
This article was downloaded by:[Bochkarev, N.]
On: 11 December 2007
Access Details: [subscription number 746126554]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

Asymptotic structure of MHD winds and jets
J. Heyvaerts a; C. Norman b
a Observatoire Astronomique, Université de Strasbourg, Strasbourg, F
b Johns Hopkins University and Space Telescope Science Institute, Baltimore, MD,
USA

Online Publication Date: 01 August 2001
To cite this Article: Heyvaerts, J. and Norman, C. (2001) 'Asymptotic structure of

MHD winds and jets', Astronomical & Astrophysical Transactions, 20:2, 295 - 302
To link to this article: DOI: 10.1080/10556790108229714
URL: http://dx.doi.org/10.1080/10556790108229714

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556790108229714
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:1
9 

11
 D

ec
em

be
r 2

00
7 

Astronomical and Astrophysical Transaction#, 2001, 
Vol. 20, pp. 295-302 
Reprints available directly from the publisher 
Photocopying permitted by license only 

02001 OPA (OWICU?M Publishers Association) N.V. 
Published by license under 

the Gordon and Breach Science Publishera imprint, 
a member of the Taylor & Francis Qroup. 

ASYMPTOTIC STRUCTURE OF 
MHD WINDS AND JETS 

J. HEYVAERTS' and C. NORMAN2 
' Observatoire Astronomique, Universite' de Stwbourg, Strasbourg, F. ' Johns Hopkins University and Space Telescope Science Institute, Homewood 

Campus, Baltimore MD, USA. 
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We describe asymptotic solutions for stationary, axisymmetric, perfect MHD, polytropic winds, 
both classical and relativistic. They are expressed as field-region solutions and current-carrying 
boundary layer solutions smoothly joined by esymptotic matching. The vicinity of the polar axis 
is one of these boundary layers. In general, the boundary layers are null surfaces. It is argued that 
the boundary layer regions, in particular the axial one, should stand out observationally because of 
their larger density and activity. We associate the axial boundary layer with a jet. Current closure 
is self-consistently achieved in these solutions, which we obtain both in the case of vanishing or 
non-vanishing circumpolar asymptotic current. It iS shown that the total current about the polar 
axis is simpIy related to the set of the five first integrals which daracterim the flow and that 
non-vanishing values of this quantity are not available to all winds, but only to a reetricted class 
which we present here. We show that winds of this class separate clearly into an axial jet and a 
circum-equatorial conical wihd. 

KEY WORDS Jets, winds, MHD 

1 INTRODUCTION 

Rotating MHD winds are of interest in accretion disk and outflow physics because 
of the role played by Lorentz stresses in the transport of angular momentum and in 
plasma acceleration and jet axial focusing. This communication describes in some 
detail the asymptotic structure of such flows. 

Actual jets are certainly of a finite extent, non-stationary, non-axisymmetric and 
dissipative (due to MHD instabilities that are likely to develop in them). Our study 
nevertheless considers perfect MHD, stationary, axisymmetric polytropic flows. We 
expect this idealized model to share with actual MHD winds some global properties 
of its gross structure, such as the large scale properties of its electric current cir- 
culation and the existence of associated boundary layers in the asymptotic region 
which we discuss below. Details of the magnetic flux distribution certainly differ 
both in reality and in theoretical models. The study of the latter is justified by 
their relative simplicity and the expected robustness regarding global structures. 
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296 J. HEYVAERTS AND C. NORMAN 

2 NOTATION AND BASIC PRINCIPLES 

Axisymmetric MHD structures are best described in cylindrical coordinates (r, 8 , ~ ) .  
Magnetic field lines as well as flow lines are drawn on a set of common surfaces, on 
which a flux function a(r, z) assumes a constant value, which can be used to label 
them. Perfect, axisymmetric, stationary, polytropic flows conserve five so-called 
first integrals following the motion. These quantities are then functions of the flux 
variable a only. We note them as Q(a), a(a), Q(a), L(u), E(u). They are defined 
by: 

Here the subscript P denotes the poloidal part of a vector, is the permeability 
of free space, G Newton's constant, 7 the polytropic index, p is the proper mass 
density, P the associated pressure, t) is the plasma velocity, B the magnetic field, 
the Lorentz factor and M, the mass of the wind-emitting point source. The function < is defined by ca(y - 1)(E - 1) = yQp7-l. For relativistic flows, unlike for classical 
ones, 33, as defined by eq.(1.5), includes the rest mass energy. The Alfv6n radius is 
given by rA(a) = (L/R)1/2 and the Alfv6n density is given by PA(Q)  = po(w2. The 
component of the equation of motion normal to  magnetic surfaces, the transfield 
equation, does not integrate in the form of a first-integral. It determines the shape of 
magnetic surfaces. The five first integrals, supposedly known here, are determined 
from boundary conditions and from the dynamics of the flow in an extended, but 
Snite, region about the wind source. 

3 GENERAL FOCUSING PROPERTIES OF POLYTROPIC MHD WINDS 

It has been shown that axial asymptotic focusing is a general property of such poly- 
tropic flows, both classical (Heyvaerts and Norman, 1989) and relativistic (Chiueh, 
Li and Begelman, 1991). Intense heating, or isothermality, may lead to  different re- 
sults. These conclusions rest on consideration of the Bernoulli Eq. (1.5) and result 
from the obvious statement that neither the Poynting flux carried by the wind, nor 
its kinetic energy flux, can exceed the total energy flux. These conditions can be 
used to constrain the asymptotic shape of magnetic surfaces, though not to explic- 
itly calculate them, which we do here. Our general results (Heyvaerts and Norman, 
1989) indicated that, in the classical regime, 
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(1) No magnetic surface can asymptotically bend towards the equator. 
(2) Flaring magnetic surfaces carry no electric current to infinity between them. 
(3a) If lim(pr2) # 0 on them, they enclose a finite total current. 
(3b) If not, this current vanishes. 
It results that two different types of winds may be distinguished, based on their 
asymptotic properties. 
I. Winds which carry a finite electric current and a finite total Poynting flux to 
infinity in a circumpolar region consist of cylindrical magnetic surfaces possibly 
nested in flaring magnetic surfaces. 
11. Winds which carry a vanishing electric current to infinity in any space bounded 
by flaring magnetic surfaces. In this case the energy flow at infinity is all in kinetic 
energy form. It has been shown that then all magnetic surfaces are asymptotic to 
a set of nested paraboloids. 

4 PENDING QUESTIONS 

Many questions are left unanswered by these general results. In particular it could 
be asked whether the asymptotics really are of type I or I1 above. If it is of type 
I what is the actual value of the total asymptotic current? How does the current 
system close in the asymptotic domain, and what exactly is the shape of mag- 
netic surfaces far from the wind source? Although our previous work (Heyvaerts 
and Norman, 1989) gave partial answers and locally valid solutions, a complete 
self-consistent and space-filliig solution was still to be obtained. We present here 
answers to a number of the above questions, both for classical and relativistic winds. 

5 ASYMPTOTIC TRANSFIELD EQUATION AND FLOW STRUCTURE 

Examination of the dominating terms in the transfield equation show that, for 
classical winds, the hoop stress force density j ,  x Be and the gradient of the gas 
pressure force dominate over the centrifugal force, the poloidal magnetic pressure, 
the curvature inertia force and gravity on any flaring magnetic surfaces, and more 
generally on any asymptotically cylindrical surface with a radius r,(a) much larger 
than its Alfvdn radius. A very small, or vanishing, polytropic entropy Q(a) may 
upset this ordering, in which case the poloidal magnetic pressure would replace the 
gas pressure as the second major term. Fbr relativistic flows, the electrical force 
remains a major part of the mechanical equilibrium. Keeping gas pressure as one 
of the two dominant contributions, the asymptotic form of the transfield equation 
becomes, for classical as well as for relativistic winds: 
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where n is the unit vector normal to the local magnetic surface. F’urther attention 
shows that the second term, which in the classical case represents hoop stress, 
dominates over pressure everywhere except in a small vicinity of magnetic surfaces 
where it vanishes, i.e. near the polar axis, where T = 0, and near null magnetic 
surfaces, where a becomes infinite. The polar axis and null surfaces are places where 
the hoop stress force density vanishes, since Be vanishes. Actually no azimuthal 
field is built up by rotation on such surfaces. Note that this implies that the 
electric current closes exactly in cells bordered by null magnetic surfaces or the 
polar axis. If the general field structure is endowed with a dipolar type of symmetry, 
the equatorial plane is a null surface, and, in this particular case, the only one. We 
restrict ourselves to this situation in the following for simplicity. Therefore, the 
asymptotic domain consists of large ‘field-regions’ in which the transfield equation 
simply reduces to 

pr2n 

POa 
(7Z.V) - =o, (3) 

bordered by a circumpolar region and regions about the null surfaces where gas 
pressure must be taken into account. If for some reason the latter is too small 
or vanishes, or if the ratio rm/rA is not large enough, other forces might have to 
be considered too. Equation (3) expresses the vector relation n - ( j  x B) in the 
classical case and n (p,E + j x B) in the relativistic case, pe being the electric 
charge density. 

6 SOLUTION IN THE FIELD-REGION OF CURRENT CARRYING WINDS 

Wherever valid, Eq. (3) expresses constancy on an orthogonal trajectory to the 
magnetic surfaces of (pr2Q/hocu). This quantity represents the poloidal current 
enclosed in magnetic surface a, lm(a ) ,  in the classical case and I,(a)/qm(a) in 
the relativistic case, Tw being the asymptotic value of the Lorents factor on this 
surface. Labeling these orthogonal trajectories by a variable b, Eq. (3) can thus be 
generally written a9 loo(a)/Tm(a) = K(b).  If K(b) is to approach a non-vanishing 
limit, K,, this equation reduces, for a certain function S(a), to  an Hamilton-Jacobi 
equation of the form IVS( = l / r .  This is the eikonal equation for the propagation 
of waves in a medium with a refractive index N = 1/r. The orthogonal trajectories 
to lines of constant S, that is of constant a, can then be simply found by ray- 
tracing methods, starting perpendicular to the polar axis and ending perpendicular 
to the equator. Detailed analysis shows that these lines are circles centered on the 
axis. Imposing the boundary condition at the equator shows that they are in fact 
centered at the origin, which shows that magnetic surfaces flaring out to infinitely 
large radial cylindrical coordinates are in this case conical. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:1
9 

11
 D

ec
em

be
r 2

00
7 

ASYMPTOTIC SOLUTIONS OF MHD WINDS 299 

7 WKB ANALYSIS OF PARABOLIC WINDS 

If the integration constant K(b) approaches zero as the radius of the orthogonal 
trajectory grows large, explicit integration of the asymptotic transfield equation is 
not possible in a general form. However if K(b) declines to zero only very slowly, 
which can be shown a posteriori to be so, it is possible to work out a WKB type 
of approximation to the solution. Trajectories orthogonal to magnetic surfaces are 
regarded as being locally circles centered at the origin, the radius R of which can 
be taken as the as yet unspecified variable b. The distribution of flux along such a 
circle, represented by the angle $(a, R) at which the flux variable takes the value 
a, slowly changes as R grows larger. This distribution is found to be given by: 

(4) 
A similar result is readily obtained in the classical case by taking the appropriate 
limit, taking care of the different definition of &(a). Cylindrical magnetic surfaces 
exist, nested in flaring ones, if K ( R )  approaches the non-vanishing constant K,. 
Their radius rm(a), supposedly large compared to the Alfdn radius, is given by 

A similar result applies to the classical case. This however can be solved for the 
asymptotic structure only in the field-regions and leaves open the determination 
of K(R)  and ro. We outline below solutions in the polar and equatorial boundary 
layers and will match them to the field-regions, resolving these indeterminacies. But 
we need to discuss first the asymptotic value of K(R).  

8 THE VALUE OF THE ASYMPTOTIC CURRENT 

If K(R)  approaches a finite limit for large R's, a cylindrical region has to be nested 
inside an asymptotically conical one. These two regions of different geometry have 
to join smoothly at some value a, of the flux variable in such a way that the 
solution globally fills all space. This implies that r,(a) diverges as a approaches a, 
from below, as tan($(.)) should also behave as a approaches a, from above. Both 
conditions are granted if the integrals which appear on the right hand side of Eqs. 
(4) and (5) diverge for a approaching a,. This requires that, for such a solution to 
exist at all, the square root denominator has a double zero at a,, implying the exact 
vanishing of the asymptotic wind velocity on this particular flux surface, obviously 
because of the extreme divergence of the cross section of any flux tube containing 
it. 
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300 J. HEYVAERTS AND C. NORMAN 

This shows that such a solution exhibits two well separated sub-structures: a 
polar jet of cylindrical structure, which is current carrying and thus hoopstress 
focused, and an equatorial wind of asymptotically conical geometry. These two 
rather distinctive flows are separated by a region of very small, and in fact vanishing, 
wind speed. 

Since the argument of this square root denominator in (4) and (5) has to remain 
positive, it is concluded that the actual value of the constant Ko3, if not zero, must 
be the absolute minimum of the function a(E - ca)/n: 

In the classical case, this should be read as giving the total electric current carried to 
infinity, Im, being the minimum value of crE/O. Since in general the first integrals 
vary linearly with a near the polar axis, this minimum should not be located at 
a = 0. 

9 THE POLAR BOUNDARY LAYER 

Regions where gas pressure has a marked influence on the mechanical equilibrium 
must be geometrically thin in the cme of polytropic winds, since any wind expansion 
reduces the pressure. This is the reason why they can be treated as boundary layers. 
They must be located wherever the hoop stress force is due to vanish, i.e. near the 
polar axis and null surfaces. The structure of the polar boundary layer is then that 
of a pressure-supported plasma pinch column, described by equation (2). To solve 
for it we further assume that the five first integrals are almost constant over this 
region. Noting quantities evaluated at the polar axis by a subscript 0, equation (2) 
can then be reduced to 

which can be solved, coupled to the mass conservation Eq. (1.2) and the asymptotic 
form of the Bernoulli Eq. (1.5), in terms of the parameter x defined by p = po(R) z. 
This gives: 

The axial density, a constant for cylindrical jets, depends on the distance R to the 
wind source for parabolically focused ones. 
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10 THE BENNET PINCH RELATION AND THE DECLINE OF THE AXIAL 
DENSITY 

The solution in the boundary layer expressed by (8)-(9) can be asymptotically 
matched to the solution (5) or (4) in the field-region. This gives rise to two relations, 
one of them, common to both asymptotic regimes, being that 

For classical winds K(R)  is just the axial current, and this then reduces to a relation 
between the gas pressure at the center of the axial pinch column and the total 
current in it, usually known as a Bennet pinch relation. The matching also gives 
the scale rg of the axial pinch (Eq. ( 5 ) ) ,  which need not been reproduced here. 
For parabolic asymptotics (case I1 of section (3)), this same matching allows us to 
determine the variation with distance R of the as yet undetermined quantity K(R) ,  
or equivalently of the axial density po(R). It is found that 

11 THE EQUATORIAL BOUNDARY LAYER 

At a null surface, the first integral a(.) diverges and again gas pressure cannot be 
ignored in the transfield balance. This region has the structure of a sheet pinch. 
Assuming the first integrals to be constant in it, except of course a(a), a solution 
can similarly be found in parametric form, and matched to the field-region solution. 
This yields a relation between K(R) and the equatorial density, peq(R) as 

MWR) = $ h Q e s R a d ( R ) -  (12) 

This is a sheet Bennet pinch relation which, in the classical case with dipolar-type 
symmetry, expresses the balance between gas pressure on the equatorial plane and 
magnetic pressure at the outer boundary of the sheet pinch boundary layer. 

12 CONCLUSIONS 

Within the framework of our approximations, which are easily met, we have ob- 
tained a complete solution of the wind and jet asymptotic structure in terms of 
the five first-integral functions. It consists of an axial ‘needle-shaped’ boundary 
layer region which has the structure of a pressure supported pinch column and a 
central density which declines only very slowly with distance, if at all. Electric 
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current returns at null magnetic surfaces, which constitute boundary layers having 
the structure of pressure supported sheet pinches. 

The density contrast of these boundary layers, at the axis or at null surfaces, 
as well as their activity, associated with the electric current flowing in them, makes 
them stand out quite distinctly on the background of the difise and low density 
field-region. Observable jets might then just be the polar boundary-layer parts of 
more extended wind structures. 

Solutions with a cylindrically focused core and a net Poynting flux output are 
not available to all winds, but only to those for which the function a(E - c2)/n (or 

in the classical case) has a flat absolute minimum at a non-zero flux value. 
In this case the wind asymptotically separates into a jet and an equatorial conical 
wind. &om our solutions, the precise shape of magnetic surfaces can be found in 
all different regions of the asymptotic domain. For lack of space, we do not describe 
here these results. 
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