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Mean-field theory appears appropriate to describe the solar dynamo. The Cm dynamo yields a 
cyclic mean magnetic field, including the butterfly diagram. In spite of this apparent success 
many difficulties persist. The dynamo coefficients, especially the a effect, currently have not been 
determined quantitatively. The analytical treatment remains insufficient, mainly because of the 
large correlation time of solar convection; numerical simulation is difficult due to the large magnetic 
Reynolds number, as well as the extreme values of other parameters. Other problems appear less 
severe; they are related to the non-uniform rotation, to the overshooting velocity at the base of 
the convection zone, to  the phaae between the toroidal and poloidal mean-field components, and 

KEY WORDS Dynamo theory, Q effect, solar cycle 

1 THE SUN - AN DYNAMO 

Solar activity is governed by the 22-year magm 

to the mechanisms that are responsible for the long-term variation of the solar activity. 

ic cycle. The mere fact that his 
time scale is so short in comparison to the evolutionary and thermal time scales is 
evidence that the magnetic field of the Sun cannot be fossil, but must be regenerated 
continuously. The convection zone in the outer third of the Sun (by radius) pro- 
vides the flow of electrically conducting matter that is required for electromagnetic 
induction. Therefore a hydromagnetic dynamo is the obvious alternative. 

Working solar dynamo models, in the form of a0 dynamos, were advanced 
first by Parker (1955b) and by Steenbeck and Krause (1969); a recent review of 
their successes has been given by Riidiger and Arlt (2000). In this model the 
Coriolis force influences the turbulent convective flow (within the convection zone 
and overshooting from it) in such a way that the a effect occurs: namely, that the 
mean electric field (u x b) ,  which is derived from the velocity fluctuation u and 
the associated magnetic fluctuation b, has a component a(B) in the direction of 
the mean magnetic field (B) .  From an originally toroidal field this effect generates 
a large-scale poloidal field; the latter and the non-uniform angular velocity n(r, 0) 
then cooperate to induce a new toroidal mean field (Figure 1). If a(r,  e)  and n(r, 0) 
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Finure 1 

a l 
The scheme of an crfl dynamo. Left: 

b I 
poloidal field generation by the IY effect; 

tor2dal field generation by non-uniiorrn rotation. Courtesy M. 6ssendrijver.- 
right: 

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS 
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Figure 2 
solar rotations. Courtesy D. H. Hathaway. 

The butterfly diagram. Sunspot area in equal latitude strips, averaged over individual 

have a suitable spatial variation then the new mean field has a reversed sign, and a 
magnetic cycle can operate. 

The aR dynamo not only generates a cyclic mean field. Its greatest achievement 
is the field migration over latitude during the cycle, thus reproducing the solar 
butterfly diagram (Figure 2). The mean field migrates along the surfaces of constant 
angular velocity, in the direction aVR x eg, where eg is an azimuthal unit vector; 
this result was already manifest in the pioneering work of Parker (1955b), but was 
more generally proved by Yoshimura (1975). No other theory has been successful 
in this respect, and it is mainly for this reason that the solar aR dynamo deserves 
attention. In the present review I shall deal with this model only. 
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PHYSICS OF SOLAR DYNAMO 419 

There are severe difficulties, nevertheless. The most outstanding, in my view, 
is the a effect itself, to be discussed in Sect. 2. Other problems, treated in the 
subsequent sections, appear minor in comparison. They are related to the Sun’s 
differential rotation, to overshooting at the base of the convection zone, and to the 
origin of variations on a long time scale, such as the grand minima of solar activity. 

2 MOST OUTSTANDING: THE a EFFECT 

In an expansion of the mean electric field (u x b) in terms of the spatial derivatives 
of the mean field ( B )  the a effect appears as a tensor in the first term: 

(2d x b)i = ai j (Bj )  + @ijkVj(Bk) + ’ * ’ . (1) 
The second term contains the tensor @ i j k  and describes the diffusion of the mean 
field by the turbulent flow. There are many open questions as to how this process 
works at high magnetic Reynolds number, in helical turbulence, etc. (e.g., Kraich- 
nan, 1976; Drummond and Horgan, 1986; Nicklaus and Stix, 1988; Petrovay and 
Zsarg6, 1998). Here I shall concentrate on the first term of (l) ,  the a effect. 

2.1 First-order smoothing 

In order to evaluate the dynamo coefficients a and‘ @ the induction equation for the 
magnetic field fluctuation b must be solved. The traditional approach to do this is 
first-order smoothing, where only the terms of first order in u and b are retained. 
The electric field (u x b) is then expressed in terms of second-order correlations of u;  
hence another name for this approach is the second-order correlation approximation 
(Krause and Radler, 1980). This approximation is justified if either of the following 
two conditions is met: 

(Steenbeck and Krause 1969). Here r ]  is the magnetic diffusivity, u is a typical 
magnitude of u, and 1 and r are typical scales of the variation of u (and b)  in 
space and time, respectively. The first of conditions (2) means a small magnetic 
Reynolds number; but on the Sun this number is very large, e.g., Figure 8.1 of Stix 
(1989). And the second condition is at best marginally satisfied, if one uses values 
of u, 1,  and r as observed at the solar surface, or if one follows the ideas underlying 
the mixing-length theory of turbulent convection. Thus, first-order smoothing is 
far from being an appropriate approximation for the Sun. This is confirmed by 
attempts to calculate dynamo coefficients that include contributions of higher order 
in ur/1: the corrections are substantial (e.g., Nicklaus and Stix 1988). 

u l / q <  1 or ur/1< 1 (2) 

2.2 Numerical methods 

With numerical methods it is possible to go beyond first-order smoothing. Drum- 
mond and Horgan (1986) used stochastic velocity fields to integrate a large number 
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Figure 3 Vertical a effect, (YV, as a function of depth, averaged horizontally (grey curves). The 
thick drawn curve is the time average; the surrounding thin curves give the error of the mean, 
determined from the number of coherence times covered by the simulation. From Ossendrijver et 
al. (2000). 

of paths of fluid parcels and, with a Lagrangian solution of the induction equation 
(e.g., Moffatt, 1978), calculated the dynamo coefficients. They could confirm the 
predictions of first-order smoothing in the appropriate limits, but otherwise found 
that a depends very sensitively on the diffusivity q, as well as on the correlation 
time of the assumed stochastic velocity. 

A more direct approach is numerical simulation of three-dimensional magneto- 
convection in a compressible rotating fluid, that is, numerical integration of the 
hydrodynamic equations (including the Lorentz force) together with the induction 
equation for the magnetic field. But the problems are obvious. First, there is a 
wide range of length scales in the solar convection zone, which would require a large 
number of grid points, not tractable even on the most capable computers. Second, 
the Reynolds number, the Rayleigh number, and the magnetic Reynolds number 
all are much larger on the Sun than can be dealt with in a numerical simulation; 
other parameters, such as the Prandtl number and the Mach number, are very 
small and for this reason pose problems. As a consequence of the first difficulty the 
simulation resolves only the largest eddies, especially in global calculations (Gilman 
1983, Glatzrnaier 1985), but also if one restricts the calculation to a small box that 
can be placed at  various depths and latitudes in the convection zone. In both cases 
the second difficulty is most severe: the parameter ranges are rather restricted, 
although values far beyond the limits of first-order smoothing have been reached. 
The hope is that, by variation of the parameters, a certain behavior is found that 
can be extrapolated to  very large values, and perhaps be compared to the results 
of asymptotic theories. 
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Numerical magneto-convection in a box has been described by Brandenburg et 
al. (1990, 1996). Depending on the choice of parameters and on the boundary con- 
ditions, spontaneous field amplification may occur in such a simulation (Nordlund 
et al., 1992). However, instead of such local dynamo action we are here more in- 
terested in the Sun's global dynamo. For this reason one chooses subcritical (for 
the local instability) conditions, calculates u and b and therefrom the components 
of (u x b)  in the direction of ( B ) .  The components of the a tensor can thus be 
determined; Figure 3 shows an example of av, for the case where (B)  is vertical. 

It is clear from simulations such as shown in Figure 3 that the dynamo coef- 
ficients are averages over extremely fluctuating quantities. Extensive simulations 
are therefore necessary to  obtain a significant result. Of course the reason for the 
large fluctuations is the large value of the Reynolds numbers; in the shown example 
they were still quite moderate. Nevertheless, it has been possible to  demonstrate 
important effects such as the quenching of the a effect when (B)  becomes large, or 
when the rotation becomes fast, at small Rossby number (e.g., Tao et a!., 1993; Os- 
sendrijver et al., 2000). In addition, some of the quenching predictions of first-order 
smoothing (Rudiger and Kitchatinov, 1993) were confirmed. 

2.3 Kinematic or dynamic LY effect? 

The recipes for calculating a described so far aim at the kinematic a effect. However, 
there are reasons (Sect. 4) for a field strength of order 10T  of the toroidal field 
a t  the base of the convection zone. Such a field strength exceeds the equipartition 
value, and a quenching must be expected. Therefore, the instability of the field 
itself, either in the form of a magnetic Rayleigh-Taylor instability (Brandenburg 
and Schmitt, 1998; Thelen, 2000) or in the form of a flux-tube instability (Ferriz- 
Mas et al., 1994) has been suggested as a source of the a effect. Only preliminary 
results exist, partly based on first-order smoothing. 

3 SUFFICIENT SHEAR? 

Although a quantitative determination of the a effect appears impossible at present, 
there are indications that near the base of the convection zone (especially in the 
layer of convective overshooting) a should be negative in the northern and positive 
in the southern hemisphere. With this sign of a the aR dynamo requires positive 
shear dR/& for equatorward migration of the mean field (e.g., Stix 1976b); this 
is indeed the case on the Sun, as helioseismology has shown (Figure 4). At low 
latitude, we take from the figure TOR~OT B 2.5 x s-l. Hence an amplification 
factor of lo3 may be reached within 10 years. 

However, in an aR dynamo the poloidal field from which the shear generates 
the toroidal field must be generated from the toroidal field of the previous cycle. 
As a consequence, the ratio of the toroidal and poloidal field components is of order 
( r2 (8R/d r ) /a )1 /2 ,  which is only 10-100 for a = 10m/s, a typical value obtained for 
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Figure 4 Solar rotation rate, as a function of T ,  for three heliographic latitudes; an inversion of 
data obtained with the Michelson Doppler Imager on SOHO. The vertical line marks the base of 
the convection zone; the arrows indicate the rate measured spectroscopically a t  the surface. From 
Kosovichev et al. (1997). 

r.. S O 1  21 M r n  
p.: 4.532e+l I N/m' 

H.: 55 70 Mrn 
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6 :  -2.81e-00 
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Figure 5 
graphic latitude, for V - Vad = -2.6 x 
days. Courtesy P. Caligari. 

Instability of toroidal flux tubes, as a function of magnetic field strength and helio- 
The labels on the contours are growth times in 

the deep part of the convection zone. In view of the rather weak mean poloidal field 
observed at the solar surface this ratio appears small. Hence we may ask whether 
the shear revealed by helioseismology is indeed sufficient for an CYR dynamo. 
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4 HOW MUCH OVERSHOOTING? 

Within the super-adiabatic stratification of the convection zone, magnetic flux tubes 
experience a buoyancy force (Parker 1955a) and rise to the surface. On the other 
hand, in the sub-adiabatic environment of a layer with convective overshooting, 
stable flux tubes with a field strength of up to M 10T may exist (Spruit and van 
Ballegooijen, 1982; Caligari et  al., 1995). Beyond this value the tubes become 
unstable; the instability depends on latitude, see Figure 5. Except for a very slow, 
and therefore insignificant, instability at high latitude the tubes start to rise at low 
latitudes. If the field is not in the form of narrow tubes, instabilities also arise 
at a comparable field strength, e.g., as a magnetic Rayleigh-Taylor instability that 
leads to magnetostrophic waves (Schmitt, 1987), or as a joint instability of the field 
and the latitudinal differential rotation (Gilman and Fox, 1997, 1999; Gilman and 
Dikpati, 2000). A further argument in favor of a strong toroidal field is that rising 
tubes with initially M 10T emerge at the right latitude (the sunspot zones), and 
exhibit the right asymmetry and tilt of the emergent bipolar active regions. Weaker 
tubes would rise parallel to the axis of rotation and emerge at high latitude, due to 
the rotational constraint (Choudhuri and Gilman, 1987). 

Theoretical solar models based on a non-local form of the mixing-length theory 
of convection include a layer of convective overshooting, with a sub-adiabaticity 
that is suitable for the storage of a 10-T field (Pidatella and Stix, 1986; Skaley 
and Stix, 1991; Kiefer et  al., 2000). The thickness of this layer is somewhat larger 
than one-tenth of a pressure scale height Hp; the temperature gradient in the layer 
is nearly adiabatic, with a rather sharp transition to the radiative gradient at the 
depth where convection ceases. 

Helioseismology has established the temperature profile in the solar interior with 
high precision. A difficulty in the present context is: there is no indication for a 
sharp transition of the temperature gradient such as predicted by those theoretical 
models. Upper limits for the extent of such overshooting are 0.07Hp (Monteiro 
et  al., 1994), and 0.1Hp (Basu et  al., 1994). Perhaps the solution lies in a more 
gradual transition layer, but models of convective overshooting with this property 
have yet to be built. Another possible difficulty has to do with lithium: a turbulent 
flow at and below the base of the convection zone that is sufficiently mild to allow 
for the survival of some lithium may be insufficient for the Q effect and turbulent 
diffusivity as required by the dynamo (e.g., Riidiger and Pipin, 2000). 

5 THE PHASE DILEMMA 

The mean toroidal magnetic field, (+), of the Sun can be inferred from the polari- 
ties of bipolar spot groups, while the mean radial field, (B,.), can be obtained from 
averaged solar magnetograms. There appears to be a phase shift of approximately 
180" between the two field components (Stix, 1976a). 
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Figure 6 Butterfly diagram of a dynamo that includes a fluctuations. The contours mark equal 
field strength at a fixed depth. The cycle fades around time t = 9.5 and resumes near t = 10.2 
(magnetic diffusion time as unit). Courtesy M. Ossendrijver. 

The dynamo models that incorporate the shear near the base of the convection 
zone, and an a effect as described above, predict the correct field migration from 
higher to  lower latitude, but (B,) and (B6) are approximately in phase, in apparent 
contradiction to  observations (Parker, 1987). This is the phase dilemma. 

Perhaps the dilemma is resolved in such a way that (B,) and (B6) vary in phase 
within the dynamo layer but out of phase at the solar surface (Schlichenmaier 
and Stix, 1995). Dynamos with proper variation of the a effect and turbulent 
diffusivity might do it, for example the interface-wave dynamo of Parker (1993; 
see also Charbonneau and MacGregor, 1997), or dynamos that include a suitable 
meridional circulation (Choudhuri et al., 1995; Dikpati and Charbonneau, 1999). 
Gilman and Charbonneau (1999) test diverse models and conclude that phases such 
as those observed can indeed be produced. They also believe that the ma.gnetograms 
are dominated by decaying active regions, and that, e.g., polar faculae (Sheeley, 
1991) are better indicators of the mean poloidal field. The phase difference is then 
(at high latitude) ca. 90" rather than 180". The model of Dikpati and Charbonneau 
(1999) yields such a phase difference. 

6 GRAND MINIMA 

The solar cycle exhibits long-term variation; most prominent was the Maunder 
minimum in the 17th century. There are essentially two ideas how to account for 
such grand minima and related variations within the framework of the an dynamo. 

6.1 Fluctuating a effect 

We have seen that the a effect is a highly fluctuating quantity (Figure 3). Fluctua- 
tions of a have been incorporated into dynamos (Schmitt et al., 1996; Ossendrijver 
et al., 1996), and grand minima have been modeled in this way. Other variations of 
the cycle, e.g., such that shorter cycles have higher amplitudes, have been obtained 
as well (Ossendrijver and Hoyng, 1996). Figure 6 shows an example (Ossendrijver, 
2000b) where the dynamic a effect (Sect. 2.3) in the layer of strong toroidal field 
drives the cycle, but is supplemented by a fluctuating kinematic Q within the con- 
vection zone. Such an additional kinematic effect is necessary because the dynamic 
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Figure 7 Butterfly diagram of an dl dynamo with an additional equation that describes the 
variation of the rotational shearing. 'I'he long-term variation is a consequence of the non-linear 
dynamics. Courtesy S.M. Tobias. 

a exists only beyond the instability threshold of the toroidal field (Ossendrijver, 
2000a). With such an a alone the cycle could not resume after a grand minimum. 

6.2 

The second model of long-term variation rests on the non-linear character of the 
dynamo equations. The simplest model, with (Y quenching explicitly taken into 
account, yields limit cycles in the form of non-linear dynamo waves (Stix, 1972; 
Kuzanyan and Sokoloff, 1995; Bassom et al., 1999), which reproduce several fea- 
tures of the solar cycle. However, with an additional equation (as in real magneto- 
hydrodynamics) describing the dynamics of either the shear (Weiss et al., 1984) or 
a effect (Schmalz and Stix, 1991), multiply-periodic and chaotic behavior has been 
generated. The bifurcations of the diverse solutions have been investigated in detail 
(e.g., Tobias et  al., 1995). Grand minima occur in particular when the magnetic 
Prandtl number is small (Tobias, 1996). The dynamic system also shows transitions 
between various symmetries (Jennings, 1991). The butterfly diagram of Figure 7 
was obtained from such a dynamic system. 

On the path to chaos 

7 CONCLUDING REMARK 

In spite of the difficulties described in this contribution I am convinced that mean- 
field theory is the appropriate approach to the solar dynamo. However, the problems 
reviewed here are by no means an exhaustive list, but a rather personal selection, 
complementing my earlier review (Stix, 1991). Other reviewers have discussed dif- 
ferent points. Hoyng (2000) puts the emphasis on the fundamental concepts of 
mean-field theory, and especially on its relation to  stochastic differential equations. 
Parker (1996) points out that the small-scale magnetic fluctuations have large field 
strength and hence should essentially be Alfvkn waves, which makes it difficult to  
understand reconnection and dissipation on a small scale. 
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