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A classical model with post-newtonian correction of X-ray burster or X-ray recurrent nova is 
studied. 

The condition for a oscillating behaviour and the corresponding period are computed. 
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1 INTRODUCTION 

We introduce and study a highly simplified model of X-ray burster or recurrent nova 
(Gallagher and Starfield, 1978; Hoffman et al., 1978; Lewin and Clark, 1980; Liang 
and Petrosian, 1984), with spherical symmetry, in order to describe the luminosity 
fluctuations of these astronomical objects. The model consist of a central nucleus, a 
white dwarf star or a neutron star, surrounded by a gas, enclosed in a spherical dust 
shell, in thermal equilibrium with the gas. The shell emits blackbody radiation, and 
the luminosity fluctuations are caused by oscillations of a shell. Although this model 
is extremely simple, it predicts quite well the observational data of X-ray bursters 
and recurrent novae (Aquilano et al., 1987). The gravity forces, the pressure of the 
radiation force the shell to oscillate if the relevant parameter lies between certain 
bounds (otherwise the shell will collapse into the white dwarf or will be ejected). We 
shall compute these bounds and show that, in this problem, a primary bifurcation 
exists when we describe the solutions in terms of the ratio of the shell mass and the 
gas mass. 
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2 THE SHELL DYNAMICS 

We shall suppose that the gas mass is conserved and that the density of the gas is 
constant, therefore the gas density is 

3 m, p(R) = -- 4n R3 ' 
where ong is the mass of the gas and R the raxlius of the shell. The density will 
obey the state equation of a perfect gas P = pKT, where P is the pressure, T the 
absolute temperature and K the general gases constant. We shall consider that 
when the shell oscillates the gas undergoes adiabatic evolutions P = ap6l3 ,  where 
a is a parameter determined by the initial conditions of the motion. 

Fkom the previous works (Aquilano et al., 1987,1995) the shell classical equation 
of motion is: 

A2 A1 A0 
R2 R6 R3 R(t)  = f ( R )  = - + - + -, 

where Ao, A1 and Az are constant (Aquilano et al., 1987); the first term on the 
right hand side of equation is caused by the attraction of the central mass (white 
dwarf star), and the selfgravity of the shell; the second one is originated by the 
emitted radiation and the last one is the internal gas pressure. The equation shows 
the balance of two attractive terms (the first and the second) and the expansive 
term (the third). 

In order to simplify these equations we introduce the following scale factors, a 
space factor RO and a time factor to (Aquilano et al., 1987), where Ro is the singular 
point of Eq. (2) neglecting the radiation term, and to is the inverse of the oscillation 
frequency. There is no radiation around the singular point &. 

Using & and to as units of length and time respectively, the dynamical equation 
of the shell is: 

where z is the radius shell and the primes are times derivations. Using classical 
mechanics it is easy to show that 

5" = f(z,z'), (3) 

1 1 0  f(s,z') = fO(Z,d)  = -- +- - -  
2 2  2 3  26' 

where fl is a parameter defined by Aquilano et al. (1987) 
3 4 b G3M2 m, f l =  --- 

243K4 d (6) ' 

(4) 

( 5 )  

where G is the gravitational constant, b = k / c ,  u is the Stefan-Boltzmann con- 
stant, it4 is the mass of the white dwarf and d = rng/M.  

Also if we use the post-newtonian approximation (Weinberg, 1972) we obtain 
the corrected function: 

f(6, z, d) = - 1- zr5i2] 3 $+ [6 + (I - 1 1/2 ] 7-0 1 [1 - a6zt2] 1 5, (6) 
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where the corrective (post-newtonian) term is 

where E is the adimensionalized light velocity and c the light velocity. 
In previously works (Aquilano et al., 1987,1995) we showed that the solutions of 

this equation fits quite well the behaviour of the astronomical objects - we studied 
bursters and recurrent novae - if we use reasonable physical parameters. 

In this work we are interested in the study of the mathematical properties of 
Eq. (3) in the phases space, and to see how we can obtain a periodic luminosity 
with astrophysical interest. 

3 PROPERTIES OF THE DYNAMICAL EQUATION 

Rom Eq. (4) and (6) we deduce: 
Property 1: If f(6 = O,z,z') = fo(z,z') then 

2'' = fo(z, z') 

is the classical newtonian equation of motion of the shell. 
Property 2: 
Via the transformation: 

X+Z, sl+n, 
where 

- 1 - (3/4)6z'2 
6 + (1 - (1/4)6z'2)1/22' 

X =  

(9) 

(11) 
(1 - (1/4)Ss'2)'/2(1 - ( 3 / 4 ) 6 ~ ' ) ~  6 =  

[S + (1 - (1/4)Szf2)1/2]4 

function f(S,z, z') becomes function f0(2,5'). Therefore, the singular points of Eq. 
(6) can be obtained solving the classical problem, i.e. (4). Besides this equation 
has a very simple analytical solution. 

Property 3: Therefore is easy to verify that Eq, (4) has at most two real singular 
points, a port z-(Q) and a centre (a stable singular point) ~'(0) given by: 

where 
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.02 04 .06 .08 10 
fl 
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Figure 1 Singular points how 0 function, for 6 = 0. 

and 52, = 0.10. 
Figure 1 shows the real singular points z* as a function of 0. The parameter 0, 

is a bifurcation point for 52, because if 52 > 52, there are no red singular points and 
the solution of Eq. (4) yield a collapse of the shell. Solution z+(sl) corresponds to 
a centre, which goes to value 1 when 52= 0 (in this case there is no radiation term 
in Eq. (4), x+(0,) lies between 3/4 and 1 (i.e. xf(n) and &(O) respectively). And 
z-(52) correspond to a port, and lies between 0 and 3/4 (i.e. x-(O) and ~ ~ ( 5 2 , )  
respectively). 

In Figures 2, 3 and 4 we show some orbits for S = 0 and different values of 52. 
In Fgure 5 (break line), we represent the bands where the acceleration keeps its 

* for 52 < a,, z" > 0 if x E [x-(0);x+(52)], and z" < 0 if I < ~ ( 5 2 )  or 

* for 52 > 0, is XI' < 0 Vx. 

sign i.e., 

2 > x+@) 
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I I  

647 

Figure 2 Phase diagram for Cl = 0 (i.e. no radiation). All trajectories are stable oscillations. 

Figure 3 Phase diagram for R = 0 , l  (i.e. fl < 0, = 0,lO). There are two singular points x+ 
and c-. For 0,67 < 0,92 the oscillations may occur. For 2 outside this interval the shell always 
collapse. 
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b 

Figure 4 Phase diagram for R = 0,12 (i.e. R > R, = 0,lO). There are no singular points. All 
trajectories yield the shell collapse. 

5 

. 6 c  

.2E 

r2 5 

s6 

- 
- C  

Figure 6 Representation for the bands where the acceleration keeps different signs. 
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1.2- 

r 

n 
Figure 6 Singular points how S l  function, for different 6, 

The bifurcation point, defined by R,, yields an upper bound to the ratio m,/m,, 
if the shell oscillates 

From properties 2 and 3 we obtain, 
Property 4: When 6 # 0 the real singular point of Eq. (6) are 

sf(Q,d) = (1 + 6)zf(fi). 

RC(6) = (1 + S)41nc. 

(17) 

(18) 

Therefore, the bifurcation point is now 

In Figure 6 we represent the curves z*(fl,S) for several values of 6. In Figure 5 
it is shown (complete line) the phases space for Cl < Q,, where the roots of 5'' are 
defined by: 

d + (1 - (1/4)6~'~)~/~ 
5 * ( ( 2 ' , Q , S )  = Z+(b) 

1 - (3/4)62'2 
Now we can compute the oscillation period: 

Propertg 5: The oscillation period around the centre when 13 = 0 is 
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Figure 7 The semiperiod 89 a function of a, for different 6. 

For 6 # 0 if we use transformations (9, 10) the corresponding time transforma- 
tion is t -+ i! where, 

(1 - (3/4)6Z'2)3/2 f =  t 
[d + (1 - ( 1 / 4 ) 6 ~ ' ~ ) ~ / ~ ] 3 / ~  

from this transformation (bound around of z+(S2, a)), we can obtain the period for 

In Figure 7 we represent the semiperiods of oscillation as a function of R and 6. 
6 # 0. 

4 LUMINOSITY 

The Iuminosity of a star is defined by the energy radiated by unit of time; and 
considering the spherical symmetry of the shell and that the radiation law obeys 
the vision of a blackbody, the luminosity dimensionless is 

(22) 
1 L(t) = - 

x6 ( t )  

being L(t) = e(t)/Lo, where l o  is the scale factor defined by Aquilano et al. (1995) 
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loo' 2 4 6 8 Ib 12 14 16 
t 

Figure 8 Dependence of the luminosity L in function of time t ,  and the temperature T with the 
time t .  

In the same way we introduce the temperature, 

where is the scale factor, 

In Figure 8, the periodical fluctuation of luminosity and the shell temperature for 
classical oscillations around the centre have been shown (L( t )  and T ( t )  correspond 
to loop a in Figure 3). 

5 CONCLUSIONS 

In this work, and in previously works (Aquilano et  al., 1987, 1995), we see that it is 
interesting to remark the coincidence between our model and several astrophysical 
phenomena. The model can be thus be improved with a more realistic density 
law; the coincidence with observational data is suggestive. We wish to note the 
simplicity of the model, the simple equations and the importance of applying the 
post-newtonian corrections in astrophysical scenarios. 
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