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The results of Goldreich and Weber (1980) for the gravitational collapse of a polytrope of index 
n = 3 are generalized for whatever polytropic configuration with n E (0 ,5 ) .  The time dependence 
of the solution is analysed separately for n E (0, l), n = 1 and n E (1,5). The spatial dependence 
of the solution is given by a differential equation that generalizes the Lane-Emden equation. The 
polytropic collapsing time is defined and determined for the three considered cases of n. This gives 
a characteristic time-scale for the collapse, which can be compared with the free-fail time. 

KEY WORDS Astrophysics, stellar evolution, gravitational collapse 

1 INTRODUCTION 

In the evolution of the Universe, the most important processes are the explosion 
and the collapse. The history of the Universe develops between the Big Bang and 
the Big Crunch. 

At the stellar level, these two processes are also the most important. Gravita- 
tional collapse can be encountered in the early stellar evolution as well as in the 
final stages. There are many papers concerning this topic, which analyse the dif- 
ferent aspects of the collapse, from the free-fall collapse of a homogeneous spherical 
cloud to  the hydrodynamical approximation and numerical models (Kippenhahn 
and Weigert, 1991; Larson, 1969; Yahil, 1983). 

Goldreich and Weber (1980) analysed the gravitational collapse of a polytrope 
of index n = 3. The obtained solution is useful for the study of the collapse of a 
white dwarf that reaches the Chandrasekhar limit or for the understanding of the 
collapse of a stellar core causing a supernova outburst. 

In a recent paper we analysed the free-fall collapse of a homogeneous sphere in 
a Maneff gravitational field (Ureche, 1995). Here we shall generalize the results of 
Goldreich and Weber for a polytrope of a certain polytropic index n E ( 0 , 5 ) ,  this 
range being a realistic one from the physical point of view. 
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2 BASIC EQUATIONS OF COLLAPSE 

The collapse will be described by the following equations: 

(1) the equation of motion of an ideal fluid (equation of Euler) 

d v  1 - = -V@ - -VP, 
dt  P 

(2) the continuity equation, 

2 d t  + p(Vv) = 0, (2) 

(3) the equation of state (which for more generality can be considered as being 
barotropic) , 

p = P(P) (3) 

(4) and Poisson’s equation: 
A@ = 47rGp, (4) 

where the notations are usual (Chandrasekhar, 1939; Cox and Giuli, 1968; 
Kippenhahn and Weigert, 1991). 

For spherical-symmetric collapse, equations (1)-(4) become (v = (v,, 0,O)): 

dv, dv, 1 d P  a@ 
dt  dr p dr dr +v,-+--+- = 0, - 

1 d p  1 a 
-- + - - ( r  v,) = 0 
p d t  r2 dr 

P = ~ p l + k  (polytropic equation of state) 

( 5 )  
1 a 2a@ _- 

r 2  ar ( r  z )  = ‘ T G ~  

In order to remain close to the polytropic formalism for static polytropes, Em- 
den’s variables (with the notation of Kippenhahn and Weigert, 1991) will be intro- 
duced: 

r = QZ,  p = pewn, (6) 

(7) 

where 
(7z + 1)K + 

( y 2  = pe , pc - central density. 

Here r = r ( t )  and we shall consider (as Goldreich and Weber, 1980, for n = 3) 
that a = a(t)  (and pc = pc ( t ) ) ,  but dimensionless (Emden’s) variables z and w are 
independent of time t. Then: 

‘TG 

give a homologous change. 
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GRAVITATIONAL COLLAPSE OF POLYTROPIC CONFIGURATIONS 

Introducing a velocity potential ll, by: 

dzl, l a d  

taking = 0 at z = 0 we have: 

1 .  
2 

ll, = -aaz2, 

and 

In the new (Emden’s) variables, Poisson’s equation becomes: 

I d  
-- ( z 2 $ )  = 4nGpa2, 
22 8.2 

while the continuity equation can be written: 

1dp  1 da  - -+3--=0 ,  
p dt a dt 

that is, p - aP3, an obvious result. 
From (6) and (7) we have: 

The case n = 1 will be analysed separately. 

3 SEPARATION OF VARIABLES. TIME DEPENDENCE 

The change ( 6 ) ,  (7) with a = a( t )  allows the separation of the temporal dependence 
of the solution from its spatial dependence. For this, a new function h (the enthalpy) 
is defined by: 

0 

h = /” P 
= K(n  + l )p$ .  

0 

(15) 

Introducing the functions ll, from (9), (10) and h from (15) into the equation of 
motion (first equation from ( 5 ) ) ,  we obtain: 
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Integrating this equation with respect to r ,  setting the integration constant to zero 
and taking into account (8), (9), (10) and (11) we find that: 

Using here the expression (10) of II, we have: 

With (14), (15) the expression for h becomes: 

Trying a similar dependence of CP on t we can define another dimensionless function 
g(z) by: 

or 

The left-hand side of this equation is a function o f t  only, while the right-hand 
side is a function of z only. Therefore, both sides must be constant and we shall 
take this constant equal to -X/6 (A = const). Then we have: 

The equations (23) will be separately integrated for n 6 ( 1 , 5 )  and n E (0,l). 

(i) Case n E (l,5). We shall take the following initial conditions for t = 0: 

a(0) = a0 - very large, &(O) = 0. (25) 

Approximating the integration constant by zero, the first integration of (23) gives: 
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Taking the (-) sign (b < 0 - collapse) and integrating (26) with (25) we obtain: 

From (27), for n = 3 the result of Goldreich and Weber (1980) can be obtained. 

(ii) Case n E (0 , l ) .  In this case n - 1 < 0, 1 - n > 0 and we cannot take 
the constant of integration equal to  zero. With the initial conditions (25), the first 
integration of (23) gives: 

With a new integration we obtain: 

(iii) Case n = 1. From (6), (7), for n = 1, we have: 

This means that a is independent of pc. The variation of a results from the variation 
of K .  Instead of equation (22), we have: 

Here, again, both sides of the equation must be constant, that is to  say, -X/S. 
Then, instead of equation (23) we obtain: 

x 
4rGpca 3 

A first integration of (32) with the conditions 

-- a -- - 

and equation (24) is recovered. 

4nGpJ b2 - 
3 (a; - -- 

and the solution is: 

(25) gives: 

a2) (33) 

a(t) = a0 cos (F) 1'2 t. (34) 

From (27), (29) and (34) we have the expression of a(t) for whatever n E (0,5). 
From ( 5 ) ,  (6) and (14) we have the time dependence of the density and pressure. 
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Figure 1: The solution of equation (35) for 7~ = 3 and different values of X 

Figure 1 The solution of equation (35) for n = 3 and different values of A. 

Figure 2: The maximum allowed value of A as a function of the polytropic index n 

Figure 2 The maximum allowed value of X as a function of the polytropic index n 

4 SPATIAL DEPENDENCE 

In order to obtain the spatial dependence of the solution, the function W ( Z )  from 
(14) or (30) will be determined. In the case n E (1,5), using the equations (14), 
(20), (24), from (12) we obtain: 

-- ,’L d”, (2%) + w n  = A. (35) 
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Figure 3 The non-dimensional radius of the configurations as a function of n. 

For the cases n E (0 , l )  and n = 1 the same equation (35) is valid (in the last case we 
must put n = 1 in (35)). Taking X = 0 in (35), the classical Lane-Emden differential 
equation is obtained. For X # 0, the equation (35) describes the deviation from 
hydrostatic equilibrium. The maximum allowed value A, > 0 of X is a measure of 
the deviation (Kippenhahn and Weigert, 1991). 

While for the time dependence an analytic (exact) solution was obtained, for 
the spatial dependence we must integrate equation (35) numerically. The results 
are given in Figure 1, for n = 3. The values of A, as a function of n are plotted in 
Figure 2. In Figure 3, the non-dimensional radius zm of the configuration is given 
as a function of n, both for the stationary case and for the collapse. In Table 1, the 
values of A, and z, (for collapse) are given as function of n. 

5 POLYTROPIC COLLAPSING TIME 

Now, let us define a characteristic time-scale for the gravitational collapse of the 
polytropic configurations. 

It is well known that the time-scale for stellar collapse is the stellar free-fall time: 

where jj is the mean density of the star. The time-scales for the collapse of the 
spherical homogeneous cloud is: 

tff = (&)+ , (37) 

where po is the initial density of the cloud. 
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Table 1. The values of A, and Z, as functions of n. 

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.875 
1.000 
1.125 
1.250 
1.375 
1.500 
1.625 
1.750 
1.875 
2.000 
2.125 
2.250 
2.375 
2.500 

0.7821 
0.6195 
0.4958 
0.4000 
0.3247 
0.2650 
0.2172 
0.1785 
0.1470 
0.1212 
0.1000 
0.0825 
0.0681 
0.0561 
0.0461 
0.0378 
0.0309 
0.0252 
0.0204 
0.0165 

6.65 
5.21 
4.70 
6.25 
4.38 
4.37 
4.42 
4.50 
4.61 
4.74 
4.90 
5.09 
5.30 
5.53 
5.79 
6.07 
6.39 
6.74 
7.13 
7.56 

2.625 
2.750 
2.875 
3.000 
3.125 
3.250 
3.375 
3.500 
3.625 
3.750 
3.875 
4.000 
4.125 
4.250 
4.375 
4.500 
4.625 
4.750 
4.875 

0.0132 
0.0106 
0.0083 
0.0065 
0.0051 
0.00389 
0.00292 
0.00216 
0.00156 
0.00111 
0.00076 
0.00050 
0.00032 
0.00019 
0.00010 
0.000487 
0.000191 
0.000052 
0.000006 

8.05 
8.59 
9.20 
9.89 

10.68 
11.59 
12.64 
13.88 
15.36 
17.14 
19.34 
22.10 
25.68 
30.49 
37.27 
47.54 
64.77 
99.51 

197.76 

The characteristic time-scale for the collapse of the polytropes can be obtained 
from (27), (29) or (34). The function a(t)  has the dimension of length. At the 
beginning of the collapse it has the value 00.  At the end of the collapse Q: 21 0 
and the time so defined will be called the polytropic collapsing time tpc(n). For the 
three cases considered, we have: 

where p,(n) is the centra,l density of the configuration at the beginning of the 
collapse, which for whatever n can be expressed with the mean density p (for the 
same time). 
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