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The rotation equations of weakly deformable celestial bodies (in canonical and non-canonical 
Andoyer variables) are developed in detail. A theory of the perturbed rotational motion of an 
isolated weakly deformable body has been developed. Applications to Earth’s rotation theory are 
given. 
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INTRODUCTION 

Liouville’s equations have wide applications in the theory of E a  -h rotation (in the 
first instance, of the polar motion) (Munk and Mac-Donald, 1960; Lambeck, 1980; 
Moritz and Mueller, 1992). Usually a certain reduced linear form of these equations 
is used. However, in connection with the increase of accuracy of observations, the 
problem of taking into account new terms, additional to linear, and of more accurate 
analytical description of the corresponding effects in the Earth’s rotation become 
actual (Podobed and Nesterov, 1975). This necessity has a place, for example, for an 
explanation of the observed discrepancies in the values of amplitudes of some Earth 
axis nutations. An important problem is a full account of unperturbed Chandler- 
Euler motion properties in Earth rotation theory of its perturbed motion (Barkin, 
1996a; Barkin, Ferrandiz, and Getino, 1995b). These points, of course, refer to all 
bodies of the solar system. In particular, they are more relevant for construction of 
the theories of rotation of Venus, Mars, the asteroids and others. 

For a solution of these problems, it is very important to have and to use differ- 
ent forms of rotation equations, having a clear geometrical and dynamic sense. For 
a model of rigid celestial bodies, for example, the canonical equations in Andoyer 
variables, (Andoyer, 1923) have very important applications in the theory rotation 
of the Earth (Kinoshita, 1977; Kinoshita and Souchay, 1991) of the Moon (Beletskij, 
1971; 1972; 1975; Henrard and Moons, 1978; Lidov and Neishtadt, 1975; Barkin, 
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Yu. V. BARKIN 20 

1978, 1987), of Mercury and Venus (Beletskij, 1975; Beletskij, Levin, and Pogorelov, 
1979; Barkin, 1988) and of other bodies of the solar system (Barkin, 1984b). Equa- 
tions in Andoyer variables have been used in artificial satellite dynamics (Beletskij, 
1965; 1975; Chernousko, 1963; Beletskij and Khentov, 1985 and others; see also 
review in, for example, Barkin et al., 1982a; Barkin and Demin, 1982b). 

Equations in the angle-action variables of the Euler-Poinsot problem have cre- 
ated efficient applications in Earth rotation theory (Kinoshita, 1977), for a study 
of the polar motion of the Earth (Barkin, 1996a; 1998b), in the theory of asteroid 
rotation (Barkin, 1984b; Kinoshita, 1992) and in many other works. (See, for ex- 
ample, reviews in the monographs of Beletskij, 1975; Beletskij and Hentov, 1985 
and others). 

Wide and interesting studies have used equations in Andoyer and angle-action 
variables applied to the quantitative and analytical dynamics of a rigid body (Ark- 
hangelskij, 1977; Kozlov, 1980; Barkin and Borisov, 1989 and others). 

Differential equations in Andoyer variables (Getino and Ferrandiz, 1990; 1991) 
and in angle-action variables, for Euler-Chandler unperturbed rotational motion of 
deformable celestial bodies (Barkin, Ferrandiz and Getino, 1995b) have obtained 
some important applications for the study of some particularities of the Earth’s 
polar motion and of the perturbations in the Earth’s rotation (Barkin, 1996b). 

In this paper, analogous equations in Andoyer variables are developed for an 
other model of a celestial body (Liouville’s model). It is assumed that the rigid or 
elastic external envelope of the Earth is covered with a deformable layer. Relative 
displacements of the particles of this layer are specified by functions of time. 

This model is the basis for wide studies of the influence of different geophysical 
and tectonic processes on the Earth’s rotation, and for a study of rotation of other 
celestial bodies. 

Equations of rotation were obtained for the first time by the author in a more 
general statement of the problem of translatory-rotary motion of a planetary sys- 
tem of mutually gravitating deformable bodies in 1979. First integrals of this prob- 
lem were efficiently used for a generalization of the classical Laplace and Laplace- 
Lagrange theorems about the stability of a planetary system, proved for a planet 
system of material points and for a planet system of rigid celestial bodies (Barkin, 
1977) on the above-mentioned planetary system of weakly deformable bodies. These 
results, including the main form of the rotation equations in Andoyer variables and 
in the angle-action variables, were presented for the first time at Douboshine sem- 
inar (May 1979). However, in spite of the great importance of these results, they 
were not published, except for some short annotations (Barkin and Demin, 1979a; 
1984, and others). 

In this paper, the rotation equations of weakly-deformable celestial bodies (in 
canonical and non-canonical Andoyer variables) are developed in details. A theory 
of the perturbed rotational motion of an isolated weakly deformable body has been 
developed. The components of the inertia tensor of this body are considered as 
definite conditionally periodic functions of time. 

Unperturbed rotational motion is an Euler-Chandler motion of an axisymmetric 
elastic body. Perturbations in the rotation were obtained for arbitrary values of the 
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21 ROTATIONAL MOTION OF CELESTIAL BODIES 

unperturbed motion parameters (among them, for example, the angle 8 between 
the vector of the angular momentum and the polar axis of the body). The results 
obtained are very important for the studies of rotation of different bodies in the 
solar system, for example for Venus, for which angle 8 is not small (about 13", 
Williams, et aL, 1983). 

The solution obtained of the problem of perturbed rotational motion of an iso- 
lated celestial body also presents important interest for the development of Earth 
rotation theory as well as for an explanation of the main mechanical phenomena in 
the Earth's polar motion and for a refinement of the amplitudes of the perturbations 
adding some additional terms, for example, proportional to the small angle 8, and 
to study new fine effects due to different geophysical processes. 

In this paper, we discuss some of these effects. In our paper, the Chandler 
motion of the pole of the Earth and its properties have been explained by means 
of a new approach to the problem on the basis of the non-canonical equations in 
Andoyer variables. It corresponds to classical explanation of the Chandler pole 
motion (Munk and MacDonald, 1960) and its modern modifications (Kubo, 1991). 

Periodic variations of the components of the angular velocity of the Earth, due 
to  tidal lunar-solar variations of the components of the inertia tensor, have been 
determined. Corresponding effects in the polar motion are fine and the main per- 
turbations are characterized by amplitudes of the order of 0.0001 arc seconds. 

The results obtained give new opportunities for a study of rotational motion of 
solar system bodies and in the first case of Earth rotation. In a future paper, we 
will investigate in detail secular effects in the rotation of a weakly deformable body 
caused by slow redistributions of its masses: secular motion of the axis rotation 
pole, secular motion of the pole of the angular momenum vector, secular motion of 
the poles of the principal axes of inertia, acceleration of the axial rotation, secular 
variations of the Euler-Chandler motion, etc. These effects are estimated for definite 
mechanisms of subduction and mass accumulation of the oceanic plates (Barkin, 
1995a; 1996b; 1999). As a result of these fulfilled preliminary studies, in the last 
papers the paleomigration of the Earth's pole in the present geological epoch has 
been revealed. 

1 EQUATIONS OF WEAKLY DEFORMABLE BODY ROTATION 

1.1 

Consider a weakly deformable body, assuming that its particles in the process of 
the body motion are weakly displaced from their initial positions, or are moved 
in a given manner in the time but with small velocity. The body has an inner 
rigid envelope, with which we connect the Cartesian reference system C[qC, and an 
external deformable envelope. The origin of these reference systems coincides with 
the centre of mass of the body. 

Let Cxyz be the main reference system with the same origin and with axes 
having their permanent orientation in space. We define the orientation of the axes 

Main Kinematical and Dynamical Characteristics 
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22 Yu. V. BARKIN 

CtqC with respect to the reference system Cxyz by the Eulerian angles *, 0 and 9 
(precession angle, nutation angle, and angle of own rotation) (Douboshine, 1975). 
Let G be the angular velocity vector of rotation of the body reference system C<q( 
in the main reference system C x y z .  Its projections on the axes C<, Cq, and CC are 
defined by the Eulerian kinematical equations: 

p = sinOsin+&+cos+O, 
q = s i n 0  cos+& - s i n 9 8 ,  
T = c o s 0 & + & ,  

where &, 0, and & are the corresponding generalized velocities. 
We define the position of an arbitrary point of the body in its undeformed state 

(or in some initial state) and in its deformed state by radius vectors T and T' and 
introduce the bias vector u = T' - T .  

We denote the components of this vector in the C<, Cq and C(, axes as u, v 
and w. Let (S, q, C )  and (Q, q', <') be Cartesian coordinates of an arbitrary point 
of the body in the C&( reference system for the two abovementioned states of the 
body. If i b ,  j b ,  kb, are unit vectors of the coordinate axes C<, Cq and CC, we have 
the following representations for the vectors u, r', r :  

We point out that the vector u is a given function of time. From the mechanical 
point of view, the processes of the mass redistribution of the body are considered 
as given and independent from its rotation. 

In our paper, the general forms of equations of rotational motion under the action 
of an arbitrary moment of forces L are obtained. The general case of non-potential 
forces and the case of potential forces are considered. Canonical and non-canonical 
equations of motion in Eulerian, Andoyer and Poinsot variables are obtained. In 
the general case, the body axes C&C are not principal. 

The angular moment of the body rotation in the reference system Cxyz is defined 
by the following integral 

G = p(r')r' x d d7' , (1.3) 
T' s 

where v' is the velocity of an arbitrary particle of the body, dr' = dx' dy' dz' is 
an elementary volume, and integration in (1.3) is spread over the full volume of the 
body in its deformed state, 

(1.4) 

The first term in (1.4) is the relative velocity of the particle in the body reference 
system. 
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ROTATIONAL MOTION OF CELESTIAL BODIES 23 

Neglecting terms of the second order with respect to  u and &/at, we present 
the expression of the angular momentum (1.3) as the sum of integrals: 

G = / p ( r + u ) r  x (w x r ) d r '  
7' 

+ I ~ ( T ) T  x (w x u)dr '  
7' 

n 

+ ] p(r)u x (w x T )  d7'. 
7' 

(1.3') 

In the general case, the density variation in an arbitrary body point has first 
order and we can use for the density the following approximation: 

aP dP aP 
P(T' )  = p ( r )  + -u + -v  + -w. 

a x  dy dz 

In the integrals (1.3), (1.3') the variables z', y', z' are replaced by the variables 2, 
y, z and integration over the volume of the deformed body is replaced by integration 
over the undeformed body. The transformation of the volumes is given by the 
formula: 

In a particular case, for example, for the motion of separate blocks of the Earth 
(or plates), the density in an arbitrary point practically does't change and formulae 
(1.5), (1.6) are simplified: 

p ( r ' )  = p ( r ) ,  dr' = d r .  (1.7) 

Retaining in (1.3') the main order terms, after some algebra with the help of 
formulae (1.5)-(1.7), we obtain the following expression for the angular momentum: 

G = Gcib + Gqjb + GCkb. (1.8) 

Projections of the vector G on the body coordinate axes are defined by the 
formulae: 

Gc = A p - F p - E r + P ,  
G, = - F p + B q - D r + Q ,  
Gc = - E p - D q + C r + R .  (1-9) 

Here A,  B, C and F, E ,  D are axial and centrifugal moments of inertia of the body 
in the body axes, but calculated for the changed body density 
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24 Yu. V. BARKIN 

(according to our assumption, it is a known function of time). P, Q and R are 
projections of the angular momentum vector of the relative motion of the body 
particles (in the C<vC reference system) on axes C<, Cq and CC. 

Thus, the components of the body inertia tensor are represented as a sum of 
two terms: 

A = A0 + A1 , B = Bo + B1, C = Co + C1, 
F = F o + F i ,  E = E o + E l ,  D = D o + D 1 ,  (1.11) 

where Ao, Bo, CO, Fo, Eo, DO are the components of the tensor of inertia in the 
undeformed state of the body, and A1, B1, CI, F1 , El ,  D1 are some additional terms 
due to variations of the density redistribution. These characteristics are defined by 
an integration over the full volume of the body in its undeformed state: 

Ao = / po(r)(v2 + C2) d7, 

Bo = / PO(T)(C’ + t’) dT, 

co = / ~ o ( ~ ) ( < ’ + v ~ ) d ~ ,  

T 

7 

T 

(1.12) 
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25 ROTATIONAL MOTION OF CELESTIAL BODIES 

(1.13) 

In (1.9), the components of the relative angular momentum of the body particles 
in the C<qC reference system axe defined by the following volume integrals: 

T 

(1.14) 

Formulae (1.12)-(1.14) enable us to present (1.11) and (1.9) as explicit functions 
of time. The kinetic energy of the rotational motion of the weakly deformable 
body with respect to the reference system Cxyz is defined by the following volume 
integral: 

T = / p(r')v' - v' dr' , (1.15) 

were dr' = dx' dy' dz' and the integration is spread over the full volume of the 
deformed body. 

2 
T' 

The absolute velocity of the body particle is defined by the following formula: 

du 
dt 

v ' = - + w  x r + w  x u  (1.16) 

(the derivative of the vector u is calculated with respect to the body reference 
system). 

Substituting (1.16) into expression (1.15) and neglecting the second order terms 
with respect to the components of u and du/ dt, we describe the kinetic energy of 
the body as: 

p(r')(w x r)2d7' 
7' 

+ / p(r')(w x T ) ( W  x u) dr' 
T' 

+ / p ( ~ ' ) x ( w  du x T )  dr' . 
T' 

(1.17) 

Going to the integration over the undeformed state of the body and taking into 
account formulae (1.6), (1.7), after some algebra we obtain the following simplified 
expression of the kinetic energy: 
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Yu. V. BARKIN 26 

1 T = ,(Ap2 + Bq2 + Cr2 - 2Fpq - 2Epr - 2Drq) + p P  + qQ + r R ,  (1.18) 

where p ,  q, T are the components of the angular velocity vector (l . l) ,  and the 
components of the inertia tensor of the body and the components of the relative 
angular moment are defined by formulae (1.12)-( 1.14). 

Formula (1.18) presents the kinetic energy of the body as a function of the 
components of the angular velocity (1.1) and time, or as a function of the generalized 
coordinates and velocities: 

iPl 0, a, Ik, 0, 4. (1.19) 
The dynamic characteristics of the weakly deformable body (1.8)1 (1.9) and 

(1.18) permit us to obtain different forms of the differential equations of the rota- 
tional motion. 

1.2 Liouville’s Equations 

We suppose that the body is subject to the action of definite forces and the principal 
moment of these forces with respect to the centre of mass C is L. In accordance 
with the theorem about the angular momentum for a mechanical system, we obtain 
the following vector equation of the body rotation: 

d G  - + w x G = L  
dt 

or in projections on the axes of the body <qC: 

*+pG, -qGE = Lc dt 

(1.20) 

(1.21) 

The derivative of the vector G in (1.20) is taken with respect to the moving 

Substituting values of the projections (1.9) into (1.21), we obtain the Liouville 
reference system CtqC. 

equations (Liouville, 1858; Tisserand, 1891): 
d 
dt 

D(r2 - q2)  + (C - B)qr + (Fr  - Eq) + q R -  r Q ,  

L< = - ( A p - F q - E r + P )  

+ 
d 
dt 

L, = - ( - F p + B q - D r + Q )  

+ E(p2 - r 2 )  + ( A  - C)rp + (Dp - Fr)q + rP - pR , 
d 
dt Lc = - - ( - E p - D q + C r + R )  

+ F(q2 - p 2 )  + ( B  - A)pq + (Eq - Dp)r + pQ - q P .  (1.22) 
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ROTATIONAL MOTION OF CELESTIAL BODIES 27 

These equations are combined with Euler’s kinematic equations (1.1) and are in- 
tegrated for concrete values of the components of the tensor of inertia and of the 
components of the relative angular momentum as definite functions of time: 

W), CW;  F ( t ) ,  E( t ) ,  W t ) ;  P( t ) ,  Q(t) ,  R(t). (1.23) 

Projections of the principal moment of the forces acting on the body are con- 
sidered as known functions of the generalized coordinates and velocities (1.19) and 
time. 

In the absence of this moment (when L = 0), the integrable cases of equa- 
tions (1.22) and their integrability were studied by Barkin and Demin (1979; 1984), 
Barkin (19981, Borisov (1991). 

1.3 

Taking the Eulerian variables as generalized coordinates, we define the conjugate 
canonical momenta by formulae (Douboshine, 1975) 

Canonical Equations of the Rotational Motion in E d e r  Variables 

dT 
a6 p e = - .  dT aT 

p s  = - a!% ’ a& ’ P* = - 

Substituting the expression for T (1.17) into (1.24), we obtain: 

(1.24) 

aP acr 
a s  as  = ( d p  - Fq - J% + P)- + ( -Fp+ Bq - DT 4- &)- 

(1.25) dT 
a s  ’ + ( - E p  - Dq CT + R)- 

where S=(*, 0, 9), S = (a, 6, &). 
Taking into account formulae (1.9) and (l.l), we find from (1.25) the following 

relationships: 

where 
dT - aP = sinosin9, - a(! = sinQcos9, - = coso,  a* a* aa 

- a9 
a i  
- 84 
a6 a6 

= 0, 

= -sin@, 
dT = o  - 

= 1, ar 
a i  
- 
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p~ 

p~ = Gccosip-G,sin@. (1.26) 

= Gc sin 0 sin ip + G, s i n 0  cosip + Gc cos 0 ,  
Pip = Gc, 

Solving (1.26) for the components of the angular momentum, we obtain the 
following expressions: 

G< = 

G, = 

Gc = 

and for the modulus of the 

P* 9 (1.27) 

vector G 

(1.28) 

Let us assume that the body motion is executed under the action of potential 
forces and the problem admits a definite force function U ( q ,  0, a, t )  . The La- 
grangian of this problem will be L = T + U, and the Hamiltonian (generalized 
energy) is defined by (Olkhovskij, 1975): 

K = p*+ + p& + p e 6  - T - u . (1.29) 

This function must be presented as an explicit function of the canonical variables 
of the problem using formulae (1.26), (1.18), (1.1): 

q, 0, 9, PU, PS, Pip. (1.30) 

From the general theory of the canonical system, for the Hamiltonian (1.29) we 
have the following representation: 

K = T(2)  - u ,  

where T(2)  is the quadratic part of the kinetic energy with respect to  the generalized 
velocities. It means that in the function T ,  it is sufficient to retain only the quadratic 
terms with respect to p ,  q, r ,  expressed in terms of the variables (1.30). 

Let us solve equations (1.9) with respect to  components of the angular velocity 
p ,  q and r. We will have: 
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ROTATIONAL MOTION OF CELESTIAL BODIES 29 

where we used the new notation: 

BC - D2 AC - E2 AB - F2 
A ’  
FE + AD 

, b =  A , c =  A 
a =  

A ’  
, d = -  

ED + FC FD + BE 
A ’ e = -  A 

f = -  

A = ABC - AD2 - BE2 - CF2 - 2FED. (1.32) 
Let us substitute these formulae (1.31) into the expression of the quadratic part 

of the kinetic energy in (1.18). Neglecting terms depending only on the time, we 
obtain the following expression for the Hamiltonian of the problem: 

K = l{aG; + bGi + cG: - 2 f GcG, - 2eGcGt - BdGcG,) 2 
RtGc - R,G, - RcGc - U(XJ!, 0, ip, t )  , - (1.33) 

where Rt, R,, Rc are the components of some angular velocity: 

f2t = a P - f Q - e R ,  

Rc = -eP-dQ+cR 
R, = - f P + b Q - d R ,  

(1.34) 

and are known functions of time, and the components of the angular momentum 
are defined by formulae (1.27), (1.28). 

Thus, the canonical equations of the rotational motion of a deformable body in 
variables (1.30) have the following form: 

(1.35) 

sec2 @(a sin2 ip + b cos2 ip - f sin 2@) , 
acos2 ip + bsin2 ip + f sin26, 
cot2 O(asin2 ip + bcos2 9 - f sin2@) + c + 2ctan@(esinip + dcosip) , 
sec @[sin 2@(a - b) - 2f cos 2@] , 
- cos Osec2 @(asin’ CP + bcos2 @ - f sin2ip) - secO(esin@ + dcosip) , 
--cosOsecQ[sin2CP(a-b) - 2f cos2ipI -dsinip-ecos9 

sec O(Rc sin 9 + R, cos i p )  , 
Rc cosip - R, sin@, 

1 
2 

- cot @(a, sin@ + R, cosip) + Rc . (1.36) 
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30 Yu. V. BARKIN 

The force function U in (1.35) is a function ot the direction cosines a;j of the body 
axes C<qC with respect to the main reference system Cxya and can be presented as a 
function of the Euler angles with the help of the well-known formulae (Douboshine, 
1975) 

cos9cosip - sinQcosOsin9, 
sin 9 cosip + cos 9 cos0 sin@, 
sin 0 sin 9 , 
- cos 9 sin9 - s i n 9  coso cos9 , 
- sin 9 sin 9 - cos 9 cos0 cos 9,  
sin 0 cos ip , 
sin 9 sin 0,  
- cos 9 sin0 
cos 0. (1.37) 

1.4 Canonical Equations of Rotational Motion of a Defomable  Body an Andoyer 
Variables 

Let us introduce into consideration the Andoyer variables 

G, 61 P, 4 9, h (1.38) 

which are connected with the angular momentum vector G (1.8), (1.9) (see for 
example Barkin, 1977; Kinoshita, 1977). 

Let CG1G2G3 be an intermediate reference system, connected with vector G. 
The axis CG3 is directed along the vector G, and the axis CG1 is situated in 
the plane Cxy of the main reference system Cxyz and is directed along the line 
of intersection of the planes CGlG2 and Cxy to the ascending node of the plane 
CG1G2. Let G = 1GI be the modulus of the angular momenum and p and h 
are the angles determining the orientation of the reference system CGIGzG3 with 
respect to the reference system Cxyz: p is the angle between C z  axis and the 
angular momentum vector G, and h is the angle between the positive directions of 
the coordinate axes C x  and CG1 (h  is the longitude of the ascending node of the 
intermediate plane CG1G2). 

We define the orientation of the body axes C<qC with respect to intermediate 
reference system CGlG2G3 which we define by Eulerian angles 1,  g, 6. The nutation 
angle 8 is the angle between the positive directions of the axes CG3 and CC. The 
precession angle g is the angle between the CG1 axis and the line of intersection of 
the coordinate planes C G I G ~  and C& (or the angle between the positive direction 
of CGl axis and the direction toward the ascending node of the body plane C<q on 
the intermediate plane CGlG2). The angle of own rotation I is the angle between 
the indicated direction to the ascending node of the plane C<q and the axis C<. 

Thus, the Eulerian angles Q = h, 0 = p, 9 = 0 give the orientation of the 
intermediate reference system CG1 G2G3 with respect to the reference system Cxyz, 
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31 ROTATIONAL MOTION OF CELESTIAL BODIES 

and the Eulerian angles IE = 9, 0 = 0, 9 = I give the orientation of the body axes 
CtqC with respect to the intermediate reference system CGlGzG3. 

We will denote unit vectors of the Cartesian reference systems Cxyz, CG1GzG3 

is, i s ,  ks, i G ,  j G ,  kG’ i b ,  j b ,  kb- (1.39) 
Also, we introduce into consideration other unit vectors, e b s ,  eGs and ebG, 

directed along the lines of intersection of the coordinate planes Cxy, Ctq; Cxy, 
CGlGz and CGIGZ, Ctq. 

Let us define three Andoyer variables: L, G, H. L is the projection of the vector 
G on the polar axis of the body CC, H is the projection of the vector G on the C z  
axis, and G is the modulus of the vector G. Obviously, 

and G776 as 

L = Gkb, G = GkG, H = Gk, 

or 
L = Gcos0, G = IGl, H = Gcosp. 

Now we will prove that the transformation of Euler’s variables (1.30) to An- 
doyer’s variables 

L, G, H, 4 9, h (1.40) 

is canonical. 
This fact follows from the differential form establishing the canonicity of the 

transformation. This form, described in Euler’s (1.30) and in Andoyer’s (1.40) 
variables, is equal to the scalar product of the angular momentum vector G and 
the elementary angle of rotation dS1 of the body axes CevC, 

p* dIE + p e  dO + p+ d 9  = L dl + Gdg + H dh = G d f l  . (1.41) 

To prove this equality we twice calculate the scalar product Gdf l ,  using the 
Eulerian variables and Andoyer’s variables, and show that these products are equal: 

( G d n )  = (Gdn)E = (Gdn)A.  

We will use some of the simplest properties of the direction cosines of the axes 
and of the corresponding unit vectors. First we point out that in the abovemen- 
tioned variables the elementary angle of rotation (it is collinear with the angular 
velocity vector) is defined by the formulae (Archangelskij, 1977): 

(do), = k, d!J! + kb d 9  + e b ,  dO , (1.42) 
(dn)A = k, dh + i G  dp + kGdg + kbdl+ ebGd0. (1.43) 

For the angular momentum vector, we have similar representations: 

(1.44) 
(1.45) 

where the components Gc, G,, Gc and G are defined by formulae (1.27), (1.28). 
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32 Yu. V. BARKIN 

Multiplying the expressions (1.42), (1.44), we obtain: 

(Gdh2)E = (Gtibk, + G,jbk, + Gckbk,) d* 
+ (GCibkb -I- Gqjbkb + GZkbkb) d@ 
+ (Gtibebs Gsjbebs + Gckbebs) d o .  

Using now the simple geometric relationship 

e b s  = i b  cos 9 - jb sin 9 

(1.46) 

for the scalar products of the unit vectors in (1.46), we obtain the following table 
of their values: 

(ibk,) = sin@sinO, (ibkb) = 0 ,  ( i b e b , )  = c o s 9 ,  

(jbks) = COSQ!Sin@, (jbkb) = 0, ( j b e b , )  = -Sin@, (1.47) 

(kbk,) = C O S O ,  (kbkb) = 1 ,  (kbebs) = 0 -  

Taking into account formulae (1.47) , we can present relationship (1.46) in a 
more compact form: 

(G dh2)E = 

+ 
(Gc sin 9 sin 0 + G, cos 9 sin 0 + Gc cos 0) dQ 
Gc d 9  + (Ge ~ 0 ~ 9  - G, sin+) d o ,  (1.48) 

or, taking into account (1.26), 

( G d n ) E  = p p  dQ + p e  dO + p+ d 9 .  (1.49) 

Let us prove now that the similar representation 

(Gdn),  = LdE + Gdg + H d h  (1.50) 

holds. 
In fact, multiplying vectors (1.43) and (1.45), we find: 

(Gdn)A = G[(kGks) dh+(k&) dp+(kGkG) dg+(kGkb) dl+(kGebG) do]. (1.51) 

We obtain the following values of the products of the unit vectors (1.51), using 
the definition of the Andoyer variables: 

(kGks) = COSp, (k&) = 0, (kGkG) = 1 ,  

(kGkb) = Cod,  (kGebG) = 0 
(1.52) 

and, consequently, 

(G dn), = G(c0s p dh + dg + cos 8 dl) = L dl + G dg + H dh . (1.53) 

Obviously, the scalar products (1.48) and (1.53) are equal and, consequently, the 
transformation from variables (1.30) to  variables (1.40) is canonical. 
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ROTATIONAL MOTION OF CELESTIAL BODIES 33 

For the presentation of the Hamiltoman of the problem in the new variables 
(1.40)’ it is sufficient to  use in (1.33) the following expressions of the projections of 
the angular momentum vector with respect to  the body axes: 

Now we obtain the canonical equations of the rotational motion of the weakly 
deformable 

dl dK dL dK 
dt dL ’ dt dl ’ 
--- --  - --- 

dg OK dG dK 

dh dK dH dK 
- dh  ‘ dt dH ’ dt 

_- -  -- - -- 
dt - dG ’ dt ag ’ 
_ - -  -- -- - (1.55) 

1 -G2((asin2 1 + bcos2 1 - f sin21) sin2 8 + ccos2 8 - sin 28(e sin 2 + d cosl)) 
2 

- G[(R~sinZ+R,cosZ)sinO+R~cos8] - U(L,G,H,l,g,h,t). (1.56) 

The force function U in (1.56) must be presented as a function of the canonical 
variables (1.40) and of time. 

The last problem is solved with the help of the known representations of direction 
cosines ai, (1.32) of the body axes C<q< with respect to the main reference system 
Czyz (Barkin, 1992): 

K = 

1 
4 
1 
4 
1 
~ ( 1 -  cos8)(1- cosp) cOs(1- g + h) 

all  = -(1+ cos8)(1+ cosp) cos(l+ g + h) 

+ -(l+cos8)(1 -cosp)cos(l+g-h) 

+ 
1 + q(i-cose)( i+cosp)cos( i -g-h)  
1 1 
2 2 + -sinOsinpcos(l-h) - -sinOsinpcos(l+h), 

1 
a21 = - ( l+cos8)( l+cosp)sin( l+g+h) 4 

1 - 

+ 
-(I + cos8)(1- cosp) sin(l+ g - h) 
4 
1 
4 
-(1 - COSB)(l- cosp) sin(l - g + h) 

- ~(1-cos8)(1+cosp)sin(l-g-h) 1 
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34 Yu. V. BARKIN 

1 1 
-sinOsinpsin(Z + h) - -sin€Jsinpsin(l- 2 h ) ,  2 
1 1 
-sinp(l+cos6)sin(Z+g) - -sinp(l -cosB)sin(l-g) 2 2 
cos p sin 8 sin 1 , 

1 
4 --(1+ cos@)(l+ cosp) sin(Z + g + h) 

1 
-(l+cos8)(1 -cosp)sin(l+g-h) 
4 
1 
-(1 - cos6)(l - cosp)sin(l - g + h) 
4 
1 
-(1 - cos8)(1+ cosp) sin(l - g - h) 
4 
1 1 .  - sin 8 sin p sin(1 + h) - - sin 8 sin p sin(Z - h) , 
2 2 
1 
-(1+ cos8)(l+ cosp) cos(Z + g + h) 
4 
1 
4 -(I + cose)(i - cosp) cos(z + 9 - h) 

1 - (1 - COS e)(i - cos p)  cos(z - + h) 4 
1 '(1 - c ~ ~ t ? ) ( l + c o s p ) c o s ( l - g -  h) 4 
1 1 - sin 0 sin p cos(Z + h) - - sin 6 sin p cos(Z - h) , 
2 2 
1 1 - sin p(1+ cos 8) cos(1 + g) - 5 sin p(1 - cos 6) cos(l - g) 
2 

1 1 -sin 8(l + cosp) sin(g + h) + - sin 6(1 - cos p )  sin(g - h) 
2 2 
sin p cos 6 sin h , 

sinecospcosz, 

-- 1 sin8(1+ cosp) cos(g + h) + - 1 .  sin6(1- cosp) cos(g - h) 
2 2 

sin p cos 6 cos h , 
- sin p sin 8 cos g + cos p cos 8. (1.57) 

In formulae (1.56), (1.57): 

H 
G G G G , cosp= - .  L Jn' , cos6= -,  sinp= 

& c 5  sine = 

1.5 Canonical Equations an the Angle-action Variables 

For a wide class of weakly deformable celestial bodies executing rotation close to 
the unperturbed rotational motion of the rigid body in accordance with the Euler- 
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ROTATIONAL MOTION OF CELESTIAL BODIES 35 

Poinsot solution, the corresponding equations of rotation in the angleaction vari- 
ables can be adopted (Barkin, 1992; 1996a). 

Let the values considered (1.11)-(1.14) admit the following representations for 
the body: 

A = Ao + pA1+ p2Az + ... , B = B o + p B 1 + p 2 B 2 +  ... 

c = co +pe l  +p2c2 f . . . , 
F = pF1+ p2F2 + . . . , E = pE1+ p2& + . . . , D = pD1+ p2D2 + . . . , 

P = P S + P 2 P z + . - - ,  Q = p Q 1 + p 2 Q 2 + . . -  , R = p R l + p 2 R 2 +  ... , (1.58) 
where p is some small parameter; Ao, Bo, CO are constant unperturbed values of 
the axial moments of inertia, and the terms of the second and higher orders with 
respect to p include the effects of the change of the dynamic structure of the body 
and are known functions of time. 

Similar to (1.58), representations are obtained for values (1.32) and (1.34): 

a = a0 + pal + p2a2 + . . . , b = bo + pbl + p2b2 + . . . , 
c=co+pc1+p2c2+  ... , 

i2( = pR?)+p2fy)+ .  . . , R, = pRp+p252?)+. . . , i2< = p a c  ( 1 )  +p 2 Rc (2) +. . . 
(i.59j 

2 f = p f 1  + p2 f 2  + . . . , e = pel + p e2 + . . . , d = pd1 + p2d2 + . . . , 

where the coefficients for different powers of the parameter p are defined by the 
formulae: 
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36 Yu. V. BARKIN 

(1.60) 

The Hamiltonian of the problem of the rotation of a weakly deformable body 

(1.61) 

can be presented in the standard form : 

K = KO + K 1 ,  

where 

(1.62) 

is a Hamiltonian of the unperturbed Eulerian rotation of the undeformable body 
with constant principal moments of inertia Ao, BO and CO, and K1 is a perturbing 
function, including the small terms of the quadratic part of the kinetic energy of 
the rotational motion of the body and a force function of the problem, which is 
comparatively small with respect to the main components of the Hamiltonian KO: 

1 
K1 = c p'( ;G2 [sin2 0(a, sin2 1 + b, cos2 1 - f, sin 21) 

u=l 

+ c, cos2 0 - sin 20(d, cos 1 + e, sin l ) ]  

- G [(O; sin 1 + Cl; cos 1) sin 8 + Cl; cos 01 } - U ( 0 ,  p, I ,  9, h, t )  . (1.63) 

Angle-action variables of the Euler-Poinsot problem were studied by many au- 
thors (Sadov, 1970; Kinoshita, 1972; Barkin, 1992; 1998b, and others). Let us 
denote these variables as Ii, (pi (i = 1, 2, 3) and introduce them using the formulae 
of the canonical transformation from Andoyer variables (Barkin, 1992; 1998b): 

M cosh mu sin2mql , 
= '' i- c mcosh(2md) 

m=l 
M sinh ma sin2mql,  

9 = v 2 + Z  m=l m sinh(2md) 
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ROTATIONAL MOTION OF CELESTIAL BODIES 37 

(1.64) h = 9 3 ,  

where 600 = 1, bm=0 = 0 (m 2 l), 

?rK(X’) d = -  
2K(X) ’ 

Here K(X) and F are complete and incomplete elliptic integrals of the first kind. 
The modulus of these integrals X and the parameter k are defined by the initial 
conditions of the problem: 

(1.65) 

where PO, TO (qo = 0 )  are initial values of the components of the angular velocity. 

described in the following way: 
The equations of the rotational motion in the angle-action variables can be 

(1.66) 

H = HO(11, 1 2 )  + Hl(I1, 12 ,137  91, 9 2 7  9 3 ,  t )  * (1.67) 

Here HO is the Hamiltonian of the unperturbed motion (Sadov, 1970; Barkin, 
19921 

1 A - C  k2 
+ 7 (A2 + k 2 )  

H o = Z [  2A (1.68) 

and HI is the perturbing function (1.63), which must be presented as a function 
of the angle-action variables. This is done with the help of formulae (1.64) and a 
wide set of formulae of the unperturbed Eulerian motion obtained in the course of 
the Saragossa lectures (Barkin, 1992; 1998b). The Fourier series for the direction 
cosines aij ,  for their mutual products and squares, etc. (Barkin, 1992) have a very 
important significance for applications (Barkin, 1996a; 1998b). 

Equations (1.61), (1.62) and (1.66)-(1.68) admit efficient application of different 
methods of perturbation theory to the study of rotational motion of deformable 
celestial bodies. 

1.6 Equations of Motion in the Andoyer Variables (Case of Non-potential Forces) 

The canonical equations of rotational motion, obtained in Sections 1.4,1.5, hold only 
in the case of the existence of the force function of the problem. The generalization 
of these canonical equations to the case of generalized potential forces can be given 
in accordance with similar results, obtained for rigid body rotation (Barkin, 1999b). 
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38 Yu. V. BARKIN 

In this connection, we obtain here other forms of the equations, which can be 

We will use the theorem of angular momentum conservation of a mechanical 
used for studies of rotational motion of celestial bodies in arbitrary force fields. 

system in its motion about the center of mass: 

= L .  (1.69) dG 
dt 
- 

The angular momentum G is defined by formulae (1.8), (1.9). L is the principal 
moment of all the forces acting on the body, with respect to its centre of mass. 

In the general case, some volume force f (r’ ,  t )  acts on an elementary volume of 
the body dT’ and some surface force Pn(r’I, t )  acts on an elementary element of the 
surface d d .  The principal moment of these forces L is defined by formula 

where the integrals are spread over the full volume of the body and over its surface 
in a deformable state. 

Here we don’t consider the procedure of calculation and description of the com- 
ponents of moment (1.70), but we point out that this vector is determined with 
respect to the centre of mass of the body and in the general case is presented as 
a function of the Euler angles, of the components of angular velocity (1.1), and of 
time 

L = A P ,  0, *, P, 4, T,  t ) .  (1.71) 

To introduce the equations of motion in the Andoyer variables, we will use dif- 
ferent representations of the vectors G, L in the basis of the reference systems 
Cxyz, CtqC, C G I G ~ G ~ ,  and also we introduce into consideration a few new geo- 
metric and kinematic characteristics of the relative motion of the above-mentioned 
reference systems. 

The vector of the angular velocity w of rotation of the reference system C<q( 
with respect to the reference system Cxyz admits the following representations: 

(1.72) 
(1.73) 

where i b ,  j b ,  kb and z,, j , ,  k ,  are systems of unit vectors of the corresponding 
reference systems; and p ,  q, T and p , ,  qs, rs are projections of the vector w on the 
axes of these reference systems. In Euler’s angles, these projections are defined by 
the formulae (Suslov, 1946): 

p = s in+s ine@+cos+6,  
q = cos+sinO@-sin*6, 
T = C O S @ & + i ?  (1.74) 
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ROTATIONAL MOTION OF CELESTIAL BODIES 39 

and 

p ,  = 6 c o s ~ + & s i n Q s i n ~ ,  
qs = 6sinq - &sinOcosq, 
T, = & + + c o s o .  (1.75) 

Using formulae (1.72)-(1.75), we obtain similar kinematic formulae for the rela- 
tive motion of the reference systems CG1GzG3 and Cxcyz, and also of the systems 

Let W G ,  be the angular velocity of rotation of the intermediate reference system 
CGlG2G3 with respect to the main reference system. This vector Cxyz can be 
presented in the two bases: 

C<qC and CG1 G2G3. 

(1.76) 
(1.77) 

It is easy to obtain the values of the projections of this vector in (1.76), (1.77) 
on the basis of formulae (1.72)-(1.75), substituting !I? = h, 0 = p, @ = 0: 

p ~ = p ,  qG=Sinph, TG=COSph (1.78) 

pGS =pCOSh, qGs = p s b h ,  TG,  = h .  (1.79) 

Here P G ,  qc , TG are projections of the vector WG, on the axes of the intermediate 
reference system CGlGzG3,and p ~ , ,  QGs, TG, are projections of the same vector on 
the axes of the reference system Cx, Cy and Cs. 

In a similar way, we obtain on the basis (1.37) the values of the direction cosines 
of the intermediate axes CG1G2G3 in the main reference system: 

and 

911 = C O S ~ ,  ~ 2 1  = sinh, g31 = 0, 
912 = -sinhcosp, 922 = C O S ~ C O S ~ ,  932 = sinp, (1.80) 
913 = sinhsinp, 923 = -coshsinp, g33 = cos p. 

Substituting now !I? = g, 0 = 0, 9 = I, on the basis of formulae (1.72)-(1.75), 
we obtain corresponding representations for the vector WbG of the angular velocity 
of the body reference system C<qC with respect to intermediate reference system 
CGiG2G3 : 

WbG = p b i b  + q b j b  + rbkb 1 

wbG = PbGiG + qbG j G  + rbGkG (1.81) 

Here pa, q b ,  rt, are projections Of the Vector WbG On the body axes, a d  pbc, QbG, TbG 
are projections of the vector WbG on the axes of the intermediate reference system: 

(1.82) 
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40 Yu. V. BARKIN 

Substituting now 9 = 9, 0 = 0, = 1 in (1.37) we obtain representations for 
the direction cosines b i j  of the body reference system C<qC with respect to the 
intermediate reference system CG1 G2G3: 

bl l  = 
b 2 l  = 

b12 = 
b22 = 
b32 = 

b31 = 

b13 = 
b 2 3  = 
b33 = 

cosgcosl - singcosesinl, 
sing cos 1 + cos g cos 9 sin 1 , 
sin 9 sin 1 , 
-cosgsinl -singcosecosl, 
-singsin1 - cosgcosOcos1, 
sin 19 cos 1 , 

- cos g sin 0 ,  
cos 6 .  (1.84) 

singsine, 

Using the vector equations (1.69)-(1.71) and the kinematic formulae (1.78)- 
(1.84), we obtain the differential equations of the rotational motion of the body in 
the Andoyer variable (Andoyer, 1923): 

G, 8, PI 4 9, h- (1.85) 

To obtain the first three equations (for the variables G ,  p ,  h) we use a represen- 
tation of the absolute derivative dG/dt  in terms of the local derivative, which is 
calculated with respect to the intermediate reference system. 

The following vector equation 

-+ W G ~  X G = L dGG 
dt 

and equations in projections on the coordinate axes C G I ,  C G 2  and CG3: 

(1.86) 

(1.87) 

follow from (1.69). 
Here Gi are projections of the vector G on the axes of the intermediate reference 

system. Obviously, GI = GI = 0, G3 = G .  Taking into account the values p ~ ,  QG, 
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ROTATIONAL MOTION OF CELESTIAL BODIES 41 

TG (1.78), the equations (1.87) are represented in the following form: 

Ghsinp = L G ~  , 
-pG = L G ~ ,  

G = L G ~ .  (1.88) 

Projections of the principal-moment vector L in (1.88) can be expressed in 
terms of projections of this vector on the body axes CtqC or on the axes of the 
main reference system Cxyz: 

or, in more detail, 

(1.89) 

LG1 = L,cosh+L,sinh, 
L G ~  = (-L,sinh+ L,cosh)cosp+ L,sinp, 
L G ~  = (L,sinh- L,cosh)sinp+L,cosp. (1.90) 

In their form, equations (1.88)-(1.90) coincide with analogous equations of ro- 

To obtain the next three equations (for variables 0 and 1,  g), we use the vector 
tational motion of the rigid body (Chernousko, 1963; Beletskij, 1965). 

equation 
w = W G s  + WbG 

which expresses the well-known theorem about composite rotational motion of the 
rigid body (Suslov, 1946). 

(1.91) 

Equation (1.91) admits the presentation 

WbG = w - W G s  

and can be written in the projections on the axes of the intermediate reference 
system, CG1, CG2 and CG3. Taking into account formulae (1.81)-(1.84) for com- 
ponents of vectors WbG and W G ~ ,  we will have: 

ecosg+isinOsing = wG1 - p ,  
Bsing - isinocosg = wGZ -sinph, 

i + i c o s e  = wG3 - cos ph . (1.92) 

Solving equations (1.92) with respect to 6, i, h we obtain the following set of 
equations: 

6 = wG1 cosg + wGz sing - [pcosg + sinphsing], 
i = sec @(WG1 sing - wGZ cos g) - sec e[p sin g - sin ph cos g] , 

W G ~  - Cot e(wG1 sing - W G ~  cos 9) - cos ph 
cot e[p sing - sin ph cos g] . 

Jr  = 

+ (1.93) 
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In (1.92), (1.93), W G ~  are projections of the angular velocity vector in the in- 
termediate reference system. They can be expressed in terms of projections of the 
angular velocity p ,  q, T on the body axes: 

WG; = pbil + qbi2 + ~ b i 3 ,  (i = 1,2,3) ,  (1.94) 

where the direction cosines b i j  are defined by formulae (1.84), and p ,  q, T are defined 
by formulae (1.31), (1.32), (1.54). 

The free terms in the right-hand sides of equations (1.93) can be transformed 
with the help of the formulae (1.94), (1.84). The derivatives @, h can be expressed 
in terms of the projections of moment 1; in the intermediate axes with the help 
of the formulae (1.89). After some algebra, we obtain an intermediate form of 
the differential equations of rotational motion of a weakly deformable body in the 
Andoyer variables (1.85): 

G = LG3, 

h 

1 8 = pcosl- qsinZ+ -(LG2 cosg - LG1 sing), 
G 

1 = r-cot@(psinl+qcosZ)+ -(LGlcosg+LG2sing)sec8, 

g = secO(psinl+ qcosl) - -COtpLG, 

1 
G 

1 
G 

1 
- cot e(LGl cos g + L G ~  sing) , G 

- (1.95) 

where the components of the angular velocity p ,  q, T are defined as functions of 
the variables 8 ,  I, G and of time by formulae (1.31), (1.32), and in a general case 
projections of the principal moment of the forces L G ~ ,  L G ~ ,  L G ~  are presented as 
functions of the variables (1.85) and of time. 

The right-hand sides of equations (1.95) can be expressed in terms of the pro- 
jections of the vector L in the body axes C<qc (1.89). As a result, we come to the 
following set of equations: 

1 
8 = pcosl-qsinl+ -[cosB(L€sinZ+L,cosl) -sineLC], 

i = T - cote(psinI +qcosZ) + -sece(Ltcosl - L,sinl), 

G 
1 
G 
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ROTATIONAL MOTION OF CELESTIAL BODIES 43 

1 
G 

g = sec@(psinl+ qcosl) - - cotp(Ltbl1 + L,blS + LCblB) 
1 - - cot 8(Lt cos 1 - L, sin 1) 
G (1.96) 

where 
L€,,S = L€,rl,C(G, 0,  P, 199, h, 4. 

Finally, expressing in (1.95) the projections of the momentum L in terms of its 
projections in the main reference system (1.90), after some additional algebra we 
obtain the following equations of rotational motion of the body: 

- dG 
dt 

dt 
dh 
dt 
d8 
dt 

dl 
dt 

dg 
dt 

- -  

d p -  - 

- - -  

- - -  

+ 
- _ -  
+ 
- _ -  

- 

+ 
where 

(L, sin h + L, cos h) sinp + L, cosp, 

--[-(L, sin h - L, cos h)] cos p + L, sinp] , 
1 - sec p( L, cos h + L, sin h) , 
G 

1 
G 

1 
pcosl - qsinl+ -[[L,(-sinhcospcosg - coshsing) 

L,(coshcospcosg-sinhsing) +L,sinpcosg], 

T - cot B(ps inl+  qcosl) + - secB[L,(cos hcosg - sin hcospsing) 

L,(sin h cosg + cos h cospsing) + L, sinpsing] , 
1 

sec 8(p sin 1 + q cos 1) - - cot p( L, cos h + L, sin h) 
G 

G 

1 
G 

1 - cot B[L, (cos h cos g - sin h cos p sing) 
G 
L, (sin h cos g + cos h cos p sin g) + L, sin p sin g] , (1.97) 

Now we use formulae (1.31), (1.32) for the components of the angular velocity 
p ,  q, T ,  taking (1.54): 

Gt = Gsinesinl, G, = Gsinecosl, GC = Gcos8. 

Substituting these formulae into the right-hand sides of equations (1.95), after 
some simple transformations, we obtain another form of the differential equations: 

1 
- -5LGzi dP 

dt 
1 dh 

dt G 

- -  

= -secpLc, , - 
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Yu. V. BARKIN 44 

= GsinB - (a - b)sin21- fcos21 +GcosO(dsinl- ecosl) 1 
1 

[:: d8 
dt 
- 

+ R,sinl- QE cosl + z ( L G 2  cosg - LG1 sing), 

- G cos 8(c - a sin2 1 - b cos2 1 + f sin 21) + G sec O(e sin 1 + d cos 1 )  cos 28 

- Rc + cot 8(Q sin 1 + 0, cos I )  + -sec 8(L& cos g + L G ~  sing) , 

dl 
dt 
_ -  

1 
G 

- -  dg - G(usin21+bcos21-fsin21)-Gcot8(esin1 +dcosl) 
dt 

1 
G 

- sec 8(R, sin 1 + R, cos I )  - - cot ~ L G ,  

1 
G (1.98) 

where a, b, c,. . . , Qc are known functions of time (1.32), (1.23) and projections of 
the the moment L G ~  are known functions of the Andoyer variables and of time. 

Expressing LG< in terms of the projections of the vector L in the reference 
systems Cxyz and C(q<, we can also obtain two other forms of equations, analogous 
to the sets of equations (1.96) and (1.97). 

In the particular case where the coordinate axes CtqC are principal and the 
central axes of inertia of the deformable body, equations (1.98) are reduced to: 

- - cot 8(LGl COSg + L G ~  sin 9) , 

dG 
dt = LGs, - 

d8 
dt 
- 

1 + ( L G ~  cos g - L G ~  sin 9) , 
- dl = Gcose(C---- 1 sin2 1 cos21 
dt A B 

1 + - sec 8(LGl cos g + L G ~  sing) , G 

B 
dg = G("i"" P 
dt A B A 

1 1 
- cot ~ L G ,  - - cot 8(LGl cosg + L G ~  sing). G G 

- (1.99) 

If P = Q = R = 0 and the moments of inertia A,  B ,  C retain their constant 
values, the equations coincide with similar equations of rotational motion of a rigid 
body (Beletskij, 1975; Chernousko, 1963; Barkin, 1975). 
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45 ROTATIONAL MOTION OF CELESTIAL BODIES 

0 The canonical equations (1.55)-(1.57) were obtained under the condition that 
the dynamic characteristics of the deformable body (1.23) are definite func- 
tions of time. But equations (1.98), (1.99) are more universal and are valid 
for a wider class of problems. They conserve their form for some deformable 
body, the dynamic characteristics of which 

z = (A,  B ,  C, F, E ,  D ,  p, Q, 4 
are definite functions of the time, of the Euler angles and of the components 
of the angular velocity, 

or, in terms of the Andoyer variables, 

In fact, the procedure of introducing the equations of the rotational motion 
(1.98) does not depend on the structure of the functions (1.23) and, conse- 
quently, these equations remain valid for a wider class of deformable bodies. 
The dependences ( l . lOO) ,  (1.101) hold for celestial bodies deformed by their 
own rotation ( M u d  and MacDonald, 1960) and can be realized in differ- 
ent kinds of artificial satellite systems. Therefore, for generality we will as- 
sume that in the aboveobtained differential equations of the rotational motion 
(1.97), (1.98) the components of the tensor of inertia and of the relative mo- 
ment of the body particles in the general case depend on time, on the Euler 
angles and on the projections of the angular vecity of the body (or on Andoyer 
variables and time (1.101)). 

0 For Lci = 0 (i = 1,2,3), equations (1.98), (1.99) describe the rotation of 
the isolated deformable body. The integrable cases of the problem, which we 
called Liouville’s problem, were obtained and studied in the abovementioned 
author’s report of 1979. These results are described in recent papers (Borisov, 
1991; Barkin, 1998a). 

Let us use the formulae (1.58)-(1.60) and describe the main terms in the right- 
hand sides of equations (1.98): 

cos 21 
AoBo 

- d6 = G s i n 6 { ~ [ ( $ - & ) - - ( - - ~ ) ] s i n 2 1 + -  1 A1 
dt 2 A; 
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46 Yu. V. BARKIN 

sin1 - - + Gcos8 (= Dl 

1 
+ G ( L G z  cosg - L G ~  sing) + N O ,  

dt = Gcosf3{---- co 1 c1 co (2  - $) sin2 1 

- (& - 2) COS21- sin 21 

- 

1 + -sec8(LG1 cosg + L G ~  sing) + Nl , 
G 

dg dt = G{ (i - 2) sin21 + (& - $) cos21 - - Ao F1 Bo sin 21) 

D1 cosl) -sec8 
+ Gcote(CoAo. BOCO 

sin1 + - El 

(1.102) 
1 1 - cot ~ L G ,  - - cot B(LG, C O S ~  + L G ~  sing) + Ng . G G 

- 

Here No, Nl and Ng are small terms of the second and higher orders with 
respect to the small parameter. Obviously, functions No, NZ and Ng are defined as 
differences of the free terms (by LG; = 0) of the corresponding right-hand sides of 
equations (1.98) and (1.102). The described terms in the right-hand sides of the 
equations (1.102) play the principal role for analysis of the effects of elasticity of a 
celestial body on its rotation. 

2 DYNAMICS OF A CELESTIAL BODY, DEFORMED BY ITS OWN 
ROTATION 

Here we will concentrate our attention on the study of some dynamic effects in 
rotation of an elastic celestial body caused by its own rotation. As an illustration 
and application of these results, we will study the corresponding effects in the 
Earth’s rotation. 

2.1 Equations of Motion 

Let the body be isolated and no forces act on it. In this case, L = 0 and the 
equations of its rotational motion (1.98) can be written in the following way: 

b)sin21- fcos21 + GcosO(dsin1- ecosl) I d8 
dt 
- 
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ROTATIONAL MOTION OF CELESTIAL BODIES 47 

+ Osinl-acosl,  
dl - = Gcos0(c-asin21-bcos21+ fsin21) 
dt 

9 = ~ ( a  sin2 I + b cos2 1 - f sin 21) 
dt 

+ Gsec0cos20(esinE + dcosl) - y + cot 0(asinl+ p cosl) , 

+ GcotO(esin1 +dcosl) -secO(asinl +pcosl)  (2.1) 

(here and below we use the notation Q = Re, /3 = R,, y = 0~). 
Hereafter we will often use various simplifications and reductions of the exact 

equations (2.1) on the basis of some additional assumptions. 
To concentrate our attention on the effects pointed out in this section we will 

suppose that the angular moment of the relative motion of the body particles is 
equal to zero (P = Q = R = 0). Assuming now that the body is weakly deformable 
and using representations of the main characteristics of the body (1.58)-(1.60), 
instead of equations (2.1), we will consider their simplified version (see (1.102)): 

sin 21 
AoBo 

(2-2) 

- d9 = G [ ( ~ - ~ ) S ~ ~ I ~ ~ + ( ~ - - ~ ) C O S ~ ~ - - -  
dt 

G + -cot0 co 
In the case considered, the first three equations of (2.2) are separated from the 

general set and give three first integrals: 

G=Go,  p = p o ,  h=ho (2-3) 

implying that the angular momentum vector of the rotational motion of deformable 
celestial bodies is a constant. Go,po and ho are initial values of the corresponding 
Andoyer variables. 

We use equations (2.2) for an analysis of the most important effects of elasticity 
and inelasticity in the Earth's rotation. If the body in its undeformed state is 
axisymmetric (in this case A0 = Bo), equations (2.2) are simplified: 

cos O(E1 cos 1 - D1 sin 1) , - d0 = Gsin0{-cos21}+- Fi G 
dt AoBo CoAo 
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48 Yu. V.BARKIN 

- dl = Gcos9{Co----+---~in21 1 C1 1 A1 Fi 
dt Co A0 A; A; 

sec 9 cos 20(E1 sin I + D1 cos I) , G 
Co Ao 

- -  

9 = cot 9(El sin1 + D1 cosl) . (2.4) 
at 

Other modifications of equations (2.2), (2.4) are possible. 

2.2 Variations of the Components of the Earth’s Tensor of Inertia due to its Ro- 
tation 

In accordance with the well-known classical approach, the Earth’s rotation generates 
some additional variations of the components of the tensor of inertia, depending on 
the orientation of the angular velocity vector (on its components p ,  q, r ) .  More 
simply, these variations are defined in the reference system C w l w ~ w 3 ,  connected 
with the angular velocity vector w .  The axis Cw3 is directed along w ,  the axis Cwl 
is directed along the line of intersection of the plane orthogonal to  the vector w and 
of the main coordinate plane Cxy, and the axis Cw2 completes the reference system 
to the right. 

In the reference system C W ~ W ~ W B ,  the components of the tensor of inertia of the 
Earth’s equatorial bulges (caused by its rotational deformation) are defined by the 
formulae (Munk and MacDonald, 1960): 

kazw; 2kazwi c, = ~ 

9f  , 9f ’ 
A - B  -_-  w -  w -  

F, = 0 ,  E, = 0 ,  D, = 0 ,  (2.5) 
where a, is the equatorial radius of the Earth, wo is the angular velocity of the 
Earth’s rotation, k is Love’s number, and f is the gravitational constant. 

Here we use the following values of the Earth’s parameters (Getino and Ferran- 
diz, 1991) 

ma: = C/O.3307, w = 7.292 x l / s ,  

f m  = 3.986 x m3/s2, a, = 6.378 x lo6 m, k = 0.29 (2.6) 

A,  = B, = -pC, C, = 2pC, (2.7) 

and the corresponding representations: 

where ,u = 0.00116k = 0.3364 x 

in the CJqC reference system are defined in terms of the moments (2.5): 
The components of the inertia tenser (axial and centrifugal moments of inertia) 

A, = 
B, = 

W:1A, + w&B, + w&C, - 2wliw2iFU - 2~11~31Ew - ~ w z ~ w ~ ~ D W ,  
+ w&Bw + w322Cu - 2~12~22Fw - 2wi2~32Ew - 2~22~3zDW , 
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ROTATIONAL MOTION OF CELESTIAL BODIES 49 

( 2 . 1 0 )  

Here the direction cosines are expressed in terms of the components of the an- 
gular velocity w and are presented in the following form: 

p a(Gsin9sinZ- P) f(GsinBcos1- Q) - e(Gcos0 - R) - W 3 l  = - - - 1 
W W W W 

Q b(Gsin8cosZ - Q) - d(Gcos9 - R) 

T -e(GsinOsinZ - P) d(GsinOcos1- Q) c(Gcos8 -R) 

-f(GsinOsinZ - P) 
Y 

W W 
W32 = - -  - + 

W W 

, 
W 

+ - w33 = - - - 
W W W 

w = J p 2 + q 2 + r 2 .  (2.11) 
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Yu. V. BARKIN 50 

In the case of small values of the angle 8, moments F, E, D and relative angular 
momentum components P ,  Q, R, we obtain reduced expressions of the moments 
(2.10), (2.11). In this variant, having an important meaning in the Earth's theory 
of rotation, 

and the formulae (2.10) can be written in the following way: 

8, so, 1, z 1 (2.12) 

A, = pC(-1 + 3 sin2 B sin2 1 )  , 
B, = pC(-1 + 3sin2 8 ~ 0 s ~  I ) ,  
Cr = pC(-I + 3COS2 8) 
F, = -3pC sin2 8 sin I cos I ,  
E, = -3pC sin 8 cos 8 sin 1 
D, = -3pC sin 8 cos 8 cos I . (2.13) 

In this paper, we will consider a simplified variant of the problem. In expressions 
(2.13), we neglect small terms of order psin2B. In this simplified variant of the 
problem, we have: 

(2.14) 

2.3 Chandler's Unperturbed Motion and its Properties 

Substituting formulae for variations of the components of the inertia tensor due to 
rotational deformation (2.14) into equations (2.2), we retain me main terms in the 
right-hand sides of these equations. Let us conserve the terms of the first order 
with respect to p, but neglect the terms of the third order with respect to small 
parameters: 

Ao - Bo 
A0 

(in reality, we add these small terms to the perturbing terms in the right-hand sides 
of the equations (1.102)). 

As a result of simple transformations, the equations of the rotational motion of 
the isolated celestial body can be presented in the following form: 

7 8  PI 

= GsinOsinLcosl 
d8 
dt 
- dl = G c o s ~ [ ~ -  (x+-) ] (1-2p)7 sin21 cos21 
dt Bo 

dt 

- 

(2.15) 
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51 ROTATIONAL MOTION OF CELESTIAL BODIES 

Note that here do, BO and CO are principal central moments of inertia of the body 
in the undeformed state. 

Equations (2.15) fully coincide with the equations of the Euler-Poinsot problem 
described in the Andoyer variables (Beletskij, 1965; iBarkin, 1975) for an absolutely 
rigid body with principal moment of inertia: 

A = Ao(l+ 2p), B = Bo(l+ 2p), C = Co(l+ 2p). (2.16) 

We remark that in the deformed state (in the observed rotational motion of the 
Earth) the axial moments of inertia are 

A = Ao(1- p),  B = &(l- p) ,  C’ = Co(l+ 2p). (2.17) 

This means that the moments of inertia (2.16) are different from the real values 
(2.17) and are connected with them by simple relationships: 

As a result, we come to the following important theorem (Barkin, 1998b). 

Theorem. The rotational motion of an elastic body deformed by its own rotation 
is executed according to the Euler-Poinsot laws for an equivalent rigid body with 
changed principal central moments of inertia: 

A = A(1 + 3p), B = B(1+ 3p), 6 = C’, (2.18’) 

where p is the coefficient of elasticity, and A,  B and C’ are average values of the 
principal moments of inertia of the rotating body. 

This means that the elastic body rotates as an absolutely rigid body with equa- 
torial moments of inertia increased by 3pCo. The polar moment of inertia of the 
model body is equal to the mean moment of inertia of the deformable body. 

This theorem was proved for the f i s t  time on the basis of the Hamiltonian for- 
malism by means of a study, of the unperturbed Chandler-Euler rotational motion 
(Barkin, Getino, and Ferrandiz, 1995b; Barkin. 1996a; 1998b). In these papers, 
the rotation equations in ‘the elastic Andoyer variables’ (in the Ferrandiz, Getino 
terminology) have efficient applications in Earth rotation studies. 

Equations (2.15) let us make another interpretation of the deformable body 
rotation. 

The motion of a body deformed by its own rotation, which is described by differential 
equations (2.15), is executed according to the Euler-Poinsot laws for some fictitious 
rigid body with undeformed principal moments of inertia Ao, BO and CO in the 
‘slowed’ time T = (1 - 2p)t. 
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Yu. V. BARKIN 52 

This interpretation is very important and lets us write the expressions of the 
two frequencies of the Euler-Chandler motion: 

WCH = wE(1- 2p), RCH = RE(1 - 2p), (2.19) 

where WE, RE are frequencies of the Euler-Poinsot motion of a rigid body with the 
principal moments of inertia Ao, BO and CO (Sadov, 1970; Barkin, 1992): 

(2.20) 

Here K(X0) and lI(7~/2, k:, A,) are complete elliptical integrals of the first and third 
kinds. The module X of these integrals and the parameter ko are defined by the 
initial conditions of the problem: 

(2.21) 

where po, ro (qo = 0) are initial values of the components of the angular velocity p ,  
r and (q) ,  respectively. 

For the adopted values of the parameters of the problem (Barkin, 1996a): 

A0 = 8.086206 x g cm’, BO = 8.086380 x g cm’, 

CO = 8.104309 x g cm2, 

ko = 0.981975 x Xo = 0.120103 x (2.22) 

the values of the frequencies (2.19), (2.20) are 

WCH = 0.997774~0, RCH = -2.2263 x 1 0 - 3 ~ o ,  

where wo is the mean diurnal velocity of the Earth’s rotation. 

equations (2.15) are simplified: 
If the body in its undeformed state is axisymmetric (in this case, A0 = Bo), 

= 0, 
d0 
dt 
- 

G - dg = w = - ( 1 - 2 p ) .  
dt A0 

(2.23) 

If the angle 8 is neglected the velocity of rotation of the deformable body is 

WO = R + w = -(1- G 2p) = = G . CO c (2.24) 
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53 ROTATIONAL MOTION OF CELESTIAL BODIES 

Thus, in this case the elastic properties of the body do not influence the value 
of its angular velocity, but they influence the Chandler-Euler frequencies of the 
motion. The modulus of both frequencies are reduced, but their sum (2.24) remains 
the same. 

Let us point out some of the main properties of the Chandler-Euler motion of 
the Earth (Barkin, 1998b). 

1. The projection of the trajectory of the end of the angular velocity vector 
w on the equatorial plane of the body Cxy is an ellipse with excentricity 
e = 0.095835 and with the minor semi-axis directed parallel to the principal 
central axes of inertia of the Earth, corresponding to the moment of inertia A 
(this axis is located 14.5” west from the Greenwich meridian). 

2. The mean Chandler frequency of the motion of the ellipse R = -2.308643 x 
10-3w~ (wg is the mean value of the angular velocity of the Earth) defines the 
straight polar motion (in the counter clockwise direction, if viewed from the 
end of the Earth’s polar axis (Cz ) )  with a period of 433.154 days. 

3. The polar motion along the ellipse is executed with a variable velocity. The 
maximal velocity is achieved at the moment of crossing of the smallest of the 
equatorial axes of the Earth’s ellipsoid of inertia (the corresponding Chan- 
dler’s period is 433.079 days), and the minimal velocity is achieved at the 
moment of crossing the major of the equatorial axes (the corresponding value 
of Chandler’s period is 437.112 days). This means that the corresponding 
variation of the Chandler period is 4.033 days. 

These numerical values of the Earth’s rotation parameters have been obtained 
for the model values of the main parameters (2.22). 

Due to the results of this section by the construction of the perturbation the- 
ory of rotation for a weakly deformable body we can use Euler-Chandler motion 
of the axisymmetric body with the frequencies from (2.23). This means that in 
unperturbed motion we take into account the more important elastic properties of 
the body and their influence on the body rotation. In this sense we talk about 
Euler-Chandler motion. 

3 VARIATIONS OF THE DEFORMABLE BODY ROTATION DUE TO 
CYCLIC PROCESSES OF THE MASS REDISTRIBUTION 

3.1 

We will assume that in the external envelope of the body cyclic displacements of 
masses (for example, analogous to the seasonal mass redistribution of the hydro- 
sphere, atmosphere, ice envelope of the Earth, etc.) are executed. In the general 
case this mass redistribution has a conditionally periodic character and is charac- 
terized by definite frequencies: RI,  0 2 , .  . . ,521,~. 

Perturbations of the Andoyer Variables 
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54 Yu. V. BARKIN 

Let us suppose that, as a result of a study of the corresponding characteristics 
of these processes, the components of the tensor of inertia and the components of 
the angular moment of the relative motion of the redistributed masses were defined 
in the main body reference system and were presented by definite Fourier series by 

(0) the arguments U., = Rut + U, (c = 1 ,2 , .  . . N ) .  
Let these series be constructed for the parameters 

z = (a, b, c, f , e, d, a, P,  7) (3.1) 

and have the following form: 

z = zO+ C Z,,cosO,+Z~sinO,, 
Il4l21 

0, = VIUI + ~ 2 U 2  + . . . + V N U N .  ( 3 4  

The summation in (3.2) is produced by corresponding numerical values of the indices 
VI, u2,. . . , VN. 20 are constant components of these parameters. In accordance with 
the representation (1.58), (1.59) we have: 

fo = 0, eo = 0, 4 = 0, a0 = 0, PO = 0, 'yo = 0 (3.3) 

and we refer periodic components (3.2) to perturbations of the first order with 
respect to the small parameter p. 

Taking into account these assumptions, the equations of rotational motion in 
the variables 8, 1 and g can be written in the standard form of a two-frequency 
oscillating system with a small parameter: 

dz - = N,") +A,(O,t)cos21+ B2(8,t)sin21+C,(8,t)cosZ 
dt 

+ DZ(6,t)sinZ+E,(8,t), (3.4) 

where z = (0, I ,  g), and the coefficients A,, . . . , E, and frequencies N,  are known 
functions of the variable 0 and of time: 

1 
- (u -  b)Gsin8, 2 
-eFcos8 - a ,  
dGcosO-a, 

0, 
0, 
1 - (a - b)G cos 6 , 
2 
f G  sin 8 ,  
dGsec e cos 28 + p cote , 
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A,  = 

B, = 

D, = 
E, = 

c, = 

eGsec 8 cos 28 + CY cot 8, 

-7 7 

Gcos8 [c- a ( a + b ) ]  , 
1 
- (b  - u)G, 2 
- fG,  
-dG cot 8 - psec 8 ,  
-eG cot 8 - asec 8 , 
0, 
1 

Ng = G s ( ~ + b ) .  (3.5) 

All coefficients (3.5) (except for the frequencies Nl, N, )  are small in first order 

Perturbations of the first order of the problem are defined by simple quadratures: 
with respect to a small parameter which we don't introduce here for simplicity. 

60 = / [A~(B , t ) cos21+B~(B, t ) s in21  +Ce(8,t)cosZ+De(8,t)sinI]dt, 

+ / [ A l  (e, t> cos 21 + Bl(8, t) sin 21 + cl (e, t )  cos I + D~ (8, t )  sin I + E~ (e, t )]  dt , 

(3.6) 

In (3.6), the variables 8 and I in the integrands take the following unperturbed 

6g = ~[A, (B , t ) cos2Z+Bg(8 , t ) s in21+Cg(8 , t ) cosI  + D,(@,t)sinZ]dt. 

values: 
8 = B0 = const, 1 = Nlt + lo,  (3-7) 

where 80 and lo  are initial values of the variables 8 and I .  
For the problem considered, the integrands in (3.6) are presented by condition- 

ally periodic functions of time in the form (3.1), (3.2). Therefore, the integrals are 
readily calculated. As a result, we find the perturbations of the first order: 

62 = c c ZY,,, cos(Q, + ol) + .Z;,m sin(0, + al), (3-8) 
v 101=1,2 

where 2 = (8, I ,  g), and the coefficients are defined by the formulae: 
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56 Yu. V. BARKIN 

E(b”-a,) +2f;Gsin@, 
4(R, + 2eR) 

4(R, + 2eR) 

4(52, + 2ER) 

4(Ov + 2ER) 
- - ( E L  + d:) 

(P; + &a,)sec 0 
2 ( ~ ,  + ER) case 
-(El; + d,) 

(P, - m:)sec 8 

(EL + d:)G cot 8 + (P; + Ecr,)sec 8 
2(R, + E n )  

(G - d,)G cot 6 + (&a; - Bv)sec e 
2(RV + E n )  

2Efv  + a: - p; 
4(RV + 2&R) G = -eO:,,,sece, 

(b ,  - a,) + 2~ f: 

4 b v  - a v )  - 2fvGsine, 

b: - a: - 2&fV 

20” + O& 

sin2 e)  252” + R E  

= --EC3;,, , 

= E O ” , E ,  

4(R, + 2cR) G = ~O:,,,sec e . (3.9) 

Formulae (3.7)-(3.9) present the approximate solution of the problem of rotation 
of an isolated deformable celestial body. The unperturbed motion is Euler rotation 
of an axysimmetric body with an arbitrary value of angle 8 = 00 (between the 
anguIar momentum vector and the body axis of symmetry), although in accordance 
with the remark in Section 3.1, formulae (3.8), (3.9) retain their form for Chandler- 
Euler unperturbed motion of the axisymmetric body. 

3.2 Periodic Perturbations of the Components of the Angular Velocity 

Now we present the solution of the problem in variables p ,  q, r (1.1). For this 
purpose, we use the following expressions of the first-order perturbations of these 
variables, which are obtained from formulae (1.31), (1.32): 

Gsin8cosZ + - 6E G cos 8 sinesin1 - - + - 6P 6F G6A s p  = -- 
A; A0 AoBo AoCo 

G G 
-t- - cos B sin 160 + - sin@ cos I&, 

A0 A0 
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Gsinesinlf - 6D Gcose sinecosl- - + - 6Q 6F G6B 6q = -- 
B,2 Bo AoBo BOCO 

G G 
BO BO 

+ -cosecos168 - -sinOsin161, 

G sin 8 sin 1 
6R 6E case - - + - co2 co AoCo 

G6C 6r = -- 

(3.10) 
G 

BOCO CO 
G sin B cos 1 - - sin 068. + -  6D 

Substituting formulae (3.8), (3.9) into (3.10) after some algebra we obtain the 
following formulae for perturbations of the first order of the angular velocity com- 
ponents. 

Perturbations of component p: 

Y u=-3 

where 

(3.11) 

tm2e) , wG sin 6 cos B(b; - a: - 2 ~ f ” )  
4(R” + 2ER) (1 + 2(R, + 2&R) + 
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RE tanze) , w G  sin 8 cos @(a, - b, - 2~ f,) 
4(R, + 2ER) (1 + 2(R, + 2ER) + 

- w sin2 8 

w sin2 8 

[(Ee, + d:)GR, cose - ER(P; + ECX,)] 
PY,2E - Y 

[(Ee, - d,)GR, cos 8 + R(-cx; + ED,)] 
4(R, + &R)2 cos e 

cos e P:,2E = 4(R, + &R)2 
7 

GWRE 
8 cose(R, + 2~S-2)~ 

sin3 qa: + b; + 2 ~ f , )  , PY,3E = - 

GWRE * -  sin3 e(b,  - a, + 2 ~ f , ) .  
P”,3E - 8 cos e(R, + 2 ~ 0 ) ~  

Perturbations of component q: 

where 

Qv,o = -- Q’ + wCod, cos 8 
BO 

w(CX: + (1 - 2(R, 2% - + R n) sin2 e)  + 

2 cos e(n, - n) 

sin2 e )  wG(e: - d,) 3R” + 2 0  
2(Q” + a) (l- 2(R, + 52) 

+ 

(3.12) 

(3.13) 
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tan28) , EWG sin 8 cos 8(b, - a, - 2~ f; 
4(R, + 2ER) (1 + 2(R, + 2ER) 

(1 + 2(R, + 2eR) 

w B: sin 8 w 
2BO 2 - + E - C O ~ ,  sin8 

EWG sin 8 cos B(a; - b; - 2.5 f,) 
4(R, + 2ER) 

4(R” + ER)2 cos 8 

4(R, + ER)2 cos 8 

w sin2 8 

w2 sin2 8 

[(e: - Ed,)GR, - R(p, - &a;)] 

[-(Ee, + d;)GR,& + R(p; + ~a,)] 

sin3 8(b, - a, + 2sf,*), 

sin3 8(aE - b; + 2~ f,) . 

I 

7 

GwR 
8cos8(RV + 2 ~ R ) 2  

GwR 
8 cos 8(R, + 2 ~ 0 ) ~  

Perturbation of component r: 

(3.14) 

(3.15) 

where 

C, R, -w- cose - -, 
CO co 
c: R: -w- cose - -, 
CO co 

r,,o = 

rE,o = 

EPY - ff; 

EW cos 8 

1 

1 

[E(b” - a,) + 2f: ]  r,,pt- = - -w2 sin2 8 

[ 4 b ;  - 4) - 2f , ]  - -w2 sin2 8 

4 R,+2ER ’ 

4 R, + 2EQ 
(3.16) f -  TV,2E - 

3.3 Variations of Earth Rotation due to Lunar-solar Tidal Variations of its Tensor 
of Inertia 

For the unperturbed rotational motion of the Earth, the angle 8 has a very small 
value of NN Therefore, neglecting the second and higher order terms with 
respect to 8, we write formulae (3.11)-(3.16) in the following reduced form: 

bp = ~ p , c o s o , + p : s i n @ , ,  
Y 
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60 Yu. V. BARKIN 

where 

Pv = Pv,o 

RZ C; 
c o  co r: = T:,o = -- - w - .  

(3.17) 

(3.18) 

In this paper, we will use formulae (3.17), (3.18) for the determination of the 
variations in the Earth’s polar motion, caused by lunar-solar tidal deformations. For 
this purpose, we use tidal variations of the second-harmonic coefficients, presented 
in the form of the following series (Ferrandiz and Getino, 1993): 

where K ~ 2 ~ ( 2 ) ,  . . . , K2lb(i) are numerical coefficients, the values of which are given 
in Table 1 of Ferrandiz and Getino (1993). 
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Argument @i is the linear combination with numerical coefficients of the argu- 
ments of the Moon’s orbital theory: 

@i = m l l M  + m2ls + msF + m4D + m&, 
F = l M + g M ,  

D = 1 M + + M - k h M - - S - Q s - h s ,  
(m1,mz,ms,m4,ms).  

Here l ~ ,  Q M ,  hMand Is, s, hs are the Delaunay variables for the Moon and the 
Sun. 1 + g is the angle of the Earth’s rotation. 

Variations of the components of the Earth tensor of inertia are connected with 
variations (3.19) by simple relationships: 

2 - = -bJ2, 
C 3J 
bF 2 
C 
bE 1 
C 

- = j6S22,  

- = 56C21, 

6 0  1 
C - = ,bS,,, (3.20) 

where J = C/(mR2) is a non-dimensional moment of inertia, and m, R are the 
mass and the radius of the Earth. 

Substituting (3.18) into equations (3.20), we obtain analogous trigonometric 
series for the variations of the axial and the centrifugal moments of inertia: 

- C{A, COSO, + Ao,-2 COS(-~S + 0,) + A,,2 COS(@, + 2 5 ) )  , bA 
C 
- -  

0 

bC 
C 

bF - 
C 

- = ~{c ,coso, } ,  
0 

= c { F : , 2  sin(@, + 2s) + F:,,-2 sin(@, - 2S)}, 
0 

bE 
C 
- C{E: , ,  sin(@, + S) + Ez,-l sin(@, - S ) } ,  

- c{D,, l  cos(0, + S) + &,-I COS(0, - S ) } .  
bD 
C 
- -  

U 

(3.21) 
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Table 1. 
moments of inertia of the Earth (1 unit = lo-') 

Coefficients of the main periodic tidal variations of the axial and centrifugal 

N 1 I' F D $2 d v , o =  dv,2=F:,2 Av,-2=F:,-2 C ~ , O =  E;,I= -%,-I= 
Bv.0 = Bv.2 = Bv,-2 -2Av.0 Dv71 Dv3-1 

1. 1 0 0 -2 0 -0.2049 -0.0321 -0.0321 0.4098 0.1470 0.1470 
2. 1 0 0 0 0 -1.0716 -0.1669 -0.1669 2.1433 0.7690 0.7690 
3. 0 0 0 2 0 -0.1778 -0.0278 -0.0278 0.3556 0.1276 0.1276 
4. 1 0 2 0 1 -0.1610 -0.0073 0.1681 0.3220 0.0517 -0.3529 
5. 0 0 2 0 1 -0.8409 -0.0381 0.8788 1.6818 0.2695 -1.8444 
6. 0 0 0 0 1 0.8501 0.0381 -0.8885 -1.7001 -0.2725 1.8650 
7. -1 0 2 2 2 -0.0738 -0.0018 -0.8570 0.1476 0.0154 -0.3556 
8. -1 0 2 0 2 0.0574 0.0012 0.6665 -0.1147 -0.0118 0.2764 
9. 1 0 2 0 2 -0.3885 -0.0085 -4.5131 0.7770 0.0804 -1.8725 

10. 0 0 2 2 2 -0.0620 -0.0012 -0.7209 0.1240 0.0130 -0.2991 
11. 0 0 2 0 2 -2.0286 -0.0436 -23.5732 4.0571 0.4207 -9.7796 
12. 0 1 0 0 0 -0.1499 -0.0236 -0.0236 0.2998 0.1077 0.1077 
13. 0 1 2 -2 2 -0.0552 -0.0012 -0.6411 0.1105 -0.0027 -0.2661 
14. 0 0 2 -2 2 -0.9417 -0.0206 -10.9411 1.8834 -0.0484 -4.5394 

The coefficients of the series (3.21) and (3.19) are connected by simple relationships: 

(3.22) 
1 
J q - 1  = Du,-l = --K21a(a). 

Numerical values of coefficients (3.22) are presented in the Table 1. 
The tidal variations of the moments of inertia of the Earth lead to the following 

perturbations in the poar motion: 

bp = cp:,, sin(@, + S) + p:,-1 sin(@, - S) , 
Y 

bq = c qy,l cos(@, + S) + QV,- l  cos(0, - S) , (3.23) 
Y 

where pt ,E = qV,E and 

+ (Q, + &W)2 - R2 I . Pt,, - E,: [ w ( 0  + Q, + E W )  

w c o  
(3.24) 
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63 ROTATIONAL MOTION OF CELESTIAL BODIES 

Table 2. 
its tidal deformations (1 unit = 10-3 waec). 

N 1 

Coe5uents of the periodic perturbations in the polar motion of Earth caused by 

1’ F D 0 P:,llw = q d w  P:,-Jw = Q v , - l / W  

1. 1 0 0 -2 0 0.062 -0.001 

4. 1 0 2 0 1 0.098 0.009 

6. 0 0 0 0 1 -0.056 -0.001 
7. -1 0 2 2 2 0.003 0.009 
8. -1 0 2 0 2 -0.005 -0.002 
9. 1 0 2 0 2 0.015 0.049 
10. 0 0 2 2 2 0.005 0.010 
11. 0 0 2 0 2 0.081 0.165 
12. 0 1 0 0 0 0.0443 0.000 
13. 0 1 2 -2 2 -0.001 0.001 
14. 0 0 2 -2 2 -0.020 0.007 

2. 1 0 0 0 0 0.311 -0.006 
3. 0 0 0 2 0 0.051 -0.028 

5. 0 0 2 0 1 0.107 0.031 

Using formulae (3.24) we find the corresponding coefficients of the tidal lunar- 

Similar perturbations in the diurnal rotation of the Earth were described in 
solar variations in the polar motion of the Earth (Table 2). 

detail earlier (Yoder et al., 1981; Ferrandiz and Getino, 1993). 

SUMMARY 

In this paper new forms of the differential equations of the rotational motion of 
weakly deformable bodies were obtained (1.98), (1.99)’ (1.102), etc. These equations 
admit applications to various methods of celestial mechanics to study the rotational 
motion of planets, satellites (natural and artificial), asteroids and others bodies of 
the solar system. In next paper we will study secular effects in rotational motion of 
an isolated deformable body with application to the Earth’s rotation and Venus’s 
rotation. 
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