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The fact that galactic distribution exhibits fractal properties has been well established for 20 
years. Nowadays, the controversy concerns the range of the fractal regime, the value of the fractal 
dimension and the eventual presence of a cross-over to homogeneity. In the debate about galaxy 
correlation there are different questions which can be addressed separately: Which statistical meth- 
ods are able to properly detect scale invariance and describe, in general, the properties of irregular 
and regular distributions? What are the implications for cosmology of the fractal behaviour of 
galactic structures, up to a certain scale XO? What is the homogeneity scale Xo, i.e. the scale 
beyond which the galaxy distribution has an eventual am-over to homogeneity? These are three 
different, but related, problems, which must be considered in different steps, from the point of 
view of data analysis as well as from the theoretical perspective. 

KEY WORDS Distribution of galaxies, fractal structures, homogeneity scale 

1 INTRODUCTION 

The assumption of homogeneity in the distribution of matter lies at the heart of the 
Big Bang cosmology. The nature of the evidence, if any, for this assumption has, 
however, been the subject of very considerable controversy (Davis, 1997; Pietronero 
et al., 1997). A central point made by Pietronero (1987) has been that the stan- 
dard methods of analysis of galaxy red-shift catalogues, which provide the most 
direct probe of the (luminous) matter distribution, actually assume homogeneity 
implicitly. In this report we review the main points of this controversy: we discuss 
the different methods of analysis of redshift samples, and the corresponding results. 
The basic point we try to clarify is: what do we learn from the redshift surveys? 
We show that complementary to the adoption of a new method of analysis there 
are important theoretical implications for the usual scenario of galaxy formation. 
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2 THE PROBLEM OF LARGESCALE STRUCTURE DISTRIBUTION 

Nowadays there is general agreement about the fact that galactic structures are 
fractal up to a distance scale of - 30-40h-I Mpc (Sylos Labini et al., 1998; Joyce 
et al., 1999) and the increasing interest about the fractal versus homogeneous dis- 
tribution of galaxy in the last year has focused mainly on the determination of 
the homogeneity scale XO.* Instead, we would like to discuss three important and 
different aspects of this problem which, we believe, have not been considered ap- 
propriately in the debate. The main point we would like to stress is that galaxy 
structures are fractal no matter what the cross-over scale, and this fact has never 
been properly appreciated. 

Methodological Point 

The major problem from the point of view of data analysis is to  use Statistical meth- 
ods which are able to properly characterize scale invariant distributions, and hence 
which are also suitable to characterize an eventual cross-over to homogeneity. Our 
main contribution (Pietronero, 1987; Coleman and Pietronero, 1992; Sylos Labini 
et aL, 1998) in this respect has been to clarify that the usual statistical methods 
(correlation function, power spectrum, etc.) are based on the assumption of homo- 
geneity and hence are not appropriate to test it. Instead, we have introduced and 
developed various statistical tools which are able to test whether a distribution is 
homogeneous or fractal, and to correctly characterize the scale-invariant properties. 
Such a discussion is clearly relevant also for the interpretation of the properties of 
artificial simulations. The agreement about the methods to  be used for the analysis 
of future surveys such as the Sloan Digital Sky Survey (SDSS) and the Two Degrees 
Fields (2dF) is clearly a fundamental issue. 

Implication of the Fractal Structure up to Scale XO 

The fact that galactic structures are fractal, no matter what the homogeneity scale 
XO, has deep implications for the interpretation of several phenomena such as the 
luminosity bias, the galaxy-cluster mismatch, the determination of the average den- 
sity, the separation of linear and non-linear scales, etc., and on the theoretical 
concepts used to  study such properties. For example the properties of dark matter 
are inferred from those of visible matter, and hence they are closely related. If one 
now observes different statistical properties for galaxies and clusters, this necessarily 
implies a change of perspective on the properties of dark matter. 

'See the web page http://pil.phys.uniromal.it/debate.html where all these materials have been 
collected (Teerikorpi et al., 1998; Coles, 1998; Scaramella et ol., 1998; Wu et al., 1999; Cappi et 
al., 1998; Martinez, 1999; Hatton, 1999; Chown, 1999; Landy, 1999; Joyce et al., 1999). 
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Determination of the Homogeneity Scale A0 

This is clearly a very important point which is at the basis of the understanding of 
galaxy structures and more generally of the cosmological problem. We distinguish 
here two different approaches: direct tests and indirect tests. By direct tests, we 
mean the determination of the conditional average density in three-dimensional 
surveys, while with indirect tests we refer to other possible analyses, such as the 
interpretation of angular surveys, the number counts as a function of magnitude 
or of distance or, in general, the study of non-average quantities, i.e. when the 
fractal dimension is estimated without making an average over different observers 
(or volumes). While in the first case one is able to have a clear and unambiguous 
answer from the data, in the second one is only able to make some weaker claims 
about the compatibility of the data with a fractal or a homogeneous distribution. 
However, also in this second case, it is possible to understand some important 
properties of the data, and to clarify the role and the limits of some underlying 
assumptions which are often used without critical perspective. 

3 THE HOMOGENEITY SCALE 

The proper methods to characterize irregular as well as regular distributions have 
been discussed by Coleman and Pietronero (1992) and Sylos Labini et al. (1998) in 
a detailed and exhaustive way. The basic point is that, so long as a system shows 
power law correlations, the usual [ ( r )  analysis (Peebles, 1980) gives an incorrect 
result, since it is based on the a priori assumption of homogeneity. In order to check 
whether homogeneity is present in a given sample one has to use the conditional 
density I ' (r)  defined as (Pietronero, 1987) 

where the last equality holds in the case of a fractal distribution with dimension D 
and prefactor B. In the case of a homogenous distribution ( D  = 3) the conditional 
density equals the average density in the sample. Hence the conditional density is 
a suitable statistical tool to identify fractal properties (i.e. power law correlations 
with codimension 7 = 3 - D )  as well as homogeneous ones (constant density with 
sample size). If there exists a transition scale A0 towards homogenization, we should 
find r(r) constant for scales T >> XO. 

Basically A0 is related to the maximum size of voids: the average density will 
be constant, at least on scales larger than the maximum void in a given sample. 
Several authors have approached this problem by looking at void distributions. 
For example El-Ad and Piran (1997) have shown that the SSRS2 and IRAS 1.2 Jy 
redshift surveys are dominated by voids: they cover - 50% of the volume. Moreover 
the two samples show very similar properties even if the IRAS voids are - 33% larger 
than the SSRS2 ones because they are not bounded by narrow angular limits as the 
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SS-2 voids. The voids have a scale of at least - 40-50h-1 Mpc and the largest 
void in the SSRs2 sample has a diameter of N 60h-1 Mpc, i.e. comparable to the 
Bootes void. The problem is to understand whether such a scale has been fixed by 
the samples’ volume, or whether there is a tendency not to find larger voids: in this 
case one would have (weaker) evidence for the homogeneity scale. In any case, we 
note that the homogeneity scale cannot be smaller than the scale of the largest void 
found in these samples and that one has to be very careful when comparing the size 
of the voids to the effective depth of catalogues. For example in the Las Campanas 
Redshift Survey, even if it is possible to extract sub-samples limited at - 500h-1 
Mpc, the volume of space investigated is not so large, as the survey is made by thin 
slices. In such a situation a definitive answer to  the dimension of the voids, and 
hence to the existence of the homogeneity scale, is rather difficult and uncertain. 

Another complementary way to study the eventual cross-over to homogeneity of 
galaxy distribution is represented by the morphological signatures identified by tools 
such as the Minkowski functionals. Kerscher et al. (1998), by analysing the IRAS 
samples, have found that there are large fluctuations in the clustering properties as 
seen in a large difference between the northern and southern parts of the catalogue 
on scales of - 100h-1 Mpc. These fluctuations remain discernible even on the scale 
of 200h-1 Mpc and this is again a sign of the inhomogeneous character of galaxy 
structures at these scales. There are several other approaches to this problem, but 
we believe that the analysis via the conditional average density is the more stable 
and powerful to understand the correlation and statistical properties of a given 
sample of galaxies. 

4 THE STANDARD STATISTICAL METHODS 

The problems of the standard analysis can easily be seen from the fact that for the 
case of a fractal distribution the standard ‘correlation function’ < ( T )  in a spherical 
sample of radius R,, is given by 

Hence for a fractal structure the ‘correlation length’ TO (defined by <(TO) = 1) is 
not a scale characterizing any intrinsic property of the distribution, but just a scale 
related to the size of the sample. If, on the other hand, the distribution is fractal 
up to some scale A0 and homogeneous beyond this scale, it is simple to  show that 
(if XO < R,, i.e. the cross-over to homogeneity is well inside the sample size) 

The correlation length does in this case have a real physical meaning (when mea- 
sured in samples larger than Ao), being related in a simple way to the scale charac- 
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terizing homogeneity. In the case D = 2 we have TO = Xo/2t. Finally it should be 
noticed that [ ( T )  is a power law only for 

(F) (k)-. >> 1 (4) 

hence for T << TO: for larger distances there is a clear deviation from the power law 
behaviour due to the definition of [ ( T ) .  This deviation, however, is just due to the 
size of the observational sample and does not correspond to any real change of the 
correlation properties. It is clear that if one estimates the [ ( T )  exponent at distances 
T 5 TO, one systematically obtains a higher value of the correlation exponent due 
to the break of ( ( T )  in the log-log plot. In this respect it is useful to compute the 
log derivative of Eq. (2) with respect to log(r): 

where TO is defined by ( ( T O )  = 1. The tangent to ( ( T )  at T = TO has a slope 
7‘ = -27. It is clear that even if the distribution has fractal properties, it is very 
dacul t  to recover the correct slope from the study of the ( ( T )  function. The ( ( T )  

is intrinsically problematic to this end. 
In Figure 1 we show the results of the analysis of all the available galaxy samples 

through the conditional density (Sylos Labini et al., 1998; Joyce et  al., 1999a, b), 
while in Figure 2 wk show the behaviour of the standard ( ( T )  in the same catalogues. 
One may note that the different data are in rather good agreement when analysed 
by r ( T )  and give complex information when seen from the perspective of [ ( T ) .  As 
we discuss below, this complex situation has given rise to some confused concepts 
such as the luminosity bias or galaxy-cluster mismatch. 

5 OTHERS ‘CHARACTEFUSTIC’ LENGTH SCALES 

The usual analysis h d s  that rms fluctuations of the observed galaxy density field 
are very large on small scales, of the order of unity within spheres of 8h-1 Mpc 
dropping as a power law as a function of scale, becoming a few percent at several 
tens h-’ Mpc. In this perspective it therefore makes sense to refer the density field 
of galaxies to its mean. Let P ( T )  be the observed galaxy density field; the density 
fluctuation field is defined as 

This quantity can be measured in redshift samples. The problem in this case is 
the same one which enters in the definition of TO: one is comparing the amplitude 

tThis calculation assumes a simple matching of a fractal onto a pure homogeneous distribution. 
For any particular model with fluctuations away from perfect homogeneity, the numerical factor 
will differ slightly depending on how precisely we define the scale Xo. 
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lo0 

lo-* 

0.1 1.0 10.0 100.0 1Ooo.o 
r WPC) 

Figure 1 Conditional average density computed for various different galaxy surveys (from Sylos 
Labini et al., 1998). The power law behaviour corresponds to a fractal structure with dimension 
D = 2. 

of fluctuations to the mean density. As an example, one can consider a portion 
of a fractal structure of size R, and study the behaviour of bN/N. The average 
density is just given by Eq. (1) while the overdensity bN, as a function of the size 
T ( T  5 R,) of a given structure is: 

We have therefore 
bN 
N 

Clearly for structures that approach the size of the sample, the value of 6N/N 
becomes very small and eventually becomes zero at r = R,. 

Another typical length scale which is usually defined in the study of redshift 
samples is the scale at which the power spectrum (hereafter PS) of the density j h c -  
tuations has a turnover: d P ( k ( X f ) ) /  dk = 0. Essentially all the currently elaborated 
models of galaxy formation (e.g (Peebles, 1993) assume large-scale homogeneity and 
predict that the galaxy PS, which is the PS of the density contrast, decreases both 
toward small scales and toward large scales, with a turnaround somewhere in the 
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100.0 

Lao 

- 
G 

1 .o 

0.1 
1 10 

‘ (Mpc) 

- CfA1-40 - CfA1-60 - CfA1-80 - CiA2-101 - CfA2-130 - SSRS2-168 - SSRS238 
* LEDA-200 - LEDA-240 - LEDA-300 

c+ SSRSl-40 - SSRS1-60 - SSRSl-80 -. PP-50 - PP-100 - PP-130 - ESP400 - LCRS-36 - IRAS-40 

SSRS2-138 

LEDA-280 - LEDA-360 

Figure 2 The standard correlation function e(r), computed for the same galaxy samples of 
Figure 1 (€tom Sylos Labini et al., 1998) 

middle, at a scale Xf that can be taken as separating ‘small’ from ‘large’ scales. 
Because of the homogeneity assumption, the PS amplitude should be independent 
of the survey scale, any residual variation being attributed to luminosity bias (or to 
the fact that the survey scale has not yet reached the homogeneity scale). However, 
the crucial clue to this picture, the firm determination of the scale Xf is still miss- 
ing, although some surveys do indeed produce a turnaround scale around 100h-1 
Mpc. Recently, the CfA2 survey analysed by Park et al. (1994) (PVGH), showed 
a n = -2 slope up to - 30h-1 Mpc, a milder n x -1 slope up to 200h-1 Mpc, 
and some tentative indication of flattening on even larger scales. PVGH also find 
that deeper subsamples have higher power amplitude, i.e. that the amplitude scales 
with the sample depth. 

It is simple to show (Sylos Labini et a l ,  1998) that both features, bending and 
scaling, are a manifestation of the finiteness of the survey volume, and that they 
cannot be interpreted as convergence to homogeneity, nor to PS flattening. The 
systematic effect of the survey’s finite size is in fact to suppress power at large scales, 
mimicking a real flattening. In fact we have shown that even a fractal distribution 
of matter, which never reaches homogeneity, shows a sharp flattening and then a 
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turnaround. In particular, it is possible to show that in a spherical sample of radius 
R,, which contains a portion of a fractal structure with dimension D = 2, the PS 
turnover scale is given by 

and hence it is another quantity related to the sample size rather than being an 
intrinsic characteristic scale of galaxy distribution. 

X j  M 1.45R, (9) 

6 BIAS AND DARK MATTER 

We have discussed the concept of correlation and bias, as it is usually defined 
in the literature, in a series of papers (Gabrielli et  al., 1999; Gabrielli and Sylos 
Labini, 1999). We review here the main points of this discussion. The concept 
of bias, i.e. the relative abundance and distribution of objects of different mass, 
was originally introduced by Kaiser (1984) to  explain the different amplitudes of 
the correlation function ( ( T )  found for galaxies and galaxy clusters. Afterwards 
it has also been invoked to explain the increasing amplitudes of ( ( r )  for galaxies 
with brighter luminosity. Finally, it is used to describe the ‘clustering’ of dark 
matter relative to  that of visible matter. In general it is believed that objects of 
different mass have different clustering properties, i.e. ‘correlation lengths’, the 
latter increasing with the object’s mass: the highest peaks of the density field are 
more ‘strongly clustered’ than the density field itself. We have shown (Gabrielli and 
Sylos Labini, 1999; Gabrielli et  a l ,  1999) that in the general case of distributions 
with a well-defined average density, the value at fixed T of ( ( r )  is only related to 
the amplitude of the local fluctuation with respect to the average density (Gaite et  
ab, 1999; Gabrielli and Sylos Labini, 1999; Gabrielli et  al., 1999) and it does not 
give any information of the spatial extension of structures in the system. Let us see 
this point in more detail. 

The simplest assumption to  describe the distribution of mass in the universe is 
that distribution of galaxies is a good tracer of the distribution of dark matter. A 
specific model has been suggested by Kaiser (1984) in which galaxies and galaxy 
clusters represent different high-density peaks of the mass density field. Then the 
term biasing has been used to  refer to a number of different but related effects 
(Strauss and Willick, 1995). The so-called peak biasing model originally proposed 
by Kaiser (1984) makes a definitive prediction of the relation between the correlation 
function of galaxies of different masses, galaxy clusters (which we generally call 
objects) and dark matter (dm), at least at large scale: 

(ob j (T> = &j (drn ( T )  9 (10) 

bobj being the corresponding bias parameter, and [,jrn(r) is the correlation function 
of ‘dark matter’, i.e. of the underlying density field. Rather than being one bias 
parameter for the correlations of galaxies, there is an undetermined number of 
such parameters. The bias parameter bobj for each class of objects is now one of 
the fundamental parameters included both in the theoretical model, and in the 
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interpretation of galaxy correlation. For instance, for what concerns the clustering 
of galaxies of different luminosity (mass) (Park et al., 1994; Benoist et ul., 1996) the 
biasing is usually referred to as luminosity bias, while for the case of galaxy clusters 
it has been introduced in the clustering-richness relation (Bahcall and Soneira, 
1983). Moreover the ‘bias parameter’ plays a crucial role in the interpretation of 
the peculiar velocities of galaxies and clusters as well as of the anisotropies of the 
CMBR (Strauss and Willick, 1995). 

The incorrect definition of ‘correlation length’ used in cosmology (Peebles, 1980) 
is not just a question of semantics (Gaite et al., 1999), but it has generated confusion 
even when the average density of the system is a well-defined property, especially 
for what concerns the concept of bias (Gabrielli et al., 1999; Gabrielli and Sylos 
Labini, 1999). For instance, we have shown (Gabrielli and Sylos Labini, 1999) that 
Eq. (10) increases the amplitude of <(T)  and hence the amplitude of the fluctuations 
with respect to the average density, but the typical dimension of the structures of 
fluctuations remains the same. In order to illustrate more clearly this point, let us 
recall briefly the concept of correlation (see Gabrielli and Sylos Labini (1999) for a 
more detailed discussion). If the presence of an object at the point rl influences the 
probability of finding another object at r2, these two points are correlated. Hence 
there is a correlation at the scale distance T if 

G(r) = ( W n ( r ) )  # (4’, (11) 
where we average over all occupied points of the system chosen as origin and on 
the total solid angle supposing statistical isotropy. On the other hand, there is no 
correlation if 

The proper definition of XO, the homogeneity scale, is the length scale beyond which 
the average density becomes well-defined, i.e. there is a cross-over towards ho- 
mogeneity with a flattening of G(r) .  The length-scale XO represents the typical 
dimension of the voids in the system. On the other hand, the correlation length r,. 
separates correlated regimes of the fluctuations with respect to the average density 
from uncorrelated ones, and it can be defined only if a cross-over towards homo- 
geneity is shown by the system, i.e. Xo exists (Gaite et al., 1999). In other words r, 
defines the organization in geometrical structures of the fluctuations with respect 
to the average density. Clearly T, > XO: only if the average density can be defined 
may one study the correlation length of the fluctuations from it. In the case in 
which A0 is finite and then ( n )  > 0, in order to study the correlations properties of 
the fluctuations around the average and then the behaviour of T,, can we introduce 
the correlation function [ ( r ) .  

We note that if Xo << R,, XO has nothing to do with questions like ‘what is the 
typical size of structures in the system?’ or ‘up to which length-scale is the system 
clusterised?’ (Gaite et al., 1999). The answer to this question is strictly related 
to rc and not to XO. The length scale T, characterizes the distance over which two 
different points are correlated (clusterized). In fact, this property is related not to 
how large the fluctuations are with respect to the average (XO), but to the length 
extension of their correlations (r,). 

G(r) = (n)’. (12) 
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Figure 3 Guassian fluctuations with correlation up to a scale rc M 0.1 in the density field 
superimposed on a uniform background. The background density (and hence the average density) 
is smaller for the lower density field than for the upper one, but the correlation length is the 
same for the two distributions. The amplitude of c(r) at the same distance scale is clearly larger 
for the lower distribution than for upper one: this is because the amplitude of the fluctuations 
with respect to the average density is larger. The correlation length rc is finite and it is related 
to the largest spatial extension of the fluctuation structures. Beyond rc the distribution of the 
fluctuations from the average density is completely random. 

To be more specific, let us consider a fixed set of density fluctuations. They can 
be superimposed to a different value of a uniform density background. The larger 
this background the lower Xo, but obviously the length scale of the correlations ( rC)  
among these fluctuations is not changed, i.e. they are clusterized independently of 
the background (see Figure 3). The conclusion (Gabrielli and Sylos Labini, 1999) 
is that a linear amplification of <(T)  

doesn’t change T, (which can be finite or infinite) but only XO, i.e. if A > 1 we 
need larger subsamples to have a good estimation of (n), but it doesn’t change 
the characteristic length (correlation length) of the structures. For a more detailed 
discussion of the concept of bias we refer to Gabrielli et al. (1999) and Gabrielli 
and Sylos Labini (1999). 

7 WHAT DO WE LEARN FROM GALAXY CATALOGUES? 

As we have already mentioned the usual concept of bias arises from the interpre- 
tation of the results of the c(r) analysis. The concept of bias fkes the relative 
distribution of galaxies of different types, clusters and dark matter. In general 
(Strauss and Willick, 1995) one assumes that there exists a direct proportionality 
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between the density fluctuations of galaxies 6, and dark matter B DM 

6, = b 6 D M  (14) 

and the same concept applies to galaxies of different masses and galaxy clusters. 
Under this assumption, the biasing parameter b is independent of location. One 
case uses the two-point correlation function ( , ,(T) and the mass autocorrelation 
function fpPp(r) to define the bias factor 

Let us see in more detail the origin of the concept of bias as given in Eq. (15). It 
is a well-known observational fact that galaxies of different morphological types have 
different clustering properties. For example, the most luminous elliptical galaxies 
usually reside in the clusters cores, at local density maxima, and are not present 
in low-density fields, so that these objects seem to be the product of dense envi- 
ronments. There are various other morphological facts of this type (Sylos Labini 
et ol., 1998) which support the fact that brighter (more massive) galaxies are more 
clustered than for example spirals (less massive). The different clustering properties 
have been interpreted, through the [ ( T )  analysis, as a different amplitude of corre- 
lation for different galaxy types. In particular while for the general galaxy field the 
correlation length is rg x 5h-1 Mpc, for the brighter galaxies ( L  > L*) it has been 
found (Park et al., 1994; Benoist et aL, 1996) that TO x 16h-1 Mpc. This trend 
seems to be confirmed also by the cluster (more massive than galaxies) distribution 
for which TO x 25h-1 Mpc (Bahcall and Soneira, 1983). 

On the contrary from our interpretation there follows a number of important 
implications in this respect. As a cross-over to homogeneity has not been found, 
a11 the length scales found by the f ( r )  analysis are artifacts of an inconsistent data 
analysis. The ‘correlation lengths’ rg = 5,16,25,. . . h-I Mpc are not real physical 
characteristic scales, but just fractions of sample sizes. Brighter objects allow one to 
investigate a larger volume of space. Hence, for example the sample size of cluster 
catalogues is usually larger than that of galaxy samples. This simple observation 
explains why one obtains different correlations lengths, and in general why the 
correlation length seems to increase as a function of the luminosity of objects. To 
this qualitative observation, one may add a detailed study of the available galaxy 
and cluster samples. This has been done in a detailed way by our group and we 
refer to (Sylos Labini et al., 1998) for an exhaustive explanation of this fact. 

Therefore, contrary to the usual interpretation, we have shown that the segrega- 
tion of giant galaxies in clusters arises as a consequence of self-similarity of matter 
distribution, and that in this case the only relevant parameter is the exponent of the 
correlation function, while the amplitude is a spurious quantity that has no direct 
physical meaning and depends explicitly on the sample size. Let us explain this 
important point in more detail. 

In a well-known review on the galaxy luminosity function (LF) Binggeli et al. 
(1988) state that ‘as the distribution of galaxies is known to be inhomogeneous on 
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all scales up to a least 100h-1 Mpc, a rich cluster of galaxies is  like a Matterhorn in 
a grand Alpine landscape of mountain ridges and valleys of length up t o  100 Km'. 
This point of view can be seen in the light of the concept of multifractality of the 
mass distribution. The main observational aspects of galaxy luminosity and space 
distributions are strongly related and can be naturally linked and explained as a 
multifiactal (MF) distribution. The concept of M F  is appropriate to discuss phys- 
ical systems with local properties of self-similarity, in which the scaling properties 
are defined by a continuous distribution of exponents. Roughly speaking one can 
visualize this property as having different scaling properties for different regions of 
the system (see (Coleman and Pietronero, 1992; Sylos Labini and Pietronero, 1996) 
for a more detailed discussion). The fundamental point which is dismissed in the 
usual picture is that the whole matter distribution, i. e. weighing each point by its 
mass, is self-similar. This situation requires the generalization of the simple fractal 
scaling to a MF distribution in which a continuous set of exponents is necessary to 
describe the spatial scaling of peaks of different weight (mass or luminosity). In 
this respect the mass and space distributions become naturally entangled with each 
other. 

The MF implies a strong correlation between spatial and mass distribution so 
that the number of objects with mass M at the point T per unit volume v(M,r) is 
a function of space and mass and it is  not separable in a space density multiplied by 
a mass (or luminosity) function (Binggeli et al., 1988). This means that we cannot 
express the number of galaxies v ( M ,  2, y ,  z )  lying in volume dV at (2, y ,  z )  with 
mass between M and M + dM as the product of a space density and a luminosity 
function. This would assume that galaxy positions are not correlated with their 
luminosities, while the observations show just the opposite. Moreover we cannot 
define a well-defined average density, independent of sample depth as for the simple 
fractal case. It can be shown (Sylos Labini and Pietronero, 1996) that the mass func- 
tion of a MF distribution, in a well-defined volume, has indeed a Press-Schechter 
behaviour. 

The continuous set of exponents which describes a MF distribution can charac- 
terize completely the galaxy distribution when one considers the mass (or luminos- 
ity) of galaxies in the analysis. In this way much observational evidence is linked 
together and arises naturally from the self-similar properties of the distribution. 
Considering a MF distribution, the usual power-law space correlation properties 
correspond just to a single exponent of the MF spectrum: such an exponent simply 
describes the space distribution of the support of the MF measure. F'urthermure 
the shape of the luminosity function (LF), i.e. the probability of finding a galaxy of 
a certain luminosity per unit volume, is related to the MF spectrum of exponents. 
We have shown that, under MF conditions, the LF is well approximated by a power 
law function with an exponential tail. Such a function corresponds to the Schechter 
LF observed in real galaxy catalogues. In this case the shape of the LF is almost 
independent of the sample size, but the amplitude of the LF depends on the sample 
size as a power law function. 

These results have important consequences from a theoretical point of view. In 
fact, when one deals with self-similar structures the relevant physical phenomenon 
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which leads to scale-invariant structures is determined by the exponent and not the 
amplitude of the physical quantities which characterize such distributions. 

The geometric self-similarity has deep implications for the non-analyticity of 
these structures. In fact, analyticity or regularity would imply that at some small 
scale the profile becomes smooth and one can defme a unique tangent. Clearly this 
is impossible in a self-similar structure because at any small scale a new structure 
appears and the distribution is never smooth. Self-similar structures are therefore 
intrinsically irregular at all scales and correspondingly one has to change the theoret- 
ical framework into one which is capable of dealing with non-analytical fluctuations. 
This means going from differential equations to something like the renormalization 
group to study the exponents. For example the so-called ‘biased theory of galaxy 
formation’ (Kaiser, 1984) is implemented considering the evolution of density fluc- 
tuations within an analytic Gaussian framework, while the non-analyticity of fractal 
fluctuations implies a breakdown of the central limit theorem which is the corner- 
stone of Gaussian processes (Sylos Labini et al., 1998). 

In this scheme the space correlations and the luminosity function are then two 
aspects of the same phenomenon, the MF distribution of visible matter. The more 
complete and direct way to study such a distribution, and hence at the same time the 
space and the luminosity properties, is represented by the computation of the MF 
spectrum of exponents. This is the natural objective of theoretical investigations in 
order to explain the formation and the distribution of galactic structures. In fact, 
from a theoretical point of view one would l i e  to identify the dynamical processes 
which can lead to such a MF distribution. 

In this perspective, it would be extremely interesting to study the distribution of 
dark matter and to determine its correlation exponent. It could be that dark matter 
is distributed like a homogeneous fluid, having hence D = 3 even at small scale. In 
this way one may save the usual FRW metric (which needs a homogeneous density 
to be developed), while a substantial revision to the models of galaxy formation is 
required. On the contrary if dark matter is found to have the same distribution 
as luminous matter, than a basic revision of the theory must be considered. In 
fact, if dark matter is essentially associated to luminous matter, then the use of the 
FRW metric is not longer justified. This does not necessarily imply that there is 
no expansion or no Big Bang. It implies, however, that these phenomena should be 
described by more complex models (Sylos Labini et al., 1998). 

It is worth noticing that from an observational point of view there are various 
arguments for the proposition that galaxies are fair tracers of the mass. For exam- 
ple no survey, in 21-cm, infrared, ultraviolet or low optical surface brightness has 
revealed a void population. There is a straightforward interpretation: the voids are 
nearly empty because they contain little mass. 

8 CONCLUSION 

In the discussion about the theoretical implication of our results, we should not 
forget the invisible, ‘dark’ matter, which is thought to account for at least 90 per cent 
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of the mass in the Universe. Apart from the galaxy rotation curves, which is different 
evidence, the exotic forms of dark matter are introduced to  explain the observed 
puzzling properties of visible matter. Actually in the most recent propositions 
there are two weird forms of DM which add to about 98% of the total matter. So 
the standard interpretation is entirely based on unknown entities whose properties 
are defined just to explain the observed data. In our approach we show the correct 
statistical properties of visible matter which are different from the usual ones. These 
results in the above perspective have important implications for the eventual DM 
which, however, has now to be reconsidered in the new perspective. The properties 
of dark matter in the standard picture are inferred from the observed properties of 
visible matter and radiation. Now one studies changes in these properties and in 
this respect they will have consequences on dark matter too (Baryshev et al., 1998; 
Durrer and Sylos Labini, 1998; Gabrielli and Sylos Labini, 1999). 

For some questions the fractal structure leads to a radically new perspective 
and this is hard to accept. But it is based on the best data and analyses available. 
It is neither a conjecture nor a model, it is a fact. The theoretical problem is 
that there is no dynamical theory to explain how such a fractal Universe could 
have arisen from the pretty smooth initial state we know existed in the Big Bang. 
However this is a different question. The fact that something can be hard to  explain 
theoretically has nothing to do with whether it is true or not. Facing a hard problem 
is far more interesting than hiding it under the rug by an inconsistent procedure. 
For example some interesting attempts to understand why gravitational clustering 
generates scale-invariant structures have been recently proposed by de Vega et al. 
(1996a, b, 1998). Indeed this will be the key point to understand in the future, but 
first we should agree on how these new 3d data should be analysed. In addition, 
the eventual cross-over to homogeneity has also to be found with our approach. If 
for example homogeneity would really be found say at - 100h-1 Mpc, then clearly 
all our criticism of the previous methods and results still holds fully. In summary 
the standard method cannot be used either to disprove homogeneity, nor to prove 
it. One has simply to change methods. 

Acknowledgements 

I warmly thank Y. Baryshev, R. Durrer, A. Gabrielli, M. Joyce, M. Montuori, 
and L. Pietronero with whom various parts of this work have been done in fruitful 
collaborations. I also thank the organizers for this very interesting conference. This 
work has been partially supported by the EC TMR Network ‘Fractal structures and 
self-organization’ ERBFMRXCT980183 and by the Swiss NSF. 

References 

Bahcall, N. and Soneira, R. (1983) Astron. Astrophys. 270, 20. 
Baryshev, Y, Sylos Labini, F., Montuori, M., Pietronero, L., and Teerikorpi, P. (1998) Fractals 6 

Benoist, C. et al. (1996) Astrophys. J .  472, 452. 
231. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
15

:5
8 

11
 D

ec
em

be
r 2

00
7 

SCALE INVARIANCE OF GALAXY CLUSTEFUNG 41 1 

Binggeli, B., Sandage, A., and Tammann, G. A. (1988) Astron. Astrophys. Ann. Rev. 26, 509. 
Cappi, A. et al. (1998) Astron. Astrophys. 335 779. 
Chown, M. (1999) New Scientist 163, 22. 
Coleman, P. H. and Pietronero, L. (1992) Phys. Rep. 231, 311. 
Coles, P. (1998) Nature 391, 120. 
Davis, M. (1997) Ixx N. W o k  (ed.) Proc. of the Conference ‘Critical Dialogues in Cosmology’, 

De Vega, H., Sanchez, N., and Combes, F. (1998) Astrophys. J. 300, 8. 
De Vega, H., Sanchez, N., and Combes, F. (1996a) Nature 383, 56. 
De Vega, H., Sanchez, N., and Combes, F. (1996b) Phys. Rev. D 54, 6008. 
Durrer, R and Sylos Labini, F. (1998) Astron. Astrophys. 339, L85. 
El-Ad, H. and Piran, T. (1997) Astrophys. J. 491, 421. 
Gabrielli, A., Sylos Labini, F., and Durrer, R. (1999) submitted to  Phys. Rev. Lett., astro- 

Gabrielli, A. and Sylos Labini, F. (1999) submitted to Astron. Astrophys. 
Gaite, J., Dominuguez, A., and PeresMercader, J. (1999) Astrophys. J. Lett. 522, 5. 
Hatton, S. J. (1999) Mon. Not. R. Astron. SOC. (in press). 
Huchra, J., Vogeley, M., and Geller, M. (1999) Astrophys. J. Suppl. (in press). 
Kaiser, N. (1984) Astrophys. J. Lett. 284, 9. 
Kerscher, M. et 01. (1998) Astron. Astrophys. 333, 1. 
Jenkins, A. et al. (1998) Astrophys. J. 499, 20. 
Joyce, M., Montuori, M., Sylos Labini, F., and Pietronero, K. (1999a) Astron. Astrophys. 344, 

Joyce, M., Montuori, M., and Sylos Labini, F. (1999b) Astrophys. J. Lett. 514, 5. 
Joyce, M., Anderson, P. W., Montuori, M., Pietronero, L., and Sylos Labini, F. (1999) Eursophys. 

Landy, S. D. (1999) Scientific American 456, 30. 
Martinez, V. J. (1999) Science 284,445. 
Park, C., Vogeley, M., and Geller, M. (1994) Astrophys. J. 431, 569. 
Peebles, P. J. E. (1980) Large Scale Structure of the Universe, Princeton University Press, Prince- 

Peebles, P. J. E. (1993) Principles of Physical Cosmology, Princeton University Press, Princeton, 

Pietronero, L. (1987) Physica A 144, 257. 
Pietronero, L., Montuori, M., and Sylos Labini, F. (1997) In: N. lhrok (ed.) Proc. of the 

Scaramella, R. et aL(1998) Astron. Astrophys. 334,404. 
Sylos Labini, F. and Pietronero, L. (1996) Astrophys. J .  469, 28. 
Sylos Labini, F. and Montuori, M. (1998) Astron. Astrophys. 331, 809. 
Sylos Labini, F., Montuori, M., and Pietronero, L. (1998) Phys. Rep. 293, 66. 
Sylos Labini, F. and Amendola, L. (1996) Astrophys. J. Lett. 468, 1. 
S t r a w ,  M. and Willid, J. (1995) Phys. Rep. 261, 271. 
Teerikorpi, P. et 01. (1998) Astron. Astrophys. 334 397. 
Vettolani, G. et 01. (1997) Astron. Astrophys. 325, 954. 
Wu, K. K., Lahav, O., and Rees, M. (1999) Nature 225, 230. 

World Scientific, Singapore, p. 13. 

phl9905183. 

387. 

Lett. (submited). 

ton, N.J. 

N.J. 

Conference ‘Critical Dialogues in Cosmology’, World Scientific, Singapore, p. 24. 


