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The equations of motion for the classical Poincard problem of the rotational motion of a rigid body 
with an ellipsoidal cavity containing liquid in canonical Andoyer variables have been obtain. Three 
integrable cbses of this problem were established and their full systems of integrals and general 
solutions were constructed. 

KEY WORDS Poincar6 problem, integrable cases, Andoyer variables 

1 INTRODUCTION 

Oscillations of a rotating liquid core in the cavity of a rigid envelope have been 
studied by many authors, starting from the classical works of PoincarC (1910). The 
basis of these studies usually contains the equations of motion in quasi-coordinates, 
but in recent years a new approach to the classical problem has been suggested, 
based on the equations of motion in Andoyer variables (Sevilla and Romero, 1987; 
Getino and Ferrandiz, 1997; etc.). Andoyer variables and angle-action variables (for 
the Euler-Poinsot problem) were effectively used for studies of integrability of the 
native Kirgoff problem (Barkin and Borisov, 1989). 

The papers of Sevilla and Romero (1987)’ Getino and Ferrandiz (1997) and 
others were directed to the problems of the Earth’s rotation. The principal effects 
of the liquid core in the Earth’s rotation were studied, and amplitudes of lunar and 
solar perturbations, corrected by the liquidcore iduence, were constructed (Getino 
and Ferrandiz, 1997). The purpose of the above-mentioned papers was to give an 
analytical description of the Earth’s rotation effects and the authors naturally used 
some simplifications of the equations of motion. 

In this work we consider an exact treatment of the classical PoincarC problem 
in Andoyer variables to study integrable cases of this problem. 

The canonical equations of the Poincare problem in Andoyer variables were 
obtained. Three cases of the integrability of these equations have been identified 
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770 J. FERRANDIZ AND Yu. BARKIN 

and studied for which the equations of the problem are reduced to a one-degree-of- 
keedom system. The full system of first integrals and quadratures was obtained. 
One of them is the Poincarb case of an axysimmetric body and liquid core and the 
other two are generated cases, for which the ellipsoidal cavity is a thin disk. 

2 CANONICAL EQUATIONS 

Let us consider the rotational motion of a rigid body with an ellipsoidal cavity of 
a homogeneous incompressable liquid about its centre of mass in the field of an 
arbitrary external forces. 

Let C X Y Z  be a Cartesian reference system with the origin at the centre of mass 
C of the body, the axes of which are fixed in space. Cxyz is a reference system the 
axes of which are directed along the principal central axes of inertia of the body. A,  
B and C are the principal moment’s of inertia corresponding to the axes Cx, Cy 
and Cz. 

The body is a composition of two bodies: P, is a rigid envelope (mantle) and P, 
is a liquid ellipsoidal body (core) situated in an ellipsoidal cavity of the mantle. We 
assume that that corresponding axes of the ellipsoid coincide with the coordinate 
axes Cx, C y  and Cz and their semiaxes are equal to a,  b and c, respectively. We 
assume also that for the mutual positions of the mantle and core the coordinate 
axes Cx, Cy and C z  are principal central axes of inertia for the mantle, for the core 
and for the full mechanical system. 

For variables and parameters of the full body we will not use any indexes, but for 
the mantle and core characteristics (parameters and variables) here we use notation 
with indexes m and c, respectively. 

Let us denote the axid moment of inertia of the full body, of the mantle and 
the core as: A,  B, C; A,, B,, Cm; A,, B,, C,; and let F,, E,, D, be the con- 
stant characteristics of the core similar to the products of inertia. Due to these 
assumptions we have the following simple relations (PoincarB, 1910): 

A = Am + A,, B = Bm + B c ,  C = Cm + Cc, ( 3 )  
1 1 
5 5 5 

A ,  = -m,(b2 + c2), B, = -m,(a2 + c2), C, = 1m,(u2 + b 2 ) ,  
2 F, = -mcbc, 
5 

2 E, = gm,uc, 
2 D, = -m,ab, 
5 

where m, is the mass of the liquid core. 
The orientation and rotation of the envelope Pm are given by the Euler angles 

and components of the angular velocity of its rotation Wm, with respect to the 
reference system C X Y Z :  

*my ern, a m ;  pm, Qrn, rm- (3) 

For a description of the relative simple motion of the liquid (in Poincarb’s sense) 
in the cavity P, we introduce a new reference system Ccx,y,z,, related to the core. 
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ON INTEGRABLE CASES OF THE POINCARE PROBLEM 771 

Its orientation and rotation we d e h e  by the Euler angles. To save the symmetrical 
notation of the variables let us suppose that the reference system Ccxcyc~c is the 
basic system and the other Cxyz system is rotating with a definite angular velocity 
vector wc with respect to the first. The corresponding Euler angle and projections 
of the vector wc on the axes Cxyz we denote as: 

*c, Oc, 9,; pc, Q C l  Tc. (4) 

From a geometrical point of view the variables (3), (4) are simiiar. The components 
pcl qc, rC, defining the vector wc, differ from the classical PoincarC notation by a 
sign (PoincarC, 1910). In (3), (4) * is the angle of precession, 0 is the angle of 
nutation, @ is the angle of intrinsic rotation, and the components of the angular 
velocities are defined by the following kinematical Euler equations: 

p, = sin a, sin @,!is + cos a,&, 
qs = cos a, sin o,@, - sin @,6,,, 
r ,  = cos @,$, + is (s = m, c). (5) 

The kinetic energy of the body with the liquid core in the variables (3), (4) is given 
by the known expression (Poincar6, 1910): 

2T = A p ~ + B q ~ + C r ~ + A c p :  +Bcq: + C C ~ : - 2 F c p m p c - 2 E c q m q c - 2 D c ~ m ~ c .  (6) 

Let us assume that the body moves under the action of potential forces with force 
function 

The canonical momentum conjugated to the introduced generalized coordinates (to 
Euler angles) are defined: 

u = u(*m, Qm, am, *c, Oc, @c, t) .  (7) 

dT 
a*., pq, = - = A, sin 0, sin 9, + p, sin 0, cos @, + us cos O,, 

dT 
a Q s  

p e ,  = - = A, cos 9, - p, sin 9,, 

aT 
PO, = - = u, a@, (s = ,c) 

For simplicity here and below we omit the f i s t  index (m) of variables, putting 
s = ( ,c) .  ht this case: 

X = APm - Fcpc, p = Bqm - Ecqcl u = CTm - D C T C  

and 
Xc = Acpc - Fcpm, ~c = Bcqc - Ecqm, uc = Ccrc - DcTm 

are the projections of the vector of the full angular momentum of the body with 
liquid core (9) (with respect to its centre of mass) and of the vector angular momen- 
tum of the liquid core (10) (with respect to the centre of mass of the liquid core) on 

(9) 

(10) 
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772 J. FERRANDIZ AND Yu. BARKIN 

the axes of the Cartesian reference system Cxyz and Ccxcyczc, respectively. In the 
canonical variables (4), (5), (8), the equations of motion of the Poincar6 problem 
have the following form: 

d(*s, @,, @,I - dK - 
dt a h ,  , PS, I P*,) ' 

On the basis of formulae (5)-(10) for the Hamiltoman K we obtain the following 
expression: 

where 

G, = Jpze, + p i ,  + cos ehS(p(p \ua  - Po, cos 0,)'. (13) 

The constant coefficients in the Hamiltonian (12), (13) are defhed by: 

cc 
A3 

N = - ,  B C  M = - ,  AC A = -  
A1 ' A2 

B M -- A A, = - 
A1 ' 

Ec FC P, = - 
A1 ' 

c N, = -, '- AZ' A3 
DC P, = - 

Q c = z ,  A3 ' 

Remark. From the differential equations (11)-(14) the classical equations of the 
Poincar6 problem, including the Helmgolz equations, are obtained directly. 

3 CANONICAL EQUATIONS IN ANDOYER VAFUABLES 

Let us fullfil the canonical transformation from variables 

qS, Q,, @$; P-P,, p e , ,  paa (s = , C )  
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ON INTEGRABLE CASES OF THE POINCARE PROBLEM 773 

to Andoyer variables (Andoyer, 1923) 

This canonical transformation of variables is discussed in many papers and more 
details are given by Barkin (in press). Here we will not give a description of these 
variables, referring the reader to the above paper, or many other. Here we give only 
the main and simple form of this canonical transformation: 

A, = Gs sin 8, sin I,, p, = G, sin 6, cos I,, us = G, cos 8, (s = , c) ,  

where 

The Euler angles q,, O,, a, and the direction cosines of the axes of the body Cxyz 
are expressed in Andoyer variables by known formulae (Barkin, in press). 

As result we obtain the following canonical form of the differential equations of 
the PoincarC problem: 

with Hamiltonian 

- U(k9, h, L, G, H; L g c ,  hc, Lc, Gc, Hc; t). (18) 

Here 8 and 0, are the angles between the vectors of the angular momenta of the 
body and of the liquid core G and G, and the corresponding coordinate axes C z  
and Cz,: 

Equations similar to (17)-(18) were effectively used in studies of unperturbed and 
perturbed Earth rotation (Getino and Ferrandiz, 1997). For these studies some 
simplification and reduction of the equations of the motion were used. Here we 
consider prelimanary studies of the integrability of these equations in an exact 
treatment of the problem, but we wil l  be restricted to the case of the free motion 
of a body in the absence any force action (in this c a e  U = 0). 
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774 J. FERRANDIZ AND Yu. BARKIN 

4 CASES OF REDUCTION OF THE PROBLEM TO ONE DEGREE OF 
FREEDOM 

The problem (17), (18) is obviously reduced to a one-degree-of-freedom system if 
the following conditions are satisfied: 

(19) 

(20) 

A,  B, A B F, E, --- --- --- - - - 
A1 A2' A1 A2' A1 A2' 

A1 = AA, - F:, A2 = BB, - E,". 

If we use the simple canonical transformation 

1 - I ,  = A, L = A, 
L + L, = A, I, = A,, 

the Hamiltonian of the PoincarC problem will be 

+ %J=,/Gt - (A, - A ) ~ c o s A  + -A(& DC - A). 
A1 A3 

Here for more generality we will consider the integrable cases of the problem (21) 
from formal point of view, assuming that the problem parameters (a, b, c; A, B,  C) 
admit arbitrary values independently from their mechanical sence. 

The following integrable cases of the Poincark problem can be established di- 
rectly as a result of analysis of the expressions of the Hamiltonians (18), (21). 

Integrable cases (parameters a, b, c; A,  B,  C). 

I. Relations: a = b, A = B. 
Values of other parameters: 

1 2 2  A, = B, = -m,(a2 + c2) ,  C, = -mca , 
5 5 

2 2 2  F, = E, = -m,ac, D, = -m,a , A ,  = B,. 
5 5 

Arbitrary parameters: a, c, A,  C. 

11. Relations: c = 0, a = b. 
Values of other parameters: 

c c  1 2 2  A,  = B, = - - - -m,a2, F, = E, = 0, D, = -m,a 
2 5  5 

Arbitrary parameters: a, A, B,  C. 
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ON INTEGRABLE CASES OF THE POINCARE PROBLEM 775 

III. Relations: c = 0, A = B. 
Values of other parameters: 

1 1 1 
B, = -m,a2, 

5 5 
A, = -mcb2, C, = - p ( a 2  + b2) ,  

2 2  1 F, = E, = 0, D, = -m,a , A ,  = B m  = -m,(a2 - b 2 ) .  
5 5 

Arbitrary parameters: a, b, A, C 

So for all these cases of integrability of the Poincarb problem we have four 
arbitrary parameters. 

5 POINCARECASE 

Case I of the integrability of the problem was noted by Poincarb. Here we obtain 
quadratures of this problem using our approach to the problem on the basis of the 
equations in Andoyer variables. 

First we note that the parameter relations for case I present the general case 
when conditions (19) are satisfied. In fact from equations (19) we have: 

A A ,  A, F, b 
B B, B, E, a 
--------_ - - - - =x. 

Let us show that the constant x is equal to 1. 

sions (20) give 
In fact from equations (19) we have Al/A2 = x, but relations (22) for expres- 

This means that all equations (19), (20) are satisfied only for one case x = 1 and 
we obtain the conditions for the first case of the integrability of the Hamiltonian 
problem (18). 

Now we obtain the quadratures of the first case (for Poinwb case). 
Introduce a new notation for the parameters of the problem and present the 

Hamiltonian of the problem (21) in the following compact form: 

where 

v(A, A,) = A2 + - A)2 + BA(Ac - A), 

$(A, A,, G, G,) = 7 J Z G G J G t  - (A, - A)2 (24) 
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776 J. FERRANDIZ AND Yu. BARKIN 

and 6, b,, k ,  a, P,  7 are constant coefficients: 

C C  - A, k =  
A b, = A,  b =  

AA, - F,2' AA, - F,2' CC, - 0,' AA, - F," 

A, = AA, - F:, A3 = CC, - Df = C-C,. 
Canonical equations corresponding to the Hamiltonian (23)-(25)can now be de- 
scribed in the following form: 

dG - = 0, - = bG + - k -  COSX, 
dt 2 dG dt 

- 0, dt dt 2 aG, 

dg 1 a$ 

-- -- dgc 1 dGc - 6,GC + - k -  cos A, 

] d$ -0 ,  -- dt - I ~ [ $ + K C O S X  , -- dX, 1 

d A 1  - = -k$SinX. - = -  dX l k  [-+-cosX dp a+ 
dt 2 a A  dA ] dt 2 (26)  , 

Equations (26) are integrated very easily. They admit the following first integrals: 

A, = A!?, G = Go, G, = G!?, K = KO. (27) 

Here (and below) the index '0' denotes the initial (constant) values of the corre- 
sponding variables and Hamiltonian. 

The fourth integral in (27) can be described in the reduced form: 

C P ( ~  A,) + +(A, A,, G, Gc) cos = C O Y  (28) 

where co is a reduced constant of energy 

2K0 - bGo2 - bcG:2 
k c o =  

From equation (28), (29) we obtain the simple relations: 

Using these equations we can write the equation for the variable A in the form 

dA 
A f- = dT, 

where r = ( 1 / 2 ) k t  is the new independent variable and 

A = a4A4 + a3A3 + a2A2 + a l h l +  ao 
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ON INTEGRABLE CASES OF THE POINCARE PROBLEM 777 

with constant coefficients: 

Equation’s (31)’ (32) define the dependence of the variable A on time. From the 
other equations of the system it is easy to define the dependencies of the variables g, 
g,, A, A, on the variable A. After some algebra the final quadratures of the Poincard 
problem are given by the formulae: 

Ao 

where 

6 CASE11 

In Andoyer variables (16) the Hamiltonian of this case of integrability is described 
as: 

K = K(L ,  Lc, G, Gc, I ,  - 9  - t  -1 
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778 J. FERRANDIZ AND Yu. BARKIN 

1 + -(GZ - L:) 
B 2.4, 

C 1 
2cmCc C7lZ 

+ -L; - -LLc. (35) 

The general solution of equations (17) with Hamiltonian (35) are given by the 
following first integrals and quadratures: 

I, = 12 + L, (- C - -) 1 (t - t o )  

CmCc A, 

where 

and 
1 

co = (GZ - LZ)- + (& + ') Lz - 2K0. 
A, C773 

In (36), (37) lo,go,1:,g:; Lo,Go,L:, G: are a full set of arbitrary constans of inte- 
gration. 
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7 CASE I11 

In this case we have the following expression for the Hamiltonian: 

K = K(L ,  L c ,  G, Gc, L, - 7  - 1  -1 
1 1 cc 1 
2 A 2A3 2 

= -(G2 - L 2 ) -  + -L2 + -(G: - L:) 

C DC + -Lg - -LL,. 
2A3 A3 

Solving the integral of energy K = KO we obtain an expression for the variable L, 
as a function of the variable I,: 

L,(l,)= ( 2 f A )  ( z - x - -  c sin2 1, cos2 I ,  
BC 

where 

2- L2D2 -_--- C sin21, cos21c) [(s?:l, I cos21c) G: +fa ] 
' = / A :  ( A3 Ac BC Bc 

with a constant 
1 c c  
A A3 

Q = (G2 - L2)- + -L2 - 2Ko. 

The general solution of this case of integrability is given by the following integrals: 

Go 
9 = go + -$t - t o ) ,  

LD 
A3 

I ,  = I!," - L ( t  - t o )  f G, 

1: 

1,  

g,=g,"kG,/  (% 
L = Lo, 
G = Go, 

G, = G:, 

1: 

1. 
(G: - Lg(1,)) sin 1, cos 1, dl, 

L,=L;*(~--$J  18 J WC) (39) 
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Together with the full set of arbitrary constants of integration: l o ,  go, 12, g,", LO, 
Go, L:, G:. 

Inversions of the full systems of integrals for all integrable cases (33), (34), (36)- 
(38), (39) can be given as elliptical functions. 
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