4. In addition, the catalog lists the visual magnitudes, spectral

types, color indexes B–V , radial velocities and estimates of distances based on spectral clas-

sification and photometric data. This distribution of 512 stars over the celestial sphere is

shown in Figure 1. From Figure 2 we see that the majority of stars belong to B and A spectral

types, and that almost all stars are located in the interval 100 < r < 300 pc.

FIGURE 1 Distribution of 512 stars over the celestial sphere.

2 V. V. VITYAZEV
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3 FROM PARALLAX FACTORS TO PARALLAXES

The equations of condition used by Fricke are based on the Oort–Lindblad model of galactic

rotation:

m cos d ¼ f ðX sin a� Y cos aÞ � o1 sin d cos a� o2 sin a sin d

þ o3 cos dþ Pðcos 2l cos b cosjþ 0:5 sin 2l sin 2b sinjÞ; ð1Þ

m0 ¼ f ðX sin d cos aþ Y sin d sin a� Z cos dÞ þ o1 sin a� o2 cos a

þ Pðcos 2l cos b sinj� 0:5 sin 2l sin 2b cosjÞ: ð2Þ

Here X, Y and Z are the equatorial Solar motion components; f is the parallax factor;

o1;o2;o3 are the components of an angular velocity vector of the stars under consideration;

l, b are the galactic coordinates of stars; j is the parallactic angle at l, b; P ¼ A=47:4 and

Q ¼ B=47:4, where A and B are the Oort’s constants.

The separate or combined solutions of Eqs. (1) and (2) yield the values X, Y, Z, o1;o2;o3,

P, from which the coordinates of the apex of Solar motion, the Oort’s constant B and preces-

sional corrections are derived according to equations

o1 ¼ �0:868Q; ð3Þ

o2 ¼ �0:198Q� Dn; ð4Þ

o3 ¼ 0:456Qþ Dk: ð5Þ

In his analysis Fricke used the parallax factors instead of the estimates of distances from the

catalog F512. At present, we are able to take the distances of 512 stars from the HIPPARCOS

catalog. As a by-product, we can compare both sets of distances. This comparison is shown

in Figure 3, from which we see that up to 200 pc both systems of distance agree rather well.

Naturally, for distant stars (r > 200 pc) this agreement is worse. Still, with the exception of

three stars (NN 487, 490, 496) the correlation between the two sets of distances is equal to

0.596.

Transition from parallax factors to distances from the HIPPARCOS catalog yields the fol-

lowing results.

SOLAR MOTION

� With parallax factors:

A ¼ 266:0 � 2:3�; D ¼ 26:7 � 2:1�:

FIGURE 2 Distribution of 512 stars on spectral type (left) and on distances (right).

CONTRIBUTION OF HIPPARCOS 3
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� With distances from HIPPARCOS:

V ¼ 14:5 � 0:5 km s�1; A ¼ 263:9 � 2:2�; D ¼ 28:2 � 2:1�:

GALACTIC ROTATION

� With parallax factors:

Q ¼ �0:34 � 0:0700=cy; P ¼ 0:34 � 0:0800=cy:

� With distances from HIPPARCOS:

Q ¼ �0:30 � 0:0700=cy; P ¼ 0:29 � 0:0800=cy:

PRECESSION

� With parallax factors:

Dp ¼ 1:08 � 0:2000=cy; DE ¼ 1:15 � 0:2000=cy:

� With distances from HIPPARCOS:

Dp ¼ 0:98 � 0:1700=cy; DE ¼ 0:97 � 0:1800=cy:

We see that no drastic changes occurred when we placed the stars where they should be

instead of forcing them to be equidistant from the Sun.

FIGURE 3 Comparison of distances for 512 stars. Horizontal axis – data from HIPPARCOS. Vertical axis – data
from F512. Unit – pc.

4 V. V. VITYAZEV
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4 THE MOTOR

Following an approach based on the Oort–Lindblad model of galactic rotation, we made a

kinematic analysis of 512 stars using a model of a three-dimensional differential centroid

velocity field (Ogorodnikov, 1930; Milne, 1932; du Mont, 1977). To solve the equations

of condition we used a new method, based on orthogonal representation of proper

motions – the MOTOR method (Vityazev, 1999). This method is a further development of

the initial method ROTOR (Vityazev, 1994, 1997) which was created to determine the mutual

rotation between two reference frames. Below, we give a short outline of the method.

The equations of condition for proper motions in the galactic system of coordinates are:

ml cosðbÞ ¼
X7

i¼1

Li fiðl; bÞ; ð6Þ

mb ¼
X10

i¼1

L0i f
0
i ðl; bÞ; ð7Þ

where

Li ¼ fU ;V ;o1 �Mþ
22;o2 þMþ

13;o3;M
�
11;M

þ
12g; ð8Þ

L0i ¼ fU ;V ;W ;o1;o2;M
�
11;M

þ
23;M

þ
12;M

þ
13;M

þ
23g: ð9Þ

Here, the following notations are used:

� U ;V ;W are the components of solar motion in the direction of the principal galactic

coordinate axes x; y; z;
� o1;o2;o3 are the components of the angular velocity vector of rotation in the proper

motions of the stars about the axes x; y; z;
� Mþ

12;M
þ
13;M

þ
23, are the shears in the galactic planes ðx; yÞ; ðx; zÞ; ðy; zÞ;

� Mþ
11;M

þ
22;M

þ
33 are the components of a dilation in the direction of axes x; y; z. Since proper

motions do not discriminate between expansion or contraction, in what follows we set

Mþ
22 ¼ 0. In this case the unknowns Mþ

11 and Mþ
33 become equivalent to M�

11 ¼ Mþ
11 �Mþ

22

and M�
33 ¼ Mþ

33 �Mþ
22 respectively;

� f ðl; bÞ and f 0ðl; bÞ are the known functions of galactic coordinates l and b.

Usually, the Least Squares Technique is used to derive these parameters from the proper

motions of stars. The LS approach is the best way to do this provided that the data consists

of nothing else but modeled terms and noise. In practice, we do not know what is beyond the

model. If it is not only noise then the LS method may give an unrealistic solution marred by

some systematic terms. To overcome this difficulty, we propose a new method based on

representing the proper motions by means of orthogonal functions. For the sake of brevity

we shall call this method the MOTOR method (MOTions by Orthogonal Representation).

A short description of the method is given below.

Decompose each of the functions fiðl; bÞ on a set of orthogonal functions which are

the products of Legendre polynomials LnðbÞ and Fourier terms Fkl (Bien et al., 1978).

Substituting the results into Eq. (6) we get:

ml cos b ¼
X

nkl

CnklLnðbÞFklðlÞ: ð10Þ

CONTRIBUTION OF HIPPARCOS 5
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It is not difficult to show that the coefficients Cn01 are proportional to the parameter o3

while the coefficients Cn2�1 and Cn21 are proportional to M�
11 and Mþ

12 respectively for

n ¼ 0; 1; . . . . This means that, at least theoretically, rotation and deformation of the stellar

system may be derived not only from the lowest order harmonics but from the high order

functions as well. This is the basic idea of the MOTOR method, since the ability to derive

several estimates of one and the same parameter and to compare them tests whether the

model is compatible with the data. Note that the parameters o3;M
�
11 and Mþ

12 define the

velocity of rotation and deformation of the stellar system in the principal galactic plane

ðx; yÞ. To derive the analogous characteristics with respect to the planes ðx; zÞ and ðy; zÞ
one must calculate the spherical coordinates and the proper motions of stars in two new

systems of coordinates with the main plane perpendicular to the galactic plane.

In order to realize the MOTOR method one should have an appropriate procedure to derive

the coefficients Cnkl;C
0
nkl from the proper motions. It is likely that the method proposed by

Broshe (1966) is the best for MOTOR. We will call this technique the ORM (Orthogonal

Representation Method). For a given set of proper motions ml cos b and mb and for a chosen

significance level the ORM derives the coefficients that yield the systematic part in Eqs. (6)

and (7) together with their r.m.s.e. s; s0. Now we are in a position to describe the practical

algorithm of MOTOR method.

Given are: the catalog of N stars with known galactic coordinates l, b, parallaxes p, and

proper motions ml cos b; mb measured in arcsec per century. The algorithm consists of the

following steps.

1. Deriving and eliminating the motion of the Sun

Using the LS technique solve the equations

47:4ðml cos bÞ ¼ pU sin l � pV cos l; ð11Þ

47:4ðmbÞ ¼ pU cos l sin bþ pV sin l sin b� pW cos b; ð12Þ

for U ;V ;W and subtract the reflex of the solar motion from the proper motions. In the

next steps the proper motions of stars released from the solar motion are used.

2. Artificial proper motions

Set Li ¼ 1; L0i ¼ 1 and calculate the artificial proper motions (APM) according to Eqs. (6)

and (7). The artificial proper motions are used to calibrate the MOTOR method for each

specific distribution of stars over the celestial sphere.

3. Orthogonal representation of the APM

Using the ORM, calculate the coefficients Cnkl to represent the APM by Legendre–Fourier

harmonics.

4. Orthogonal representation of the proper motions

Using the ORM, calculate the coefficients Snkl � snkl to represent the real proper motions

by Legendre–Fourier harmonics.

5. Deriving estimates of the parameters in the coordinate system ðX ; Y ; ZÞ

oð0Þ
3 ¼

S001

C001

�
s001

C001

; oð2Þ
3 ¼

S201

C201

�
s201

C201

;

M
�ð0Þ
11 ¼

S02�1

C02�1

�
s02�1

C02�1

; M
�ð2Þ
11 ¼

S22�1

C22�1

�
s22�1

C22�1

;

M
þð0Þ
12 ¼

S021

C021

�
s021

C021

; M
þð2Þ
12 ¼

S221

C221

�
s221

C221

:

6 V. V. VITYAZEV
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If the values of one and the same parameter designated by upper index 0 or 2 are not

contradictory then put

o3 ¼ oð0Þ
3 ;

M�
11 ¼ M

�ð0Þ
11 ;

Mþ
12 ¼ M

þð0Þ
12 :

6. Analysis in the ðx; zÞ plane

Rotate the galactic coordinate system at 90� around the y-axis and calculate new spherical

coordinates b0; l0 and proper motions mb0 cos b0; ml0 cos b0 according to equations

sin b0 ¼ cos b cos l; tan l0 ¼
sin l

tan b
: ð13Þ

mb0 cos b0 ¼ �mb sin b cos l � ml sin l cos b; ð14Þ

ml0 cos b0 ¼ mb½cos b sin l0 � sin b sin l cos l0� þ ml cos b cos l cos l0: ð15Þ

Apply the procedures described in steps 3, 4, and 5 to obtain o2 and Mþ
13.

7. Analysis in the ðy; zÞ plane

Rotate the galactic coordinate system at 90� around the x-axis and calculate new spherical

coordinates b00; l00 and proper motions mb00 cos b00, ml00 cos b00 according to equations

sin b00 ¼ � cos b sin l; tan l00 ¼
tan b

cos l
: ð16Þ

mb00 cos b00 ¼ �mb sin b sin l � ml cos b cos l; ð17Þ

ml00 cos b00 ¼ mb½sin b cos l sin l00 þ cos b cos l00� þ ml cos b sin l sin l00: ð18Þ

Apply the procedures described in steps 3, 4 and 5 to obtain o1;M
�
33, and Mþ

23.

8. End of the algorithm.

To compare the MOTOR method with the Least Squares technique, consider the following

situations.

1. Let o3 ¼ 200=cy, i.e. let the proper motions reflect the rigid body rotation of a frame

about the x-axis. In addition, let the proper motions contain Gaussian noise with the

r.m.s.e ¼ 100=cy:

ml cos b ¼ o3 cos bþ noise: ð19Þ

The results of evaluation the parameter o3 by our methods are:

LS : o3 ¼ 2:03 � 0:0900=cy;

MOTOR : oð0Þ
3 ¼ 1:97 � 0:09; oð2Þ

3 ¼ 2:00 � 0:3300=cy:

We see that in the case of the SignalþNoise model both methods are equally reliable.

2. Replace the Gaussian noise with a systematic component

ml cos b ¼ o3 cos bþ sin b: ð20Þ

CONTRIBUTION OF HIPPARCOS 7
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The corresponding results are:

LS : o3 ¼ 2:03 � 0:3400=cy;

MOTOR : oð0Þ
3 ¼ 2:00 � 0:02; oð2Þ

3 ¼ 2:00 � 0:0900=cy:

Here we see that the LS gives too large value of the r.m.s.e. since it does not discriminate

between the stochastic noise and the ‘systematic noise’. On the contrary, the MOTOR method

yields a realistic value of the r.m.s.e, since it takes the information that comes from rotation.

3. Now we take the data that does not contain rotation

ml cos b ¼ o3 cos8 bþ noise: ð21Þ

The LS and the MOTOR solutions look as follows:

LS : o3 ¼ 1:16 � 0:3000=cy;

MOTOR : oð0Þ
3 ¼ 1:34 � 0:10; oð2Þ

3 ¼ 3:00 � 0:3600=cy:

The LS solution is rather good, and nobody would hesitate to adopt it as a reliable

characteristic of rotation, though we know that there is no rotation in the data. On the

other hand, the MOTOR method yields two contradictory estimates and this tells us that

our model is wrong.

In other words, the MOTOR method is preferable to the Least Squares technique since it:

� takes into account only the harmonics which correspond to effects of 3D kinematics of stars,

� tests the data for compatibility with the model,

� discovers the existence of systematic terms which may affect the kinematics of the model.

Due to these properties the MOTOR method yields realistic results even when the observa-

tional data contain not only noise but other systematic terms that have nothing to do with the

kinematics of the Ogorodnikov–Milne model.

5 KINEMATICS OF THE 512 STARS IN THE ICRF

If the proper motions from ground-based catalog are used, then the general vector of the rigid

body rotation of the stellar system must be represented in the form

�oo ¼ M�
32 �nn1 þM�

13 �nn2 þM�
21 �nn3 þ D �PP þ D �EE; ð22Þ

M�
32;M

�
13;M

�
21 are the angular velocity components of the rotation of the stellar system about

the principal galactic axes; D �PP is the angular velocity due to error in the precession constant;

D �EE is the component due to so-called fictitious motion of the equinox.

The values Dp ¼ jD �PPj and DE ¼ jD �EEj define the corrections Dn and Dk according to

Dn ¼ Dp sin e; ð23Þ

Dk ¼ Dp cos e� DE ð24Þ

with e standing for the obliquty of the ecliptic.

8 V. V. VITYAZEV
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Solving Eq. (6) yields only three parameters o1;o2;o3, so it is impossible to

evaluate all five parameters of Eq. (22). Usually, Eq. (22) is solved for Dp;DE and

M�
21 ¼ Q under supposition that M�

32 ¼ 0;M�
13 ¼ 0 (see Eqs. (3)–(5)). This means that deter-

mining precession from proper motions can be justified only for a sample of stars which

have no other rotation except the rotation around the axis perpendicular to the plane of

the Galaxy.

Being tied to the ICRF, the proper motions of the HIPPARCOS catalog are free of preces-

sional effects. This gives us a unique possibility to check whether or not the rotation of the

512 stars is flat. We applied the MOTOR method and the LS techniques to solve 512 Eq. (6)

with the proper motions taken from the HIPPARCOS catalog. The results are shown in

Table I.

The most important result is that both techniques yield M�
32 ¼ 0 and M�

31 ¼ 0. This means

that the rotation of the system of 512 stars is really flat. Nevertheless, the contradictary deter-

minations of all other parameters testify the fact that the kinematics of 512 stars is hardly

compatible with the Ogorodnikov–Milne model. Fortunately, the HIPPARCOS catalog

saves the situation. As we have said, the proper motions of this catalog are free of preces-

sional effects. For this reason the differences Cat. – HIPPARCOS are free of any kinematics

and depend only on precessional corrections. This saves us having to undertake kinematic

modeling and gives the possibility to have in hand data containing only the precessional

information.

6 PRECESSION DERIVED FROM THE FK5 AND HIPPARCOS

Guided by this idea we derived from 512 differences FK4–HIPPARCOS the components of

the angular velocity:

o1 ¼ 0:39 � 0:0300=cy;

o2 ¼ 0:07 � 0:0300=cy:

TABLE I Analysis of the 512 Residual Proper Motions in the System HIPPARCOS Catalog.
Unit00=cy.

ml m0l m00l LSM

M�
32 ð j ¼ 0Þ – – �0.04� 0.06 �0.03� 0.06

M�
32 ð j ¼ 4Þ – – 0.03� 0.22

M�
31 ð j ¼ 0Þ – 0.06� 0.07 – 0.07� 0.07

M�
31 ð j ¼ 4Þ – 0.68� 0.23 –

M�
21 ð j ¼ 0Þ �0.39� 0.08 – – �0.33� 0.07

M�
21 ð j ¼ 4Þ 0.07� 0.38 – –

M�
11 ð j ¼ 7Þ �0.34� 0.23 – – �0.30� 0.19

M�
11 ð j ¼ 19Þ 0.47� 1.07 – –

M�
33 ð j ¼ 7Þ – – �0.46� 0.18 �0.45� 0.17

M�
33 ð j ¼ 19Þ – – 0.36� 0.57

Mþ
21 ð j ¼ 8Þ 0.48� 0.13 – – 0.36� 0.09

Mþ
21 ð j ¼ 20Þ 0.11� 0.52 – –

Mþ
31 ð j ¼ 8Þ – 0.19� 0.09 – 0.17� 0.09

Mþ
31 ð j ¼ 20Þ – 0.69� 0.28 –

Mþ
23 ð j ¼ 8Þ – – 0.06� 0.09 0.07� 0.08

Mþ
23 ð j ¼ 20Þ – – 0.13� 0.27

CONTRIBUTION OF HIPPARCOS 9
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Now from equations

o1 ¼ �0:0965Dpþ 0:4838DE;

o2 ¼ 0:8623Dp� 0:7470DE

we find the correction to Newcomb’s precession

Dp ¼ 0:94 � 0:0800=cy;

DE ¼ 0:99 � 0:0800=cy:

This result is valid in the system of the FK4. Reducing our differences to the system of

the FK5

DmFK5 ¼ ðFK4 � HIPPARCOSÞ þ S;

where S stands for systematical differences FK5 – FK4 (Fricke et al., 1988) yields

o1 ¼ 0:38 � 0:0300=cy;

o2 ¼ 0:04 � 0:0300=cy:

With these values for correction to Newcomb’s precession one has

Dp ¼ 0:82 � 0:0800=cy;

DE ¼ 0:95 � 0:0800=cy:

Now, for the correction to the IAU 1976 value of the luni-precession constant and for the

term DE we have

Dp ¼ �0:28 � 0:0800=cy;

DE ¼ �0:25 � 0:0800=cy

7 PRECESSION DERIVED FROM IMPROVED GC AND HIPPARCOS

The PGC, GC and N30 form a sequence of American catalogs which were created to provide

researchers with absolute positions and proper motions of stars for investigating stellar kine-

matics and the motions of the planets. The success of such works depends on the level of

systematic errors in a catalog. Unfortunately, the positions of the GC are overburdened

with large periodic errors since the authors of this catalog, guided by the mistaken idea

that such errors are generated by the uneven speed of the Earth’s rotation, refused to make

the corresponding corrections to PGC position. This fault reduced the accuracy of the GC

itself and spoiled the quality of the catalog N30 for compilation of which the data from

the GC has been used.

An improved R.A. system of the GC (henceforth CGC, C-corrected) was created by

Vityazev and Vityazeva (1985). They derived the periodical corrections DGC to RA of the

GC on material from 20 catalogs with observations made between 1845 and 1925 and

found that the faults in the GC compiling (not observations!) prevented the GC from

10 V. V. VITYAZEV
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being as accurate more than 50 years ago (with respect to systematic errors) as the FK4 and

the FK5 are nowadays.

Now, using the correction DGC we calculated 512 differences

CGC � HIPPARCOS ¼ ðGC þ DGCÞ � HIPPARCOS

to obtain

o1 ¼ 0:35 � 0:0400=cy;

o2 ¼ 0:08 � 0:0400=cy;

o3 ¼ 0:06 � 0:0400=cy:

Setting o2 ¼ o3 ¼ 0, we have found

Dp ¼ 0:76 � 0:1000=cy;

DE ¼ 0:88 � 0:1000=cy:

Hence, the correction to the IAU (1976) value of the luni-precession constant and the term

DE are:

Dp ¼ �0:34 � 0:1000=cy;

DE ¼ �0:33 � 0:1000=cy:

8 CONCLUSIONS

Here we gather our determinations of the correction to the IAU (1976) luni-solar precession

constant:

FK5, HIPPARCOS (this paper) : Dp ¼ �0:28 � 0:800=cy;

CGC, HIPPARCOS (this paper) : Dp ¼ �0:34 � 0:1000=cy;

PPM (Vityazev, 1996) : Dp ¼ �0:35 � 0:0500=cy:

To this we must add that our corrections are consistent with results obtained by Miyamoto

et al. (1993) from the kinematic investigation of 30 000 K�M giants (the catalog ACRS):

Dp ¼ �0:27 � 0:0300=cy:

Our corrections are in good agreement with the corrections which were derived from the

PPM and the Pulkovo proper motions, tied to galaxies (Bobylev, 1997):

Dp ¼ �0:28 � 0:0800=cy:

Still more valuable is a comparison of all corrections derived from the proper motions with

the results obtained independently with the VLBI technique (Walter, Ma, 1994):

Dp ¼ �0:36 � 0:1100=cy:

CONTRIBUTION OF HIPPARCOS 11
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