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Future measurements of the polarization of the cosmic microwave background (CMB) are very 
powerful tools for cosmological studies and may help in extracting cosmological parameters from 
the observational data. In particular, the polarization is quite sensitive to the presence of primor- 
dial gravitational waves. 

In this talk we analyse the geometrical and statistical properties of the polarization of the CMB. 
This analysis was performed in our recent work. Singular points of the vector field which describes 
CMB polarization are found and classified. A possible signature of primordial gravitational waves 
in CMB polarization is discussed. We also discuss some other new methods of analysis of CMB 
anisotropy and polarization. 

KEY WORDS CMB, anisotropy, polarization 

1 INTRODUCTION 

In this paper we review some new methods of the description and analysis of 
the CMB. The description of the methods of measurements and analysis of CMB 
anisotropy can be found in refs. [1-6]. Measurements and analysis of the polar- 
ization of the CMB allow one to  obtain additional cosmological information. A 
basic description of CMB polarization can be found in papers [7-91, while a more 
up-to-date development is given in refs. [lo-201. 

Polarization of CMB is quite sensitive to the presence of tensor perturbations 
(gravitational waves) and, as was shown in refs. [10-14] a deviation from zero 
of the so-called pseudoscalar or 'magnetic' part of the polarization would be an 
unambiguous indication of the presence of gravitational waves. In what follows we 
wil l  further elaborate this issue and generalize some of the results of ref. [16]. 
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214 A. D. DOLGOV et al. 

Geometrical properties of the polarization field were actively studied in recent 
years [13-161. Important features, which characterize the geometry and topology 
of polarization, are the types of singularities of the vector flux lines tangent to the 
direction of maximum polarization 1191 (for an earlier paper see ref. [21]). This 
vector is parallel to one of the eigenvectors of the Stokes matrix and has mag- 
nitude equal to the magnitude of the polarization. The points where this vector 
vanishes, so that no direction is determined, are singular points on the polarization 
map and the character of the singularity to a large extent determines the relief 
of the polarization map, even far away from the points of vanishing polarization. 
The maps simulated in different papers, including ours, demonstrate that the be- 
haviour (topology) of the flux lines of the polarization field at the points where 
polarization is non-vanishing, is determined by the type of singularity at vanish- 
ing polarization. Hence one may draw a conclusion about the types of singular 
points by studying polarization maps in the regions where the polarization is mea- 
surable. The properties of these singular points are discussed in detail in Section 
4. 

Statistical properties of the anisotropy of the CMB temperature and the CMB 
polarization are of primary importance for an understanding of their origin. At the 
present day only two mechanisms of generation of primordial density perturbations 
are known: inflation and topological defects. The simplest inflationary scenarios 
predict Gaussian perturbations that results in the Gaussianity of the CMB temper- 
ature fluctuations and polarization at the surface of last scattering. Tests of the 
Gaussian nature of the temperature fluctuations of CMB, together with a study of 
its polarization, are important probes of inflation. A possible method of testing the 
Gaussianity of the CMB is a study of the statistics of the singular points discussed 
in Section 4.4. The same statistical tests may also be useful for discrimination of 
signal from noise because Gaussian distributions of both temperature fluctuation 
and polarization generated by noise are rather improbable. 

Naselsky and D. Novikov [22], D. Novikov and Jmgensen [23, 241, suggested 
a topological method of analysis of maps of CMB anisotropy with and without 
non-Gaussian noise. In this work the authors investigate the topological properties 
of the ATIT angular distribution caused by the presence of the Doppler-peak in 
the spectrum of fluctuations and propose the method of percolation and cluster 
analysis which allows them to detect non-Gaussian noise and to remove it from the 
observational data. 

In the papers [25, 261 we developed the methods of Naselsky and Novikov [22] 
and Novikov and Jprrgensen [23, 241 for the analysis of the global topology of maps 
of CMB anisotropy and polarization. 

This paper summarizes our investigations [31] and [32], and is organized as 
follows. The basic concepts and notation are introduced in Section 2. In Section 3 
a local description of polarization is compared with a non-local one. In Sections 4 
and 5 the classification of singular points is discussed. In Section 5 we demonstrate 
how cluster analysis can be used for the detection of non-Gaussian noise in the 
experimental maps of CMB anisotropy and polarization. We discuss the results in 
Section 6. 
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POLARIZATION OF CMB 215 

2 POLARIZATION OF CMB 

In this section we wil l  describe some general properties of CMB polarization and 
present the necessary formalism. This section has an introductory character and 
to some extent is described in the literature. We make the simplifying assumption 
that the relevant angular scales are sufficiently small, so that the corresponding part 
on the sky is almost flat. In this approximation the polarization field on the sky 
can be considered as a two-dimensional field on the flat (x,y)-plane. The photon 
polarization is described by the second rank tensor aij in the plane perpendicular 
to photon propagation. By definition this tensor is traceless, because the trace 
part, proportional to the unit matrix, corresponds to zero polarization and can be 
absorbed in the total intensity of radiation. It is convenient to expand this tensor 
in terms of the Pauli matrices a,, a = 1,2,3, which form a complete system in 2 x 2 
traceless matrix space: 

The parameter & is equal to  the amplitude of circular polarization, which is not 
generated by Thomson scattering (due to parity conservation), so that it is usually 
assumed that (2 = 0. In this case the matrix a is symmetric and is determined by 

a = &urn. (1) 

two functions: 

The functions Q and U depend upon the coordinate frame; they are components of 
the tensor a,j and obey the corresponding tensor transformation law: 

where the coordinate transformation is given by xi = T + x k .  In particular under 
rotation of the coordinate system with 

T=(' --s ") c (4) 

where c = cos 4, s = sin 4, and 4 is the rotation angle, the parameters Q and U are 
transformed as: 

Q'=Qcos24+Usin24, 
U' = -& sin 24 -+ U cos 24. (5 )  

It is more convenient in many cases to work with invariant quantities or at least 
with vectors, whose direction on the polarization map is easy to visualize. There 
are the following invariants (or what is the same, scalars) that may be constructed 
from the second-rank tensor. First, of course, is the trace, Tra = ai,. In this case 
it is zero. The second invariant is the determinant of the matrix a, 

d e t a = Q 2 + U 2 .  
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216 A. D. DOLGOV et al. 

The maximum magnitude of polarization is given by d w .  The direction of 
maximum polarization is determined by one of the eigenvectors of the matrix a;, 
(see e.g. ref. [19]). 

These are the well-known algebraic invariants which exist in any space dimen- 
sions. One may construct two more invariants, using the vector operator of differ- 
entiation. They can be chosen as: 

where j = 1,2 and & = alas,. In terms of Q and U these invariants are expressed 
as: 

S = (a,” - 8,”)Q + 2&&U, 
P = (a,” - 8,”)U - 2&&Q. (8) 

The first scalar invariant exists in any space dimension, while the second pseude 
scalar exists only in two-dimensional space, because of the presence of the antisym- 
metric pseudo-tensor E k j  (analogous antisymmetric tensor in higher dimensions D 
has D indices). These quantities S and P coincide, up to  a scalar factor, with the B 
and E fields introduced in refs. [lo, 121. In our opinion it is more natural to denote 
them as S and P to stress their scalar and pseudo-scalar nature and not as electric 
and magnetic parts of the polarization because these quantities have nothing to do 
with vectors. In this sense we agree with the terminology of ref. [27] (see also [13, 

An important feature of the pseudo-scalar P is that it vanishes if only scalar 
perturbations induce polarization in the CMB. In this case the Stokes matrix can 
be written in terms of the derivatives of one scalar function: 

151)- 

a;j = (2&aj - 6;jdkdk)Q. (9) 

It is straightforward to check that indeed P = 0. We do not share the opinion 
and/or terminology of refs. [14, 171 where it is stated that the corresponding field 
does not possess a curl. As has been shown in ref. [19] this is not true and generically 
the eigenvedors of the Stokes matrix are not curlless. The validity of this general 
statement can be verified on simple examples. This means in particular that the 
flux lines of the direction of maximum polarization may have a non-zero vorticity, 
in contrast to the statement of refs. [14, 173. 

If tensor perturbations are non-vanishing, the polarization matrix has the general 
form determined by two independent functions. As is well known, an arbitrary 
three-dimensional vector can be expanded in terms of scalar and vector potentials 
as 

V = grad@ + curlA. (10) 
In two dimensions an arbitrary vector can be expressed as the derivatives of a scalar 
and a pseudo-scalar: 

6 = aj@1 + Ejkdka’a- (11) 
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POLARIZATION OF CMB 217 

In direct analogy to this, an arbitrary traceless symmetric 2 x 2-matrix can be 
presented in terms of scalar and pseudo-scalar potentials as: 

aij = (2aiaj - &ja2)g + ( ~ i k a k d i ) + .  (12) 

Of course now the pseudo-scalar P defined in Eq. (7) does not vanish and this 
property permits us to  observe possible tensor perturbations by measurement of 
the CMB polarization [lo-161. If P = 0 then the scalar S vanishes. Unfortunately 
this does not mean that tensor perturbations dominate because they contribute 
both to @ and P. 

3 DIFFERENT METHODS OF DESCRIPTION OF THE CMB 
POLARIZATION 

It is an interesting observational problem of which quantity is easier to measure in a 
noisy background, a differential local or an integrated global one. As was stated in 
ref. [15] a measurement of an integrated quantity would be much more robust, and 
correspondingly the field variables S and P (or in the notation of papers [10-12], 
E and B) were expressed as integrals over all or a part of the sky. We think that 
the answer to the question of the best observational strategy very much depends 
on the properties of the noise. For example, if the noise in the polarization field of 
the CMB is created by point-like sources, chaotically distributed on the sky with 
mean separation larger than the resolution of the antenna, then the measurement 
of local differential quantities, as e.g. direct measurements of S and P given by Eq. 
(7), seems easier. However there may be sources of noise that would be easier to  
suppress if one measures a quantity which is averaged over the whole (which is not 
possible) or part of the sky. To this end we re-derive the expressions for integrated 
S and P (or E and B) presented in ref. [16]. The derivation is presented in great 
detail because of some disagreement with ref. [16]. The results are very close but 
we show that the window function may have a more general form even for the same 
choice of normalization function N(Z2), defined below. 

Let us first define the Fourier transformed fields: 

and the similar one for U. The Fourier transformed scalar and pseudo-scalar fields 
can be written as 

,. 

& ( I )  = N(12) / d2ye-""[U(y) cos 241 - Q(y) sin 2411 (14) 

where is the polar angle in the plane of Fourier coordinates 1. The scalar function 
N(12) is arbitrary. It preserves the scalar or pseudo-scalar property of S and P. For 
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218 A. D. DOLGOV et al. 

the definition (7) one has to choose N(Z2) = 1 2 .  The definition used in ref. [16] is 
N(Z2) = 1. This means that a non-locality is introduced in coordinate space by the 
inverse Laplace operator, 1/a2, that is by the Green's function of the Laplacian. 

Now we can make the inverse Fourier transform to obtain the functions SN and 
PN in coordinate space: 

where 41 is the angle between the vector 1 and some fixed direction; it is convenient 
to choose the latter as the direction of the vector x, so that $1 = dzi- 

Integration over the directions of the vector I can be done explicitly. To simplify 
the notation let us introduce 

and three angles (blp, (bpz, and cpz1 between the directions of the indicated vectors. 
Evidently 

The angular integral is reduced to 

p = x - y  (16) 

(17) 4 ~ p  f 4pz  -I- CPZZ = 0. 

2n 

( A  cos 24zp + B sin 24lP), (18) 
0 

where the coefficient functions A and B do not depend on 4lP. The second term 
vanishes, while the first one gives 

where J2(z) is the Bessel function (see e.g. [28]). 

N(Z2) and the result is a function of the magnitude of the vector p: 
The integration over the magnitude of 1 depends upon the form of the function 

For the particular case of N(12) = 1 chosen in ref. [16] the integral can be taken 
as follows. It is formally divergent so some regularization procedure should be 
applied. This can be achieved by introducing a small imaginary part to Z to ensure 
convergence (in other words, we have to  shift the contour of integration to the upper 
Z-half-plane). Using the relation [28]: 

zJ2(z)  = J I ( Z )  - Z J { ( Z )  (21) 
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POLARIZATION OF CMB 219 

and integrating by parts, we obtain: 

Now taking all the contributions together we obtain: 

0 

x 7 dd[-Q(a: - p) sin 24 + U(a: - p) cos 241. (23) 
0 

For the particular case of FN(~)  = Fl(p) = 2/p2 considered in ref. [16] we obtain 
almost the same result as the quoted paper with the only difference that we do not 
see any reason to assume that the window function Fl(p)  = 2/p2 should be taken 
to be zero at p = 0. Anyhow, this difference has zero measure and does not have 
any impact on the value of the integrals (23). Hence it may be disregarded. What, 
as we think, is more essential is the statement of ref. 1161 that in order to avoid 
difkult (or even impossible) integration of the data over the whole sky one may 
use a modified window function: 

with the function g ( p )  subject to the condition: 

where the last integral is taken over all the sky. 
We believe that any window function can be used and no additional conditions 

are necessary. To show that we calculate the functions SN(X) and PN(x) for the 
particular case of scalar perturbations when the Stokes matrix is given by expression 
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220 A. D. DOLGOV et al. 

(9). Calculation of derivatives in polar coordinates is straightforward and after some 
algebra we obtain: 

where sub-p or sub-# means differentiation with respect to the corresponding vari- 
able and W(p) is an arbitrary window function. 

One can see from the second of these expressions that indeed P vanishes for any 
window function. Thus to prove the absence of tensor perturbations, one should 
either observe the vanishing of the local quantity P ( x )  given by Eq. (8) or of 
the non-local one given by Eq. (26) with an arbitrary convenient window function 
W(p). Which method would be more efficient depends upon the properties of the 
noise. 

4 SINGULAR POINTS IN THE CMB POLARIZATION MAPS 

4.1 Introductory Remarks 

The polarization state of photons of the CMB can be described by the direction 
of maximum polarization and its magnitude; the former is arallel to the eigen- 
vector of the Stokes matrix and the latter is equal to d h .  Polarization 
maps simulated in different papers present the corresponding vector field on the 
two-dimensional plane. For the analysis of the flux lines on this map it is very 
important to know the properties of the singular points of this vector field. This 
has been done in ref. [19] and ref. [25] (see also [21]). Another approach was taken 
in refs. [15,16] where the properties of the flux lines were analysed in terms of basis 
functions of tensor spherical harmonics (see Figure 1 in refs. [15, 161). However the 
flux lines of these basic functions are quite different from the behaviour of the flux 
lines of the polarization vector. Of course the analysis in terms of tensor harmonics 
and the behaviour of the Stokes parameters Q and U can be used for the description 
of polarization maps but the analysis in terms of eigenvectors of the Stokes matrix 
permits us to make a more direct description of the properties of the polarization 
field. Possible types of different singular points as well as their statistical distri- 
butions may bring new information about the properties of the CMB. Of course a 
measurement of CMB polarization near the point where it vanishes is a very difficult 
observational problem. However it is not necessary to go exactly to  the point where 
Q2 + U2 = 0. The type of singularity can be determined by the pattern created by 
the flux lines in the region where the polarization is non-vanishing (see an example 
of a simulated polarization map below in Figure 4). 
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POLARIZATION OF CMB 221 

The analysis of singular points of the polarization vector field was performed in 
refs. [19, 21, 251. It was found in [19] that their types do not fit the well-known 
classification of singular points of vector fields in the standard theory of dynamical 
systems. Due to  the non-analytic behaviour of the eigenvectors near the zero points, 
Q2 + U2 = 0, the separatrices end at the singularity, while in the usual case they 
smoothly continue through these points. This unusual behaviour, found in our 
paper [19], is well observed in the polarization maps simulated in refs. [16] and 
in the map of our paper below (Figure 2). In this section we present a further 
development of the analysis of our previous paper [19]. 

4.2 Basic Equations 

The eigenvectors of the polarization matrix (2) are: 

n+ {U, - Q), 
n- - {-U, X + Q),  (27) 

where X = d m -  is the magnitude of the eigenvalue and the vectors n+ cor- 
respond respectively to  the positive and negative eigenvalues, fX. The vector n+ 
is parallel to the direction of the maximum polarization, while n- goes along the 
direction of the minimal polarization. This is evident in the basis of eigenvectors 
where the polarization matrix is diagonal, a = diag{A, -A). The total intensity of 
light polarized along n+ is given by I& = I0 zt A. Thus the intensity along n+ is 
bigger. 

For definiteness we will consider the field of directions of the vector n+ and the 
singular points in this field. The problem of singular points of a vector field V 
is investigated for the case when the direction of this two-dimensional vector field 
with components [x(t), y(t)] is governed by the equation 

Singularities may appear if simultaneously both functions F1,2(x, y) vanish. In this 
case the condition of uniqueness of the solution of the differential equation is not 
fulfilled and more than one integral curve may pass through the same point. The 
standard theory is developed for the case when the functions F1,2 are analytic near 
these zeroes, and their first-order Taylor expansion has the form: 

Fj = aj(x - $0) + bj(y - yo). (29) 

The following three singular points are possible in this case: knots, saddles, and foci 
(see e.g. [29]). The separatrices of the solutions are two intersecting lines, which 
are simply straight lines in the linear approximation. 

However in the case of the polarization vector field the basic equation has the 
form: 
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The singular points may appear, as above, if both numerator and denominator 
vanish. This is equivalent to the condition Q = U = 0. An essential difference to 
the standard case is that now the numerator is not analytic near zero. This fact 
results in a quite different behaviuor of the integral curves near these points. The 
standard theory is not applicable to this case and below we will investigate the 
structure of solutions in the vicinity of these points directly. We assume that the 
functions Q and U are analytic near the points where Q = U = 0, so that they can 
be expanded as: 

For the sake of brevity we assume that Q and U vanish at x = y = 0. 

4-3 Types of Singular Points 

It is convenient to introduce the new coordinates: 

t = q1x + q2y, 
q = 2112 + uzy. 

Since this coordinate transformation corresponds to a rotation and rescaling of the 
coordinates, the forms of singular points would remain the same. Now we introduce 
polar coordinates on the plane (t, q): 

< = rcosqi, q = rsinqi. (33) 

In these coordinates Eq. (30) is rewritten as 

dlnr  - N - q2t3 + (41 - 2u2)t2 - (q2 + 2u1)t - q1 
dqi D - u2t3 + (ul + 2q2)t + (2q1 - u2)t - u1’ (34) 

where t = tan(qi/2). 
In the general case the denominator D has three roots t j ,  j = 1,2,3. With- 

out loss of generality we may assume that uz = 1. Then these roots satisfy the 
conditions: 

tlt2t3 = u1, 
tit2 + t2t3 + t3tl = 2q1 - 1, 

tl + t2 + t3 = -(u1 + 242). (35) 

The integration of Eq. (34) becomes straightforward if we expand the r.h.s. in 
elementary fractions: 

3 

dqi j 
(36) -- d ln r  -ql+x% 

t - t j  
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where, as one can easily see, Bj = N ( t j ) / ( t j  - tk)( t j  - t l ) ,  and none of j ,  k, I are 
equal to any of the others. It is straightforward to verify that 

The remaining parameters B2 and B3 are obtained by cyclic permutations. 
Since d lnr/ d4 = (d lnr /  dt)(l + t 2 ) /2  the equation can be finally rewritten as 

3 
--- - dlnr  dt 1:t2 (.'+?&) 

and the integration becomes straightforward. The corresponding solution is: 

3 

r = ro(1 + t 2 )  Tl[(t - t j p ,  

j 

where TO is an arbitrary constant and the powers uj are 

(39) 

with the constants Bj given by Eq. (37). It can be checked that u, satisfy the 
following conditions: 

.l 

c u j  = -1, 

The last three factors in Eq. (43) are proportional to the determinant d = ~ 1 2 1 2  - 
42211 

If all the roots t j  are real, then the sign of the product n: uj is the same as the 
sign of the determinant d. If however one of the roots, e.g. t l ,  is real and the other 
two are complex conjugate, the sign of the determinant and of the product (43) are 
opposite. 

Now we can make the classification of the singular points. Let us first consider 
the case when all the roots t, are real. The behaviour of the solution is determined 
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0 b C 
Figure 1 
comet. Dashed lines show peculiar solutions (separatrices). 

Flux lines for three different types of singular points: (a) saddle, (b) beak, and (c) 

by the signs of the powers uj.  Due to Eq. (41) at least one of the powers uj must 
be negative. To see what other signs are possible let us assume (without loss of 
generality) that 

In this case the following sign relations are valid: 

tl > t 2  > t 3 .  (45) 

sign [v1] = sign [-(I + t 2 t 3 ) ] ,  

sign [u2]  = sign [(I + t ~ k ) ] ,  
sign [u3]  = sign [-(1 + t l t z ) ] .  

If e.g. t 3  > 0, the following signs of V j  are realized (-, +, -). If t 3  < 0 but t 2  > 0, 
then v3 < 0 and one or both of u1 and u2 are negative. They cannot both be 
positive because if (1 + t l t 3 )  > 0, then (1 + t 2 t 3 )  > 0 too and y < 0. Analogously, 
in the case tl > 0 and t 2  < 0 the set of signs (-,+,+) for any sequence of vj is 
impossible. In the case when all t j  are negative, the sign pattern is (-, +, -). Thus 
only two sign combinations for uj are possible: (-, -, -) and (-, -, +). The first 
one is realized when d < 0 in accordance with expressions (43) and (44). If the 
determinant is positive, then the signs of uj are (-, -, +). 

In the case when d < 0 the solution does not pass through zero in the vicinity 
of the singular point. Its behaviour is similar to the usual saddle with the only 
difference that there are three and not four, as in the usual case, linear asymp 
totes/separatrices (see Figure la). We will also call it a ‘saddle’. The fact that in 
our case separatrices are not continued through the singular point, in contrast to  
the usual singularities, is related to the non-analytic behaviour of Eq. (30) due to 
the square root singularity. 

If d > 0, then the sign pattern is (-, -, +) and the solution vanishes along one 
of the directions and tends to infinity along the other two. The form of the solution 
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is quite different from the standard ones. The field line cannot be continued along 
q5 = 41 into q5 = q51 + T as can be done in the usual case. We wil l  call this type of 
singularity a ‘beak’ (see Figure lb ) .  

If only one of the roots t j  is real and the other two are complex conjugate, the 
solution has the form: 

r 
TO 
- = ( t2  + 1)lt - t 2 1 4 R e u z e x p ( 4 g ~ ~ 2 ) ( t  - t1)2u1, (47) 

where = tan-’[Im t2 / ( t  - Retz) ] .  The real root z q  is negative, as is seen from Eq. 
(43) and thus T does not vanish in the vicinity of such a singular point. The flux 
lines of the polarization field for this case are presented in Figure l c .  This type of 
singularity can be called a ‘comet’. This case is realized when the determinant d is 
positive. 

4.4 
The relative weights of different singular points was calculated in the following way. 
It is evident that the probability of ‘saddles’ is 50% because saddles appear if and 
only if d < 0. The Probability of comets and beaks was found numerically from 
the conditions that d > 0 and there is a single real root of the equation D = 0 (for 
comets) or there are three real roots (for beaks), where D is the denominator in the 
expression (34).  The probability of the appearance of saddles, beaks and comets for 
a random choice of 41, 42, u1, and u2, is correspondingly W, = 0.500, Wb M 0.116, 
W, 0.384. 

One can also estimate the number density of the singular points in the following 
way (see e.g. [9, 211). All singular points correspond to the case when both Q = 0 
and U = 0. The number density of these points is proportional to 

Probabilities of Various Types of Singularities 

dQ dU = Id1 dz dy (48) 

and thus the density is given by the average value of the determinant, d = 41u2 - 
42211. It can be shown that saddles make up 50% of all singular points (ns) = 
0.5(n),  where n is the number density of all singular points. Calculations of the 
number density of beaks and comets are more complicated and should be done 
numerically. According to our estimates the surface densities for beaks and comets 
are correspondingly (Q,) M 0.052(n) and (n,) M 0.448(n). Deviations from these 
and the above-found numbers for Ws,b,c may signal deviations from the Gaussian 
nature of the perturbations. 

5 CLUSTER ANALYSIS 

5.1 

In this section following the work [26] we investigate some special peculiarities of the 
CMB polarization, using the method of cluster analysis of maps, refs. [22,24,26].  In 

Global Topology of Polarization: Cluster Analysis 
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order to  investigate the global topology of the 10" square anisotropy AT(&, 6,) and 
Polarization Q(6,, 0,) and U(6,,  8,) maps, we generated independent realizations 
of Gaussian processes. We denote a G AhT/uA, where is the variance of the 
anisotropy of the CMB, and analogous notation for the polarizations Q and U. 

In order to give the qualitative characteristics of anisotropy and polarization we 
made the cross-section of AT, Q and U maps at identical levels of a. We can define 
a cluster of length k as a collection of k maxima within the closed line of cross-level 
a [22]. If the value a is high (- 2.5-3) the closed lines of levels contain only high 
maxima of the field. All maxima are separated and only clusters of length k = 1 
are observed. The reduction of the level a leads to the appearance of big clusters, 
when the maxima of the clusters begin to connect together and to generate new 
clusters. 

For the values a + 0 the length of clusters k + 00 and we have the effect of 
percolation. 

In refs. [22-241 it was shown that the rate of clusterization in the anisotropy 
maps depends very sensitively on the characteristics of possible non-Gaussian noise 
in a signal. Therefore, the investigation of the cluster statistics is another clue that 
could have great potential for probing the nature of signals of the sky. 

Let us introduce the number of clusters N k ( a )  of the length k and the total 
number of clusters N ( a )  which are presented in the anisotropy and polarization 
maps for an appropriate cross-level a: 

m 

k=l 

We are interested in the mean length of a cluster do: 

for the whole region considered in the anisotropy and polarization maps. 
In Figure 2 we plot the functions (~T(Q)), (kQ(a)), (ku(a)) for the AT, Q and 

U components of polarization, respectively. As one can see from Figure 2, if la1 < 2 
then the rate of clusterization in the polarization maps is less than in the anisotropy 
maps. 

5.2 Detection of Non-Gaussian Noise in the Maps of Anisotropy and Polarization 

The idea that the mean length of a cluster of the CMB anisotropy depends very 
sensitively on the signal-to-noise ratio was discussed in 122-251. In this section we 
demonstrate the applications of cluster analysis for the maps of anisotropy and 
polarization of the CMB which contain the primordial (Gaussian) signal and non- 
Gaussian noise. As an example we consider the development of a model (see refs. 
[23-251) for non-Gaussian noise. Namely, we consider a regular net of points sources 
with polarized radiation. The separation of knots of the net is 6 = 30' in the BZ 
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- 

/i- 
A 

v -  
U 

-3 -2 - 1  0 1 2 3 
a 

Figure 2 The mean length of clusters of anisotropy ( k T ( a ) )  and the Q and U components of 
polarization. Asterisks correspond to ( k T ( a ) ) ;  A are the Q and U components of polarization 
respectively. 

and eY directions. The angular resolution of the antenna is 6'. We assume that the 
intensities of the point sources are random and produce an additional anisotropy 
uniformly distributed around the mean value 6,. In this case the distribution of the 
CMB fluctuations of temperature in the map is: 

ATr(ez,ey) = ATo(@~,~ , )  + ATn(6z,6y), (51) 

where ATo(&, 6,) is the primordial (Gaussian) signal and AT,,(&, 6,) is the net of 
sources of noise. Note that the primordial signal and AT,,(&, 6,) are independent 
of each other and therefore uncorrelated. Besides that, due to the presence of non- 
Gaussian noise the mean value of ATr (&, 6,) correspondskthe mean value of the 
amplitude of the noise 6,. Let us introduce the new field AT,(&; 6,): 

- 
ATr (4 3 6,) = ATr (ez ,  6,) - 6, (52) 

which has the following characteristics: 
- 
WG(&, 6,))s = 0 (53) 

and 
a; = 0; + 0; - 6; = a$(l+ a), (54) 
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2 

0 
-3 -2 - 1  0 1 2 3 

a 

Figure 3 The mean length of clusters of anisotropy without (asterisks and solid line) and with 
(A lines) non-Gaussian noise. Line corresponds to the a = 0.04 model; A-line corresponds to the 
a = 1 model. 

where U A  is the variance of the primordial signal, u: is the variance of the noise, 
a = (uz - bz)/ui and the brackets () denote averaging over the whole maps. 

Now we will discuss the model of non-Gaussian noise of the polarization. We 
assume that each point source of non-Gaussian noise automatically produces a dis- 
tortion of two components of polarization. In this case the distribution of the Q 
and U components of polarization in the map is the following: 

where QO and UO are the primordial signals of the polarization, b = const is the 
degree of polarization for each source, and !P is a random phase homogeneously 
distributed in the interval [ 0 , 2 ~ ]  (We suppose that the degree of polarization b = 
const is the same for all sources). As one can see from (55) the average value of Qr 
and U, is equal to zero, and the parameters u& = (1/2)b2ui, u$ = u$ = (1/2)u; 
denote the variance of the noise and variances of the QO and UO components of the 
primordial signal. Here up is the total variance of the polarization. The parameter 
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Figure 4 The mean length of clusters for the Q component of polarization with (A-lines) and 
without (asterisks) non-Gaussian noise. Line corresponds to the p = 0.04 model; A-line corre- 
sponds to the p = 1 model. 

p = u&,/ub determines the level of the noise in the map of the polarization. Now 
let us introduce the degree of polarization in the maps without non-Gaussian noise: 

Using (55) and (56) one can write: 

If b2 = [l - (6E/uE)]P, then p = a and the levels of noise in the maps of the 
anisotropy and polarization are practically identical. 

In Figures 3 and 4 we plot the dependence of the mean length of the clusters on 
a cross-level Q! for four models: a = 0.04, p = 0.04 and a = 1, p = 1 and 6, = 0.20.4 
in both models. These models illustrate the character of the rate of clusterization in 
the case when non-Gaussian noise is small as for anisotropy and polarization; and 
vice versa, if the level of the noise is comparable with the level of the primordial 
signal (a = 1 and p = 1) then the rate of clusterization varies more clearly. From 
Figures 3 and 4 one can see that the influence of the noise leads to the deduction of 
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the rate of clusterization for the CMB polarization. For the anisotropy field there 
is a shift of the percolation level with the variation of the shape of the curve. That 
is in total agreement with the conclusions in refs. [23] and [24]. 

6 SUMMARY AND DISCUSSION 

In this paper we discussed different methods of analysis of the properties of the 
CMB polarization. 

We have compared local and non-local descriptions of the polarization with 
different expressions for the field function& S and P (see Section 3) in the case of 
noisy data. We conclude that the optimal observational strategy strongly depends 
upon the properties of the noise. For sufficiently rare sources of noise on the sky, 
a measurement of the local quantities S and P (see Eqs. (7)), which are obtained 
by differentiation of the Stokes parameters, seems to be more favourable. However 
isotropic noise with zero average may be easier to suppress by taking an average 
value over part of the sky. 

We established a classification of the singular points of the flux lines of the 
eigenvector n(+) of the polarization (Stokes) matrix. We have found that there are 
three possible types of singularities at the points where the polarization vanishes: 
saddles, comets, and beaks. They are different from the singularities known in the 
standard theory of two-dimensional vector fields. The former, as is well known, are 
saddles, knots, and foci (even though the name ‘saddle’ is the same in both cases 
the behaviour of the flux lines is quite different). The reason for this difference 
is a square root singularity of the vector n(+) at the point where the polarization 
vanishes. 

It is shown that in the case of Gaussian primordial fluctuations (as predicted by 
inflationary cosmology) the saddles make up 50% of all singular points, beaks make 
up 5.2%, and comets make up 44.8%. Deviations from these numbers may signal 
deviations from a Gaussian nature of perturbations or may indicate the existence 
of non-Gaussian noise in observational data. We realize that measurement of the 
polarization near the points where it vanishes is a formidable observational problem. 
But the patterns on polarization maps created by the flux lines of n(+) in the regions 
where the polarization is non-zero is to  a large extent determined by the types of 
nearest singularities. Thus one may hope that measurements of polarization on the 
patches where it is sufficiently large would permit us to determine the singularity 
types. 

Finally we have investigated the statistics of the anisotropy and polarization 
of CMB fluctuations on the sky using a numerical approach (more details see ref. 
[26]). We have shown that the cluster analysis of CMB maps of the anisotropy 
and the polarization leads to the specific behaviour of mean lengths of clusters. 
The numerical examples show that manifestation of the presence of non-Gaussian 
noise in primordial cosmological signals of anisotropy and polarization depends very 
sensitively on the character of the noise. Note also that the simplest model of now 
Gaussian noise in the anisotropy and polarization, discussed in Section 5.2, leads 
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to very broad variations of the mean length of a cluster, if the parameters a and p 
increase from a , p  = 0.04 to a , p  N 1. 
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