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Numerical simulations are used to study the well-known problem of a limiting detectable sepa- 
ration between two point-like components of a double source. Three versions of the problem are 
considered: (I) The Point Spread Function (PSF) is given a priori; (11) For a specified analytical 
form of the PSF, its parameters are to be estimated from observations of a single star; (111) The 
PSF is not known at  all. The images of single and close binary stars are simulated by taking 
into account photon noise, the pixel structure of the detector and other factors that are common 
in real experiments. We generate large-sized samples of randomly blurred images of single and 
binary stars, and obtain maximum-likelihood estimates of 6 parameters for each binary image: 
the binary’s total brightness, the relative brightness of its components, and 4 of their Cartesian 
coordinates. Monte Car10 simulations are consistent with the previously found analytical solution 
of the problem, according to which the limiting detectable separation between the components is 
emin fi: As()/@, where Am is the characteristic width of the PSF, and + is the signal-to-noise 
ratio within the image. Thus, the rough pixel structure of the detector and the presence of noise 
do not hinder the achievement of a resolution in the visual spectral range of order 0.001”-0.1‘‘ 
with rnoderate-sized astronomical telescopes. 

KEY WORDS Resolution, limiting resolving power, numerical simulations 

1 INTRODUCTION 

It is assumed, in the classical approach to the problem of limiting resolving power, 
that the observed blurred image of the object has been generated either by a single, 
or by a double source with incoherent point-like components. It is also suggested 
that the PSF is completely known from theoretical reasoning or special preliminary 
measurements. For example, one can use the Airy pattern, if a narrow spectral 
range with central wavelength X has been used in observations, and the telescope 
is diffraction-limited. Then the characteristic angular size of a star image is deter- 
mined by the radius of the first dark ring in the Airy pattern: 

x 140” 
eA w 1.22- radians M -. 
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Figure 1 Three-dimensional (left) and two-dimensional intensity distributions in the diffraction 
image of a binary star with components of equal brightness, which correspond to the (a) Rayleigh, 
(b) Dams-Danjon-Couder, (c) Sparrow, and (d) visual limits. 

In the second equality, X = 5550A is accepted, and the aperture D is measured in 
millimeters. If aberrations of the optical system are not too large, one can use A ~ o ,  
the diameter of a circle that contains 80% of the energy in the image of a point 
source, instead of the Airy diameter A = 20A. 

Let case I corresponds to the version of the limiting resolution problem, when 
complete a priori information about the PSF is available. Obviously, the object 
should be considered as single if the uncertainty of the estimate (here and below, 
the term estimate is used in its exact statistical sense) of the components separation 
becomes of the order of its true value. 

In practice, the investigator does not always have complete information about 
the PSF, so, alongside the classical, some other versions of the problem can be 
interesting. First of all, by leaving some free structural parameters, it is often still 
possible to consider an analytical representation of the PSF as known (case 11). 
As one can see, the necessity of a tentative estimate of the free parameters from 
observations of a single star leads, to a certain degree, to the lower resolving power, 
in comparison with case I. Finally, we also consider the situation, when the PSF 
is completely unknown (case 111). The information on this function should still be 
obtained from observations of a single comparison star. 
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For the first time the problem under consideration was carefully studied by 
William Dawes (1865). As a result of lifelong observations with small refractors, 
Dawes came to the conclusion that the limiting resolution for a clear aperture, Omin, 

is approximately equal to 0.850~ (Figure 1). Taking into account the inevitable 
uncertainty of the concept of limiting resolution, Lord Rayleigh proposed simply to 
accept emin N #A (Scientific Papers, 1964, p. 420). The subsequent propositions, 
deriving from the analytical representation of the diffraction PSF (for example, the 
criterion by Sparrow (1916), according to which 0min M 0.780~), do not change 
the essence of the matter. As concerns experiment, Danjon and Couder (1935), 
proceeding from the criterion of minimal detectable contrast between images of 
the double components, again came to the Dawes’s limit. Finally, Couteau (1978) 
believed that most experienced observers of double stars, using weak elongation of 
their images, are capable to achieve Omin of the order 0 . 5 0 ~ .  

Bearing in mind the possible change of the Airy diameter A by As0 for the non- 
diffraction PSF, it is convenient to introduce the dimensionless resolution pammeter 

R=- emin 
A *  

As one can see, the results described above simply mean that W w 1 for visual 
inspection of images with a clear aperture. Since the classical approach is strongly 
based on properties of the human eye and brain, one may hope to achieve a deeper 
resolution by using a modern, nearly ideal, light detector and refined image analysis. 
Generally speaking, emin <( e A  is not excluded, even when the PSF width As0 for 
some reason is essentially larger than the diameter of the Airy circle (accessing the 
values !R <( 1 is described sometimes as the super-resolution phenomenon). 

The starting point in the considered problem is the fact that only the presence of 
noise interferes with the achievement of an infinitely high resolving power (Toraldo 
di Rancia, 1955; Wolter, 1961). Indeed, precisely knowing the PSF shape, one 
can easily reveal an infinitely small separation of the components. It is known 
also that Rayleigh’s limit is surmountable even in the presence of moderate noise 
(Kozlov, 1964; Harris, 1964; Helstrom, 1968; Rushforth and Harris, 1968). The 
kinds of noise are diverse, however, only photon noise is really important, because 
it is unavoidable due to the quantum nature of light (Taking into account not only 
the visual spectral range, it is more correct to speak of radiation noise (Loudon, 
1973)). Therefore, some natuml limit of resolving power exists, and the non-trivial 
question consists only in the value of the natural resolution limit depending on 
experimental conditions. 

The discussion below is based on the author’s papers (Terebizh, 1990, 1993, 
1995a, b) which consider the limiting resolution problem from the point of view 
of general theory by J. Neyman and E. Pearson of testing the statistical hypoth- 
esis (see, e.g., Kendall and Stuart, 1969). Terebizh and Cherbunina (1995), and 
Terebizh (1999) performed corresponding Monte Carlo simulations. Some recent 
investigations have been reviewed by den Dekker and van den Bos (1997). 
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2 INVERSE PROBLEMS AND A PRIOR1 INFORMATION 

The problem of limiting resolving power belongs to the extensive class of inverse 
problems of mathematical physics, where an object’s true properties are to be 
learned on the basis of the observed picture. If James Jeans were right, and Great 
Architect is a mathematician (‘The Great Architect of the Universe now begins to 
appear as a pure mathematician’, Jeans (1948), p. 165), it should also be admitted 
that the Great Architect solved only the direct problem, leaving for us the vastly 
more complicated inverse one. 

Practice shows that the quality of an inverse solution mainly depends on a pn’on’ 
information about the object, and only to a smaller degree on shape of the object, 
the PSF form, the statistical properties of noise etc. If we are dealing with an 
image deconvolution problem (Jansson, 1997) under scarce a priori information, it 
is appropriate to use term image restoration. In the opposite case, in which we are 
now interested, the a prdori information is so extensive that the inverse problem in 
the Dawes-Rayleigh sense is reduced to  the choice between two alternative objects 
- a single or binary star with point-like components. In fact, we are to find the best 
decision for given conditions, or to test the statistical hypothesis about the object 
on the basis of its blurred image (Kendall and Stuart, 1969). Another term that is 
used in the considered case is pattern recognition (Tou and Gonzalez, 1974). 

In the main version of our problem (let us denote it as caSe ‘B’), the a pri- 
on’ information is as follows. Two above mentioned alternative objects have the 
same total brightness; the angular separation of the binary’s components, 8, is 
non-negative; their relative brightness is known; the same is true for the PSF; the 
photon noise and the background are subjected to the Poisson distribution. Pho- 
ton counting (Mehta, 1970), that is the principally most effective method of image 
detecting, is applied. Strictly speaking, the statistics of photo-events is described 
by the Cox-Mandel distribution (see, e.g., Loudon, 1973; Terebizh, 1992), but its 
difference from the Poisson law is negligible for usual observational conditions. 

Although the closed analytical solution of the binary decision problem has been 
found for any object shape, it is rather complicated, so we consider here, besides 
the main version (B), only two simple cases: (A) The alternative object to the 
binary star is an extended source with a Gaussian brightness distribution, (C) The 
alternative is the same object, but shifted as a whole. The purpose of considering 
cases (A) and (C) is to show the dependence of the results on the nature of the a 
priori information. 

3 ANALYTICAL RESULTS 

When choosing the parent object on the basis of its blurred and noisy image, one 
can make errors of two types: (1) A single star is erroneously classified as a double 
star @rst type of e m r ) ;  ( 2 )  A double star is classified as a single one (second type 
of e m r ) .  Neyman and Pearson paid attention to the fact that in practice two types 
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of errors are almost always non-equivalent. For example, if single stars are often 
classified as double stars, there will be an illusion of too high a resolving power. 
In order to know the criterion’s ‘rigidity’, it is reasonably to accept beforehand the 
probability of the first type of error a, and then find the decision rule in such a 
manner, that the probability of the second type of error, /?, is minimal. 

These features make essence of the Neyman-Pearson approach, which is now 
widely used in applications. In mathematical statistics, (Y is known as the signiji- 
cunce level of the criterion, and 1 - p as its power. Neyman and Pearson proposed 
also the procedure that sometimes gives the most powerful criterion of testing the 
statistical hypothesis, and just such a criterion was found for the problem of limiting 
resolution. Therefore, we obtain the theoretically unimpmuable rule of classifying 
the images with any given probability a. It is worth stressing that any particular 
method of distinguishing the objectsy even quite attractive at first glance (see, e.g., 
Lucy, 1992), does not allow us to speak of reaching the limiting resolution. 

Let F be, the number of photo-events during the exposure time, and B be the 
number of background events within the image of a point source. Analytical formu- 
lae show that the resolution parameter 91 (2) mainly depends on the signal-to-noise 
ratio, which we define as 

Certainly, besides rltY the limiting resolution depends on the PSF form, the statis- 
tical properties of the background, the accepted significance level of detection etc. 
However, just the above-specified dependence on $ is dominant. Photon noise plays 
main role when F > B, and in that case we have y3 w @. 

The schematic relation between 91 and the signal-to-noise ratio $, which follows 
from the most powerful test, is depicted in Figure 2. The significance level a is 
equal to 0.20. In the main version of the problem, that is double star versus single 
one (case ‘B’), we have 

If a Gaussian spot is the alternative object to the double star (case ‘A’), then 
R w @-1? (4) 

91 w $ 4 4 .  (5) 

?R w $-I.  (6) 

Finally, the limiting detectable shift of the whole object (case ‘C’) corresponds to 

Equation (6) is a generalization of the long known theorem in mathematical statis- 
tics by E. Pitman. 

4 NUMERICAL SIMULATIONS 

Although the early, one-dimensional, Monte Car10 simulations do not take into 
account many real circumstances, the corresponding results are very indicative, 
and we consider them first. 
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I 

'O' t  I 

Figure 2 Schematic representation of theoretical relation between resolution parameter 8 and 
signal-to-noise ratio $. Line A corresponds to the double star and the Gaussian spot as the 
alternative parent objects; line B - to the double and single stars as the alternative objects; line 
C - to shifting of the object a8 a whole. 

Single simulation includes the following procedures. The double star with some 
components separation 8 >_ 0 (scaled by the PSF width A) has been randomly 
blurred 'photon by photon' according to the given shape of the PSF, and then 
a random background realization has been added to obtain the image pattern. 
A sample of nearly lo6 random images was created by repeating the described 
procedures for the set of 8 values, and for every image the maximum-likelihood 
estimate of separation d was calculated. 

Figure 3 corresponds to the total object brightness F = lo4 photo-events, equal 
brightness of the components, mean background level 10 events/pixel, and the 
diffraction PSF of width A = 100 pixels. Theoretical formulae (3) and (4) pre- 
dict % M 0.10 for these conditions. As one can see from Figure 3, the calculated 
estimates are tightly distributed near the true values, when the components are 
rather far from one another, say, 8 = 0.30 or 8 = 0.15. The variance of estimates 
increases, and the single point-like object with ê  = 0 is preferred more frequently 
when the components are drawn together. After reaching some critical separation 
8 M 0.08, the sample distribution density of estimates practically does not change, 
so it is impossible to recover the parent object on the basis of the observed image. 
Therefore, one can conclude that a relative separation 8 M 0.08 is to be considered 
as limiting for the given conditions. At the now accepted level of accuracy, this 
agrees with the predicted value 82 M 0.10. Perhaps, Figure 4 gives even more clear 
evidence of the existence of the resolution limit. 

In the course of two-dimensional simulations the images of single and close binary 
stars were created by taking into account photon noise, random background, stray 
light, the pixel structure of the detector, dark current, read-out noise and spatial 
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Figure 3 Sample distribution densities of separation estimates 4 between components of a double 
star for various values of true Separation 8.  Both parameters are scaled by the PSF width. 

variations in detector sensitivity (Figure 5 ) .  According to the known sampling 
theorem by V. Kotel’nikov and C. Shannon, no fewer than 2 pixels were situated 
at the PSF radius, in order to save the small-scale structure of the image. We 
generate large-sized samples of randomly blurred images of single and binary stars, 
and obtain maximum-likelihood estimates of 6 parameters for each binary image: 
the binary’s total brightness, the relative brighthess of its components, and their 
4 Cartesian coordinates. The method of Nelder and Mead (1965) was applied for 
multidimensional optimization. 

It is convenient to discuss the experimental conditions in the context of astro- 
nomical observations. Table 1 shows one of the considered sets of such conditions. 
Note that the pixel size, 248 milli-arcseconds (mas), is larger than all three values 
of the true separation between the components. Nevertheless, the ‘wings’ of the 
components’ images allow us to estimate their separation in all three versions down 
to approximately 50 mas (Figure 6), whereas formulae (3) and (4) give ?,h E 700 
and sJ1 w 60 mas for the data in Table 1. 

A satisfactory agreement between theory and numerical simulations has also 
been found for other values of signal-to-noise ratios. The accompanying simulations 
of singkstar images allow the limiting photometric and positional accuracy to be 
estimated for real light detectors. These results are also in agreement with the the- 
oretical conclusion (6) that the relative accuracy of the above estimates is inversely 
proportional to the signal-to-noise ratio. 
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Figure 4 Relation between the mean value of the separation estimates (4) and the true separation 
8 of the double star components. 

10' 

' 0  1 

5 

15 8 
15 0 

1 2 1  l4 2 4 6 8 I 0  12 

Figure 6 Intensity distribution in the image of the double star with component separation of 
100 mas (above) and corresponding contour map (below). Fragment is depicted of size 14 by 14 
pixels; the pixel size is equal to 248 mas. 

5 CONCLUDING REMARKS 

We have considered above the case of a dear or slightly obscured aperture, when 
the diffraction image is the classical Airy pattern or a somewhat changed one. Both 
for theory and practice, it would be of interest to answer the question: is it possible 
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I1 111 

Figure 6 Coordinate estimates of bright (crosses) and weak (points) components of a double 
star under obserntional conditions, specified in Table 1. MilliaK.seconds (mas) are shown along 
both axes; the size of squares corresponds to the pixel size. Rows correspond to three values of 
the true components separation: 200, 100 and 60 mas; columns correspond to the cases: (I) the 
PSF is completely known, (11) the analytical form of the PSF is given; wme free parameters are 
estimated; (111) information about the PSF is lacking. In each case, a sample of 100 independent 
image realizations was processed. 

to reach a deeper resolution by using an arbitrary aperture shape, in other words, 
with the help of suitable apodization? 

The interferometrie observations of A. Michelson (1920) with two slits, and 
subsequent similar investigations show that some gain in resolving power can be 
obtained, even in visual analysis of an image. In order to use more interferometric 
fringes, one should make the slits as narrow its possible. On the other hand, since the 
resolution parameter 92 strongly depends on the signal-to-noise ratio, it seems quite 
probable that some optimal apodization exists given a priori information about the 
object under investigation. The corresponding study is now in progress. 
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Table 1. Model observational conditions. 

Characteristics Value 

Magnitudes of the binary's components 9.0m, 10.0'" 
Angular separation between components 
Polar angle of the weak component 
Magnitudes of the comparison stars 
Telescope aperture 60 cm 
Linear central obscuation 0.25 

Overall transparency 0.50 
Central wavelength 6500A 
Spectral bandwidth 400A 

Stray light 23.0'" arcsec-2 
Pixel size of the CCD 
Mean quantum efficiency of the CCD 
Standard deviation of quantum efficiency 
Dark current 
Read-out noise (rms) 

200,100, 50 mas 
60" 
7.0, 4.0 

Exposure time 10 s 

Sky background 21.0'" arcsec-a 

9 x 9 p m  
0.33 events photon-' 
3% 
0.2 events s-l pixel-' 
15 eventh pixel-' 
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