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Since the discovery of the large angular scale anisotropies in the microwave background radiation, 
the behaviour of cosmological perturbations (especially, density perturbations and gravitational 
waves) has been of great interest. In this study, after a detailed and rigorous treatment of the 
behaviour of gravitational waves in viscous cosmic media, we conclude that the damping of cosmo- 
logical gravitational waves of long wavelengths is negligible for most cases of physical interest. A 
preliminary analysis suggests that similar results hold for density perturbations in the long wave- 
length limit. Therefore, long wavelength cosmological perturbations have not been practically 
affected by viscous processes, and are good probes of the very early Universe. 
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1 INTRODUCTION 

A likely explanation of the observed large angular scale anisotropy of the cosmologi- 
cal microwave background radiation (CMBR) is cosmological perturbations of quan- 
tum mechanical origin (Grishchuk, 1993), mainly gravitational waves (Grishchuk, 
1994). However, one could argue that these perturbations are not responsible for 
the CMBR anisotropy if they could be washed out by viscous processes. As a first 
step, one should investigate whether, in a classical approach, the amplitude of such 
perturbations decreases significantly or not. This is the point of this study. We 
have dealt mainly with gravitational waves in several viscous cosmic media, pos- 
sessing only shear viscosity. One could refer to  some standard sources, like Hawking 
(1966), Weinberg (1972) and Grishchuk and Polnarev (1980). We adopted a tech- 
nique previously used by Weinberg (1972). Several particular models for viscous 
cosmic media were from Mendez et al. (1997). 

The assumptions used in the study of the early Universe can be found in stan- 
dard textbooks, for example Weinberg (1972). Our study indicated that the zero 

543 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:5
3 

12
 D

ec
em

be
r 2

00
7 

544 A. DIMITROPOULOS 

chemical potential approximation should be reconsidered by the end of the radia- 
tion dominated era, in order to  get a correct decoupling time between matter and 
radiation, and the hydrogen and baryon abundances should be taken into account. 
We neglect the bulk viscosity. 

Information concerning transport phenomena can be found in Landau and Lif- 
shitz (1966), Tabor (1970) and Reif (1965). We will only include the information 
necessary for our study. By “viscosity” we will mean specifically shear viscosity. 
If ri is the mean free time between collisions, Et . i .  is the thermal energy density of 
the particles of the i species responsible for momentum transfers, then the shear 
viscosity coefficient is 

where 8 is a numerical constant. 
Elementary information required about local thermodynamical equilibrium, dis- 

sipation and decoupling are presented in Table 1 (Weinberg, 1972; Kolb and Turner, 
1990). We should mention though that these conditions are a consequence of the 
constancy of the entropy per comoving volume element. We define a characteristic 
Hubble time TH R/R were R is the scale factor. q is conformal time, a dot is 
differentiation with respect to  t ,  while a prime is with respect to q. 

Table 1. Local thermal equilibrium, dissipation and decoupling 

7 << TH Perfect thermal equilibrium holds. Dissipation is negligible 
~~~ 

T 5 TH Departures from thermal equilibrium begin. At the equality sign, decoupling 
occurs and this interaction is no longer realized. Dissipation becomes impor- 
tant, until of course decoupling occurs and the interaction ceases 

Decoupling has occurred, and no dissipation takes place since the interaction 
has stopped 

7 > TH 

2 THE BEHAVIOUR OF GRAVITATIONAL WAVES IN A NON-VISCOUS 
MEDIUM 

Lifshitz pointed out how the different types of perturbations can be constructed 
in the form of scalar, vector and tensor harmonics, corresponding to density per- 
turbations, rotational perturbations and gravitational waves respectively (see, for 
example, Lifshitz and Khalatnikov, 1963). The perturbed Einstein equations are 
given in Weinberg (1972). For gravitational waves, ha denotes the time-dependent 
part of the perturbations and q the constant wavenumber of the perturbation, re- 
lated to the time-dependent wavelength X(t) by the relation q E ?. Since all 
the h! components obey the same equations, we will ignore the indices in our no- 
tation and refer to  a single component as h. This equation has been transformed 
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DAMPING OF GRAVITATIONAL WAVES 545 

and interpreted as a parametrically excited oscillator (Grishchuk, 1993). The p(v)  
amplitude is related to the h(q) amplitude by h(v) = ,u(v)R(q)-’. The R-l vari- 
ation of h reflects the adiabatic decrease of h. The perturbations interact with 
the background time-dependent gravitational field, which supplies energy to  waves 
with wavelengths that satisfy the parametric amplification condition. In the case 
of gravitational waves, the interaction potential U ( q )  represents the back- 
ground gravitational field. In order for this interaction to  take place, the frequency 
of the wave must be comparable with that of the variations of the background field. 
Depending on the wavelengths of the perturbations, the behaviour of ,u and h is as 
described in Table 2. Therefore, gravitational waves interact parametrically with 
the background gravitational field, and the ones longer than the Hubble radius are 
“superadiabatically” amplified. The quantum treatment of this phenomenon and 
its implications for the CMBR statistics and anisotropy is investigated in Grishchuk 
(1993). 

W V )  

Table 2. Amplitude of gravitational waves in the nonviscous case 

q >> U ( 7 )  In this overbarrier region, the oscillatory solutions experience only adiabatic 
decrease, since no interaction with the barrier takes place. The expressions for 
the amplitudes are 

4111 = C1 exp{*iqv) and 
h(q) = c~R-’ exp{ltiqq}. 

~~~ ~ 

q < U ( 7 )  In this underbarrier region, the solutions are practically constant. These long 
wavelengths do not suffer from adiabatic decrease: due to their interaction 
with the barrier they are amplified (“superadiabatic amplification”). The ex- 
pressions for the amplitudes are 

3 THE BEHAVIOUR OF GRAVITATIONAL WAVES IN THE PRESENCE OF 
A SHEAR VISCOSITY 

In order to put the equations of propagation for gravitational waves in a viscous 
medium in a form that reveals the underlying physics, we will first derive an expres- 
sion for shear viscosity. We begin from equation (1). It is obvious that species with 
ct.iri several orders of magnitudes smaller than those of the other constituents of the 
fluid will not participate. We will make some assumptions. The first is that in the 
radiation dominated era, the thermal energy density of a species is approximately 
equal to  its total energy density: ct.i N c i .  The second assumption is that the ~i 
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546 A.  DIMITROPOULOS 

of the different species are of the same order of magnitude. We define the number 
K* E ~ / E ,  where epsilon is the total energy density of the fluid. The different  KC^ 
will be of the same order of magnitude, and will all be denoted by K .  Therefore, 
(1) reduces to 

Obviously, the quantity T E Cniri is the mean free time of the fluid, and will be 

at most of order of the largest Ti. The third assumption is that the ri of the species 
contributing to  are of the same order of magnitude and equal to  r .  Then, (1) 
becomes 

i 

= %$mr. (3) 
The fourth assumption is that the number of species contributing to viscosity is 
small: 1c, N 1. 

Following Weinberg (1972), one finds that in the presence of a cosmic medium 
possessing shear viscosity the propagation equations for the gravitational wave am- 
plitude is 

2 
k + (3Tg1 + 6%$~T;~r)k + ( z )  h = 0 (4) 

where we have used (3) and expressed E in terms of TH from the unperturbed 
Einstein equations. Equation (4) shows that a further (above adiabatic damping) 
decrease of the amplitude arises due to shear viscosity. This equation in terms of 
conformal time and for the p amplitude is 

where A z and the time-dependent potential is V ( v )  = U ( q )  + 6 % $ d 3 $ .  We 
put (5) into the form of the Schroedinger equation by introducing the function m: 

p = m exp{ - / 38$nA2 E d ( q ) }  

Then, equation (5) becomes 

m" + (q2 - Y(q))m = o ( 7) 

with Y(q)  = F' + F2 where F = A + 3%nA2%. This is again the equation for a 
parametrically excited oscillator, but with a modified potential due to shear viscos- 
ity. 

It is known that the dissipation is expected to be negligible when the mean free 
time between collisions is much less than the Hubble time. This is a consequence 
of the constancy of entropy within a comoving volume element, which yields the 
relation R 0; T- l .  The expansion rate Ti1 determines the rate of temperature 
change: particles that are in thermal equilibrium should have an interaction rate 
greater than the rate of temperature change. For r 0: T-q, like the ones we will 
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DAMPING OF GRAVITATIONAL WAVES 547 

consider, when r 2 T H ,  a particle will interact less than once, so this species will 
drop out of equilibrium. 

When r < TH,  the viscous term participating in the cofactor of k in (4) is 
much less than the expansion term. Even in the case of non-negligible viscosity, the 
viscous term can never become larger than the expansion term, because otherwise 
the condition of thermal equilibrium (not necessarily perfect thermal equilibrium) 
(see Table 1) will be violated. This means that decoupling will occur and the 
dissipative mechanism under consideration will cease to function as such. Significant 
dissipation is expected to  occur a t  those times when the viscous term becomes 
comparable to the expansion term: then, we have large departures from perfect 
thermal equilibrium. 

Let h be a solution in the absence of viscosity and h a solution of (4), that is, 
in the presence of viscosity. A measure of the dissipation can be presented as 

h - h  
i 

z=-. 

We will now consider short and long wavelengths separately. 

3.1 Solution for Short Wavelengths 

A solution of (4) in this limiting case of short waves is (Weinberg, 1972): 

h = h exp{- ~B$J,IET;~T dt}. I (9) 

This solution is applicable under the condition TH << 3, that is, when the rele- 
vant waves are well inside the (time dependent) Hubble radius. This result can be 
obtained from (7) by neglecting the potential Y(q) .  Combining (8) with (9), one 
derives for this limiting case the damping 

Z = 1 - exp{- 30$J, l~T;~~dt} .  s 
There is no a priori reason for this damping to be much smaller than 1; nevertheless, 
it will be at most of order unity, otherwise, the condition of thermal equilibrium 
will be violated. 

3.2 Solution for  Long Wavelengths 

This is the limit which, apparently, was not considered before for viscous matter. 
In this case, wavelengths are much longer than the Hubble radius in the era under 
consideration and, therefore, the q2 term in (7) can be neglected. We have found a 
solution of equations (4) and (7) in the form 
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548 A.  DIMITROPOULOS 

The solution in the non-viscous case is h = CI + C2 J RF3 d t  so viscosity affects only 
the “decaying” second term, but not the constant (“growing”) first term. Even in 
the absence of viscosity, the “decaying” term is much smaller than the “growing” 
one. Thus, since the “decaying” term affected by viscosity in h is smaller, or, at 
most, equal to  the “decaying” term in h, it will also be much smaller than the 
(unaffected) constant term. Therefore, 

h m C 1  m h ,  

This means that the viscosity does not practically affect the amplitude of waves 
with wavelengths longer than the Hubble radius. Of course, the same holds for the 
wavelengths that are longer than the Hubble radius today. 

This is a central result of our study, because these long wavelengths are respon- 
sible for the large angular scale CMBR anisotropy. In this case, we derive for the 
absorption the expression 

(12) 
C2 (J R--3 dt  - J R-3(exp{ -2 J 3 e t ) ~ T ; ~ ~  d t } )  d t )  

C1 + C2 J R-3 dt 
z= 

As we have already argued, this is always much smaller than 1. 

4 DAMPING OF SHORT WAVES IN VARIOUS VISCOUS COSMIC FLUIDS 

To derive concrete numbers, our strategy is to compare r with TH and then calculate 
Z defined by (8). TH was taken as TH = 2t ,  and r ,  TH,  and Z were expressed as 
functions of the temperature T .  We are dealing with radiative fluids, where viscosity 
arises due to the failure of perfect thermal equilibrium between matter and highly 
relativistic particles, like photons and neutrinos. The mean free time was calculated 
as the inverse of the product of the velocity of light with the relevant cross-section, 
cr, and with the particle density n of the particles of matter which interact with 
the radiation: r = (anc)-l. In the case of a quark-gluon plasma, the expression 
of the :mean free time was taken from Thoma (1991). All the scenarios are realized 
in the radiation dominated era. tpl denotes the Planck time, mpl, mp, me, m, 
the Planck, proton, electron, and muon masses, respectively, a the fine structure 
constant, k the Boltzmann constant, while L is the product of the reduced Hubble 
parameter with the baryon density parameter: L = fiBh:. h, is a dimensionless 
number between 0.4 and 1 that represents the uncertainty to the observed value of 
TG1 due to  systematic errors. f i ~  is the ratio of the baryon density of the Universe 
over the critical density. We have adopted for L the value 2.5 x 

The time-temperature relation is given by 

(see Kolb and Turner, 1990) where g* denotes the relativistic degrees of freedom 
(number of effectively massless degrees of freedom, mc2 << kT) ,  and varies with 
time. 
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DAMPING OF GRAVITATIONAL WAVES 549 

4.1 Quark-gluon Plasma 

According to Mendez et al. (1997), the period of interest is 2 T 2 K. 
Taking the expression of the mean free path from Thoma (1991), the mean free 
time of quarks is given by 

reducing to  the expression 

Similarly, for gluons 

reducing to  the expression 

m c2 
T~ = 3.8 x 1 O k  

kT t p l  

S. 
lOl0K 

T 
T~ = 1.44 x 

mpl c2 
T~ = 1.3 x 10- 

kT t p l  

S. 
lOl0K 

T~ = 4.83 x - 
T 

The relation between time and temperature reduces to 

2 lOl0K t = 3.2 x 10-1 (y) s. 

g* is 106.75 for the quark-gluon plasma era. By considering three generations of 
quarks and eight kinds of gluons, we found tc = = 14 and used r w 

1 0 - 2 0 v s .  We took 6J = 4/15 after consulting Thoma (1991). Then, 2 - 4.13 x 
Equation (3) gives a shear viscosity coefficient E = 7 x 10-25K-3T3 g cm-l 

s-l, while the viscosity coefficient resulting from a straightforward use of the ex- 
pression of < found in Thoma (1991) is < = 4 x 10-24K-3T3 g cm-' s- l .  There 
is good agreement (the ratio of the shear viscosity coefficient of Thoma (1991) to 
our shear viscosity coefficient is at most 5). The absorption due to this mecha- 
nism is small, but there is a significant departure of our result from the one given 
in Mendez e t  al. (1997), which is 2 w low7. This can be explained from the 
fact that in Mendez et  al. (1997) the shear viscosity coefficient used is given as 
[ = 1.88 x 10-26K3T3 g cm-ls-l. For the derivation of the latter, Mendez et al. 
(1997) also quote Thoma (1991), and they use the same assumption as we do. 

An interesting feature of this absorption mechanism is that the quantity ATG2r 
(thus, the shear viscosity coefficient) is proportional to T3, decreasing with time! 
This is the only considered medium having this behaviour. Large deviations from 
perfect thermal equilibrium occur in the beginning of this era and not its end, un- 
like the other considered media. Those deviations decrease and the fluid approaches 
perfect thermal equilibrium in the course of time. Viscosity is important towards 
the beginning of this era, when the density is large and the mean free time is small. 
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550 A.  DIMITROPOULOS 

As can be seen the density and the mean free time are the parameters to  deter- 
mine viscosity. In the course of time, the decrease of density is accompanied by the 
increase of the mean free time. Depending on the fluid, either one or the other pri- 
marily determine the viscosity. Since viscosity in the quark-gluon plasma is greater 
a t  large densities, one expects that the collisions that cause the transport of mo- 
mentum do not involve great momentum transfer between particles, but frequently 
take place and cause the dissipation to occur. 

4.2 Electron-Nezttrzno A4i.ztw-e 

Two kinds of neutrinos are of main concern for this model, the muon and the 
electron types, and their antineutrinos. Muon-type neutrinos decoupled when the 
muons annihilated at T N 1.2 x 10'l K, since their reaction rate is sensitive to 
the presence of muons (Weinberg, 1972). Electron-type neutrinos decoupled later, 
when T N lo1' K (time of electron-positron annihilation) because their reaction 
rate is sensible to the presence of electrons. Concerning electron and muon-type 
neutrinos and antineutrinos, electrons, positrons and photons to contribute in the 
energy density of this fluid, K, E K , ~  = tc0, = K , ~  = I G ~ ,  = 10-l. 0 = 4/15, in 
agreement with Weinberg (1971). 

2 T 2 lo1') K. Taking into account the cross- 
section of weak interactions and the electron density (de Groot et al., 1980), the 
mean free time of electron-type neutrinos and antineutrinos is given by 

The period of interest is 

rVe = 2.8 x 10" 

reducing to 

For muon-type neutrinos and antineutrinos, 

5 
Tvp = 3.9 x 1 o 1 O  (34 (F)  mp1 C2 e x P { g } t P l  

reducing to 

( 1$0)5 { 1.23 x 1Ol2K} 
T TVP = 2.1 x lolo - exP 

The time-temperature relation is 

t = 1.1 (y) lOl0K s. 

The ratio T , ~ / T , ~  = 1.41 x exp(1.23 x 10l2K/T) increases rapidly in the period 
2 T 2 1.2 x loll)  K in a range of half up to  three orders of magnitude. 

Therefore, we shall study the behaviour of the fluid in two subperiods: 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:5
3 

12
 D

ec
em

be
r 2

00
7 

DAMPING OF GRAVITATIONAL WAVES 551 

4.2.1 Subperiod (10l2 2 T 2 1.2 x lo l l )  K 

Due to the rapid increase of r u p / ~ u e ,  it is more convenient to  express the shear 
viscosity coefficient through (13) and compare the average mean free time 

m, c2 
= 2ti-,uru, (1 + 1.41 exp { TJ) 

with TH. The contribution of muon-type neutrinos and antineutrinos to viscosity 
is greater than that of their electron-type counterparts. This is due to  the faster 
growth of rvr in this subperiod. The shear viscosity coefficient becomes 3.17 x 
103%(1 + 1.41exp{1.23 x ~ o ' ~ K / T } ) T - ~  g cm-ls-l. 

4.2.2 

From now on, only electron neutrinos and antineutrinos contribute to  the shear 
viscosity. We use (3) with $ = 2 and the mean free time r,,,. The resulting shear 
viscosity is 3.17 x 1035KT-1 g crn-ls-l, in good agreement with the shear viscosity 
resulting from de Groot et al. (1980), which is 2.68 x 1035KT-1 g cm-ls-l. 

from both periods. The muon neutrino and 
antineutrino contribution turns to be of the same order, but slightly larger than 
that of their electron-type counterparts. This is due to the faster growth of T~~ 

being compensated by the shorter time period of contribution of the muon-type 
neutrinos and antineutrinos to  viscosity. We are not aware of anyone having reached 
a similar or a contradicting result. Neglecting the muon neutrino and antineutrino 
contribution leads to Zue - 6.19 x 

Mendez et al. (1997) use for the shear viscosity coefficient the expression < = 
8.79 x 1033KT-1 g cm-l s-l (they refer to de Groot et al. (1980) as the source 
of their derived shear viscosity coefficient as well). This can explain a departure of 
two orders of magnitude between their result and ours, but cannot justify the actual 
departure of seven orders of magnitude. Indeed, 2 - 5 x in Mendez et al. 
(1997). These authors have not considered the contribution of the muon neutrinos, 
but this cannot explain the difference. 

Subperiod (1.2 x 10l1 2 T 2 1O1O) K 

Dissipation is 2 N 4.11 x 

4.3 Thomson Scattering 

The period of interest is (10' 2 T 2 3 x lo3) K (Padmanabham, 1993). The 
mean free time in Mendez et al. (1997) is a result of the zero chemical potential 
approximation (also applied to the previous mechanisms). Nevertheless, in these 
stages of the radiation dominated era, prior to recombination, this assumption seems 
to  be not valid, and the hydrogen and baryon abundances should be taken into 
account. Indeed, setting this mean free time equal to the Hubble time, one will 
reach the result that decoupling occurred at some temperature between lo9 K and 
lo8 K. Following up to a point Kolb and Turner (1990) (the Thomson cross-section 
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and number density were taken from Weinberg, 1972), we adopted the mean free 
time 

(25) 
c1 s,3f eS2 

7 =  
-1 + (1 + c2sy3/2es2)1/2tpL 

I f 2  m lc2 (m,+me-m*)C2 with C1 = 7.56a-’ (c) , C2 = S1 = +, S2 = kT , s3 = 
m cz +. (25) reduces to 

4.2 x 10-2K3/2(T)-3/2 exp ( 1.6x:05 ”> 
T M  (26) 

-1 + (1 + 2.2 x 10-22K-3/2(T)3/2exp ( l . s x ~ 5  K ) ~ / ~ ~ .  

For (3.4 x lo3 > T 2 3 x lo3) K,  our mean free time reduces to T = 2.8 x 
10gK9/4T-9/4 exp(7.9 x lO4KT-’}s, in good agreement to = 8.7 x 10gK9/4T-9/4 
exp(8 x 104KT-’}s which holds for temperatures close to photon decoupling (Pad- 
manabham, 1993). 

The time-temperature relation reduces to  

2 
t M + )  1O1O K s. 

Absorption is more significant towards the end of the period of consideration 
(T < 3.6 x lo3 K),  when departures from perfect thermal equilibrium become large. 
The main contribution is from this subperiod: K. = 7 x .II, = 1 and B = 4/15. 
We have calculated 2 N 7.14 x Our result agrees with that of Mendez et al. 
(1997), who give 2 - 2 x We cannot explain this agreement in results, since 
we have adopted completely different assumptions. We abandon the zero chemical 
potential approximation, and in Mendez et al. (1997) this mechanism is considered 
only up to  4 x lo3 K. Their adoption of zero chemical approximation gives physically 
wrong results (decoupling of photons between lo9 K and lo8 K ,  and also a damping 
due to Thomson scattering six orders of magnitude greater than for Compton scat- 
tering, even though the latter is a more efficient thermalizing mechanism). Besides, 
their shear viscosity coefficient 8 x 10-19K-5/2T5/2 exp(6.02 x lO9KTV1} could 
never lead to a result such as theirs, because the exponential blows up towards the 
end of the era of applicability of Thomson scattering, even within the temperature 
range adopted in Mendez et al. (1997). 

4.4 Compton Scattering 

The applicability of this mechanism is within (10’ 2 T 2 5.8 x lo4) K. Using the 
cross-section given in Padmanabham, the mean free time turns out to be 
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where C3 = 7 . 5 6 ~ 1 ~ ~  (z)3'2. This expression is greatly simplified to 

r z 2 x 1030K4T-4s (2% 

after a Taylor expansion of the square root in the denominator. This is in good 
agreement to T = 2.17 x 1031K4T4s  (Padmanabham, 1993). Our shear viscosity 
coefficient is E = 5 . 6 ~  1014 g cm-ls-l, roughly two orders of magnitude smaller than 
the < = 4 . 3 7 ~  1OI6 g cm-ls-' derived by using the mean free time of Padmanabham 
(1993). The result is 2 - 6 x lo-', presenting a departure of seven orders of 
magnitude from the 2 - lo-' of Mendez et al. (1997). This can be explained by 
their use of E = 1.72 x lo5 g cm-' s-l (they quote Padmanabham, 1993). 

The damping due to this mechanism is two orders of magnitude greater than 
that of Thomson scattering. This is in agreement with the fact that Compton scat- 
tering is a much more efficient thermalizing mechanism than Thomson scattering 
(Padmanabham, 1993). 

5 DAMPING OF DENSITY PERTURBATIONS 

The treatment of density perturbations in the non-viscous case (for example Gr- 
ishchuk, 1994) shows that they interact with the background gravitational field 
in the same manner as gravitational waves. Since one expects that viscosity will 
always act against the deformination of the medium produced by a perturbation 
independently of the nature of the perturbation, one expects that density pertur- 
bations should have a behaviour similar to  gravitational waves in the presence of 
viscosity as well. In fact, this should be true for a certain range of wavelengths, 
since we know that density perturbations of smaller wavelengths are washed away. 
But in the longer wavelength limit one could still expect that the behaviour of den- 
sity perturbations and gravitational waves should be quite similar. Of course, this 
issue requires a more rigorous treatment, following the same steps we have already 
performed for gravitational waves. 

6 DISCUSSION OF RESULTS 

The main result of this study (Table 3) has been that gravitational waves which are 
longer than the Hubble radius today are not practically affected by dissipation, and, 
consequently, there has been no damping in their amplitude. Thus, these modes are 
good candidates for the production of the CMBR large angular scale anisotropy, 
although a study at the quantum level is required in order to  investigate whether 
viscosity affects more delicate properties such as squeezing. 

For shorter waves, the picture is different. These modes have been affected 
by damping more severely than the longer ones. The absorptions we calculated for 
shorter wavelengths are given in the table of results. Compton scattering is the most 
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Table 3. Table of results 

Viscous cosmic medium Era of Application Damping 

Quark-gluon plasma (loz7 2 T 2 K 2 N 1.55 x lop4 
Electron-neutrino mixture 2 N 4.11 x l ov2  
Thomson scattering 2 N 7.14 X 
Compton scattering 2 N 6.14 x 

2 T 2 10”) K 
(lo9 2 T 2 3.1 x lo3)  K 
(lo9 2 T 2 5.8 x lo4)  K 

efficient damping mechanism, Thomson scattering and viscosity due to electron 
neutrino mixture are of comparable efficiency, while the effect of the quark-gluon 
plasma in the damping of gravitational waves is much smaller. In the electron- 
neutrino mixture, it seems that the muon-type neutrinos and antineutrinos play a 
slightly more important role than the electron-type ones (they both give the same 
order of magnitude damping, with the numerical coefficients slightly in favour of 
muon-type neutrinos and antineutrinos). 

Thus, the more time a wave has been within the Hubble radius, the more damped 
will its amplitude be. The ones longer than today’s’Hubble radius are not affected 
at all. 

There is a large departure of our results from those of Mendez e t  al. (1997), 
possibly due to  numerical disagreements. Our estimates of damping are several 
orders of magnitude higher than those of Mendez e t  al. According to  these authors, 
these results are upper limits of damping, and are given in Table 4. In the case 
of Thomson scattering, they use the zero chemical potential approximation, which 
as we have shown should be reconsidered, and apply this mechanism for a shorter 
period of time. In the case of other mechanisms, the source of our disagreement lies 
elsewhere. We have used the same references for the expressions of mean free paths, 
cross-sections and number densities, and the same assumptions. Their approach 
is much more complicated than ours: they set the Einstein equations in quasi- 
Maxwellian form and retain in their formulae the shear viscosity coefficient. Then, 
they solve the resulting differential equations either analytically or numerically. If 
one calculates the shear viscosity coefficients directly from the references, these 
turn out to be several orders of magnitude larger than those used in Mendez e t  al. 
(1997). These departures can explain the differences of our results with the results 
of Mendez e t  al. (1997). 

Table 4. Table of results of Mendez et at. (1997) 

Viscous cosmic medium Era of Application Damping 

Quark-gluon plasma (10’’ 2 T 2 K 10-7 

Compton scattering 10-9 

Electron-neutrino mixture 
Thomson scattering 

(10l2 2 T 2 1O’O) K 
(lo9 2 T 2 4 x lo3) K 

N 5 x 
N 2 x 

(109 2 T 2 5.8 x 104) K 
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