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The crossing of two dust shells is considered as a simplified model for shell crossing during the 
spherically symmetric collapse of dust. Israel formalism is applied to study the gravitational 
collapse of two thin shells. The Schwarzschild coordinates are used for r > 2m and Kruskal 
coordinates for r < 2m. 

KEY WORDS General relativity, thin shells, models 

1 INTRODUCTION 

The dynamics of thin shells of matter in general relativity gas been discussed by 
many authors. Our approach is similar to that used by Israel (1966) and Kuchar 
(1968) for the study of collapse of spherical shells. Israel (1966) found invariant 
boundary conditions connecting the extrinsic curvature of a shell in space-time 
on both sides of it, shell with the matter of this shell. In this paper we study 
two thin shells of dust. In Section 2, we give the general formalism. In Section 
3, this formalism is applied to two thin shells in the Schwarzschiid space-time and 
the equations of motion for shells in Kruskal coordinates are given in Section 4, 
with the results concerning the shell crossing under the horizon in Section 5. The 
basic equation for the spherical shell in the different forms have been given by Lake 
(1979), also see F'rauendiener (1995), Langer (1987) and Sat0 (1983). 

2 THE FORMALISM 

Let the time-like hypersurface C, which divides the Riemannian space-time M. 
into two regions, M -  and M+, be the history of a thin spherical shell of matter. 
The regions M -  and M+ are covered by the mutually independent coordinate 
systems X_" and XT. The hypersurface C represents the boundary of M -  and Mi 
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450 J. LANGER AND A. EID 

respectively; consequently the intrinsic geometry of C induced by the metrics of 
M -  and M +  must be the same. Let C be parametrized by intrinsic coordinates 
p, given by 

xy = xy(<Q). (1) 

(Greek indices refer to Cdimensional indices, Latin indices refer to 3-dimensional 
indices on C). The metric has signature +2, and the Newtonian gravitational 
constant and light velocity are equal to unity as a consequence of the choice of 
units. The basic vectors e, = tangent to  C have components 

with respect to the two four-dimensional coordinate systems in M -  and M+ 
Their scalar products define the metric induced on the hypersurface C, 

The metric induced by the metrics of both regions M -  and M+ must be identical, 
g,fb(<) = g,b(<)  gab(<); this condition must be fulfilled when we want to join two 
regions of space-times on the hypersurface. The condition is stated independently 
of coordinate systems in M -  and M+. The unit normal vector n to C will have 
components n,f satisfying 

n.nl+ = 1. (4) 

We suppose n to be directed from M -  to M'. The manner in which C is bent in 
space M -  and M+ is characterized by the three-dimensional extrinsic curvature 
tensor 

where D/sb  represents the absolute derivative with respect to tb. 
The surface energy-momentum tensor tab is determined by the jump [Kab] = 

K,fb - K S .  The C represents the history of a surface layer (a singular hypersurface 
of order one) if Ko+b # K S .  

The Einstein equations determine the relation between the extrinsic curvature 
Ko+b and three-dimensional intrinsic energy-momentum tensor (tab = tapegef) 

(6) 
1 

[Kab] = --8r(tab - stgab), 

where t = tz. We can write this relation in the form 

1 
87r tab = --([Kab] - gab[K]), 

where [K]  = gab[Kab]. These are the field equations for the shell. 

(7) 
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ON THE CROSSING OF THIN SHELLS 451 

3 THE MOTION OF COLLAPSING TWO CONCENTRIC SHELLS 

3.1 

The shell is spherically symmetric. Therefore, the space-time outside the shell can 
be described by the line element, 

The Motion Of One-Shell In Schwarzschild Space 

ds2 =-f dt:+ f-'dr:+r:dR2, (8) 

where 
dR2 = do2 + sin2 0 dd2, 

is the line element on the unit sphere and 

2 n  
f=l-- ,  

T 

where m is the gravitational mass in the exterior space. Inside the shell space-time 
is flat, i.e. f = 1. As exterior and interior coordinates, we use XT = (t+,r+,0,4) 
and XE = ( t - ,  r-, 0, d), respectively. 

The intrinsic coordinates on C are the proper time r measured by the comoving 
observer on the shell and the spherical angles 0,d: Ea = (r ,0 ,4) .  Let the equation 
of the shell be (the condition (3) implies the continuity of r on the shell), 

r* = R(r). 

We get from (2) and (4) 

e:* = @+,A, O,O), 
e;* = (0,0,1,0), 
e;* = (O,O, 0,117 

and 

nu* = ( - f i , i + , O , O ) ,  (9) 

where a dot represents the derivative with respect to proper time, prime the deriva- 
tive with respect to R, and R is the radius of the shell. 

Thus the three-dimensional metric tensor on C is 

gab = (-1, R2, R2 sin2 0). 

From (5) we get the extrinsic curvature Ka+b in M -  and M+, 
. .. .. . 

KYT = Rt- - Rt-, 
KG = Rt-, 
Ki4  = Rt- sin2 0, 
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KT, = -t+R + Ri+ - -t+[r: 1. f f '  - 3f- 1 f ' R 2  3, 2 
K& = fRi!+, 
K& = f Rt'+ sin2 8. (10) 

We suppose that the three-dimensional energy-momentum tensor has the form 

tab = p g a b  + (p + a)UaUb, 

where a is the surface density and P is the surface pressure. 
Therefore the components of tab are 

1 .  
t,, = -(t+ f - i-), 

4IrR 

tee = -- R 2 [  H +  f't+ . (7 - - -ft$ f . )  +-(i- R 1 - fi+) 87r 

where 
H = h(L - i!+) + R(f+ - L). 

Because r is a proper time on the shell the conditions 

t+ = f--ldf +R2, (12) 

must be fulfilled. Supposing t,, = a and tee = t&+ = P ,  we get from (12) and (ll), 

41rRa = JTtriz - JG, (134 

[ m f i  + El, (13b) 
1 

87rR2P = 
Gfi 

where 
E = R(RR - f i J G ) ( d S  - 4 G ) .  

We put (13a) into (13b) to get the relation between the surface pressure and the 
surface density in the form 

( 14) 
R R -  fifi 

p =  87rR2;= + ( 2J1+R2Jf+Rz 
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ON THE CROSSING OF THIN SHELLS 453 

In the case of dust P = 0, and U" = (l,O,O); then the equation of motion for 
an infinitely thin shell of dust which interacts only gravitationally is given by (13a) 
as 

f i  - &z = $, (15) 

where M = 4aR2a is the rest mass of the shell. 

3.2 The Motion Of Two-Shells 

The shell which is the 'inner shell' in the initial moment is denoted by A. The 
metric of the space-time between the shells is 

ds' = - f i  dt: + f;' dr2 + T' dR2, (16) 

dR' = do2 + sin' 8 dd2 

and 
2m1 

f 1 =  1- -, 
T 

where ml is the gravitational mass in the space between shells. Inside the shell is 
the flat space-time, and according to (15), the equation of motion of this shell is 

where RA is the radius of the shell A and MA = 4nRia is the total rest mass of 
dust particles of the shell. 

Coordinate times in spaces inside the inner shell, between shells and outside are 
t - ,  tl and t respectively. Similarly, the equation of motion of the outer shell B is 

where MB is the rest mass of shell B. Finally &A = dRA/ drA, & = dRB/ d r g .  
The relations (17) and (18) represent the equations of motion of shells before 

their intersection. From (17) and (18) we can write the velocities as a function of 
masses and radii: 

(The choice of sign is given by the direction of motion; the sign (-) means the case 
of a collapse and (+) to the case of an expansion). 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
16

:0
1 

11
 D

ec
em

be
r 2

00
7 

454 J. LANGER AND A. E D  

Using these we can calculate ml and m, 

The intersection of shells. The aim is to find velocities of shells after the inter- 
section RA+, RB- as a function of velocities before the intersection RA- , RB+ and 
parameters MA, MB and RA = RB = R, where R is the radius at the point of 
intersection. 

The external Schwarzschild mass m is constant during the collapse of shells 
(Birkhoff's theorem). 

However, the Schwarzschild mass rnl between shells will be changed after the 
intersection. The mass after the intersection we call 7722, and we use the notation 
f 2  for the corresponding factor f in the Schwarzschild metric. 

The equations of motion (17) and (18) after intersection is 

(After the intersection, shell A will be the external and B the internal shell). 
These are two equations in three unknown: velocities after the intersection and 

the Schwarzschild mass between shells. However, for the shells interacting only 
gravitationally, we have one condition in addition: 

the scalar product of four-velocities before intersection Uz = ( &  , RA- , 0, 0 ) ,  
Uj$ = ( & , & + , O , O )  has to be equal the scalar product of four-velocities after 
intersection ~ ~ ( ( t 2 ,  R A + ,  o,o), ~g = ($2 ,  R B - ,  0, o), 

therefore 

We insert (23) and (24) into (26) and we get one equation in one unknown 
quantity m 2 .  

To simplify the solution of the equations of motion of shells, we use the Schwarz- 
schild time tl between shells as the independent variable instead of the proper time. 
The method used does not allow us to  follow the shells beyond the Schwarzschild 
radius. This case we shall solve in the KruskaJ coordinates. 
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ON THE CROSSING OF THIN SHELLS 455 

4 THE COLLAPSE OF TWO SHELLS IN KRUSKAL COORDINATES 

4.1 The Motion Of One-Shell 

In order to follow the motion of the shell under the horizon we shall use the Kruslcal 
coordinates in the Schwarzschild space-time. We write the metric in this coordinates 

ds2 = +2(- dv2 + du2) + r2 dR2, dR2 = do2 + sin2 8 d42, (27) 

and 
32m3 

r 
?p = - 

Here r is a function of u and v defined implicitly by 

u2 -v2 = (L - I) exp (k). 
2m 

As the intrinsic coordinates on the shell we take the proper time measured by 

horn ( 2 )  and (4) we get 
the comoving observer on the shell T and the spherical angles 8,4: ca = ( ~ , 8 , 4 ) .  

and 

TI&+ = (-6+,8+,0,0). (29) 

The non-vanishing components of the extrinsic curvature K L ,  in M +  are 

K& = K& sin2 8, (30) 

The flat space-time is supposed inside the shell. F'rom (7), (lo), (30), the compe 
nents of tab are 
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456 J. LANGER AND A. EID 

where 

as r is a proper time on the shell the conditions 

t- = d 3 ,  

have to be fulfilled. If we suppose that t,, = u and tee = t4$ = P and insert the 
conditions (32) into (31) we get 

= -8xP, 
(RR - R2 - 1) 

R d 3  
? p ( U V  - 6ii) - H + 

where 
H =  C-+C%) (i+--) 1 a$2 ( dv R 2q$2 a R  ’ 

and v, 6 are determined by (28) and (32b) as the function of u. Inserting (33a) into 
(33b) we get the relation between the surface pressure and the surface density in 
the form 

P = Ni + N20, (34) 

where 

and 

d w [ - 4 m R f i  + (1 + k2)(6m - R)] + E 

3 2 m x R d x Z n  Y 

Ni = 

R-2m N2 = - 
8m ’ 

E = dl + a2[&6(2m + R) - 4mRVl. 

In the case of dust P = 0. 
The equation of motion for shell in the Kruskal coordinates (33a) is very di5- 

cult to solve, therefore we will use the constraint equations (28), (32b) to get the 
independent equations of motion of the shell. 

Similarly the equations of motion for the shell between two Schwarzschild space- 
time with different masses m can be constructed. 
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ON THE CROSSING OF THIN SHELLS 457 

4.2 The Motion Of Two-Shells 

In order to follow the intersections of two shells in the similar way as in the Section 
3.2 it is more appropriate to use the same independent variable for both shells. 
Expressing the proper times of observers on both shells by means of the Kruskal co- 
ordinate v in the space-time between both shells and using the constraint conditions 
(28) and (32b) we get for shells A and B the equations of motion 

where R' = dR/dv, 

and 

v1 = 

$? = 

dl = 

The motion of shells after intersection is calculated using a method similar to that 
in the previous section. We calculate m2 from the condition (25), (36) and (37), 

(38) 2 (uk+uk- - 1)2 - 2 (1 - d+)( l -  UZ-) = 0, 
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458 J. LANGER AND A. E D  

where 

The velocities of shells after the intersection will be 

1 
uk+ = - [.. + - 

u2A 
(39) 

where 

and 

After each intersection the mass between shells will be changed; it is determined 
by (25). The relations for m2 are rather complicated and we solved them in the 
cases considered numerically. 

5 INITIAL DATA FOR MOTION OF TWO SHELLS 

The first order equations of motion (19) and (20) for two shells depend on param- 
eters MA and MB, the rest masses of the shells, and the Schwarzschild masses ml 
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ON THE CROSSING OF THIN SHELLS 459 

and m. In order to  determine their motion the initial value of RA and RB must be 
given. Suppose that the initial data have been chosen so that the shells intersect, 
i.e. there is a time TO such that RA = RB = RQ. At this point the solution ceases 
to  be uniquely determined by the initial data. At the point of intersection we know 
the following information: 

1. the location of shells RA = RB = RQ, 

2 .  the two velocities at the point of intersection, 

3. the total mass of the system, i.e. the gravitational mass outside m, which 
remains constant. 

After intersection the shells interchange their position, the inner shell becomes 
the outer shell and vice versa. To follow the motion of the shells, one determines the 
Schwarzschild mass between the shells after the intersection from condition (26) .  
Since the number of the shells and the energy-momentum are conserved, then the 
problem is uniquely determined. The rest masses are constant during the evolution. 

We study all these three cases to determine the value of ml and m with different 
initial velocities of shells. We choose the time between shells as the independent 
variable. 

1. Let us suppose that the velocities of both shells would tend to zero for their 
radii going to infinity. It corresponds to the choice ml = MA and m = 
ml + MB. The initial velocities of shells are given by 

2. 

and the Schwarzschdd masses are given by 

and 

Let Rho = Rb0 = 0 (the initial velocities of shells equal zero). The Schwarz- 
schild masses are given by 
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460 J. LANGER AND A. EID 

1 
~ R B O  

m+ = - ( ( ~ ~ I R B o  - Mi f ~ M B J ~ .  

Because rnl and m are supposed to be positive the upper sign has to be taken. 

3. Let ml = MA as in the case 1. The corresponding initial velocity for the shell 
A is then 

Let the initial velocity of the shell B is 

RLo = Rko + AR', 

where AR' is a very small quantity. Then 

6 NUMERICAL SOLUTION AND DISCUSSION 

Here we study the last case 3 in more detail, while the other cases will be discussed 
in the dissertation. Let the initial value of masses and radii be 

M A  = M B  = M = 100M0, RAO = lOM', RBO = 1.001R~0, 

From (28) we get the value of ul.  Since the velocity of the exterior shell is 
greater than the velocity of the inner shell, the exterior shell crosses the inner one 
and its velocity will decrease while the velocity of the other shell will increase. Then 
they wil l  intersect again and so on; i.e. one of shells oscillates around the other. 
We found many intersections for two collapsing shells before the singularity- 

During the collapse the rate of change of the proper time between the points 
of intersection is diminishing; the Schwarzschild mass between shells after each 
intersection is increasing as shown in Table 1. The difference of radii of shells 
increases after each intersection. 
Dependence of intersection o n  the initial data. We study this case with different 
initial data. The number of points of intersection depends on the initial distance 
between shells. It is shown in Table 2. If the difference of radii between shells was 
increased then the number of intersections decreased. 
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ON THE CROSSING OF THIN SHELLS 461 

Table 1. 
intersections, where i is the number of intersection. The change of the proper time: 
ATA~ = pni  - TAi--1, A T B ~  = TBi - TBi-1. The Schwarzsschid mass in the externd space 
is m = 190.05906. 

The change of the Schwarzschild mass m i  between shells during the 

ith of inters. m i  ATA; A T B ~  

1 
2 
3 
4 
5 
6 

12 
13 

23 
24 
25 

... 

... 

100.00000 
100.53523 
101.16942 
101.92327 
102.82291 
103.90164 

117.78661 
122.55509 

308.59983 
376.13217 
483.38334 

... 

... 

271 4 5 1 6  
234.71529 
201.12761 
170.77800 
143.66511 
119.70755 

31.75030 
24.22199 

1.16527 
0.80758 
0.52464 

... 

... 

271.44514 
234.71530 
201.12760 
170.77802 
143.66510 
119.70757 

31.75032 
24.22197 

1.16526 
0.80758 
0.52462 

... 

... 

7 CONCLUSION 

The main motivation for our work has been to show how far one thin shell can 
approximate the evolution of a thick layer of matter. Of course, two shells as model 
of the thick layer is still very rough but it gives some hints with respect of the 
general situation. 

In the case that no intersection of shells occurs we can choose a thin shell with 
the proper mass equal to  the s u m  of proper masses of both shells which during all 
its collapse remains in the range of radial variable limited by radii of both shells. 
At the beginning the radius of this shell is nearby the outer shell and during its 

Table 2. The relation between the number of the points of intersection and the 
difference in radius of two shells for different initial radii of the inner shell, where 
ARB0 = (1 -I- A&)RAo. 

Multi-Points A& < 0.001 A& <0.001 A& < 0.001 A& <0.001 
Mmy-Points A& 5 0.22 A& < 0.06 A& < 0.06 A& < 0.01 
Two-Points A& 5 0.2272 A& 5 0.169 A& 5 0.113 A& 5 0.0215 
One-Point A& 50.2273 A& 50.17 A& 5 0.114 A& 5 0.02158 
No-Point A& 10.22735 A& 20.171 A& 2 0.115 A& 2 0.0216 
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collapse is approaching the radius of the inner shell. However, in order to ensure 
these conditions the original distance of two shells in this model must be relatively 
large. This seems to show that a singular shall can be a good model for the thick 
layer which is not too dense far away from the centre. 

If the thickness original two-shells layer is small, the intersections of shells oc- 
curs. We took the points of intersection of shells in the case of 25-intersections 
and approximated their positions by a smooth curve. Taking this curve as world 
line of a thin shell we calculated its equation of state i.e. the relation between the 
surface density and the surface pressure using (34) and (35). This relation cannot 
be approximated by a simple formula. For this reason using a one shell model to 
approximate the two-shell model does not seem reasonable. It points to the more 
general conclusion that it is not possible to approximate the motion of the thick 
layer of matter by one thin shell with some reasonable equation of state in the case 
that the layer is really dense and consequently a mixing of particles in the radial 
direction occurs. 
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