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OVER-REFLECTION AND INSTABILITY OF 
SHOCK WAVES IN AN INHOMOGENEOUS 

MEDIUM 
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Department of Physics, Volgograd State University 2ya Prodol’naya, 20, Volgograd 
400062, Russia 

(Received December 15, 1996) 

We present a resonant description of hydrodynamic instabilities of shock waves in inhomogeneous 
media. This approach (1) allows us to clarify the physical mechanisms of instabilities; (2) provides 
a natural classification of all hydrodynamic instabilities; (3)  allows us to simplify the search and 
prediction of instabilities, reducing the analysis to studying the coefficients of transformation 
(reflection) of perturbations at the shock front. We apply the developed formalism to the analysis of 
the resonance characteristics of a model of an accelerating shock wave in an exponential atmosphere 
and a model of a galactic shock wave. Analysis shows that instability in these models is caused by 
the effect of spontaneous emission of waves by the shock front while the true resonant effects are 
insignificant. Finally, we predict that the standing shock wave in an accretion flow on to a point 
mass must be unstable for the same reasons. 

KEY WORDS Accretion, interstellar matter, hydrodynamic instabilities, shock waves 

1 INTRODUCTION 

Various factors promote the instability of shock waves in the interstellar and the 
intergalactic media: these are magnetic fields, radiative losses of energy, self-gravita- 
tion, etc. Meanwhile instability may arise for exclusively hydrodynamic reasons. 
This is the case, for example, for the instability of shocks accelerating in a medium 
with a sharp density gradient (Gurevich and Rumyantsev, 1969; Chevalier, 1990; 
Lio and Chevalier, 1994), instability of the decelerating spherical Sedov-Taylor blast 
wave (Ryu and Vishniac, 1987, 1991; Goodman, 1990), or instability of the galactic 
shock wave standing within the gravitational well of the spiral arm (Kovalenko, 
1997; Kovalenko and Lukin, 1997). 

We believe that all these instabilities of shock waves in an inhomogeneous 
medium can be explained from a unified point of view in terms of the resonant 
approach. A brief description of this approach is given in the present paper (a full 
version will be published in Astronomy and Astrophysics). 
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The main idea of the resonant mechanism of the instability of a shock wave can 
be formulated as follows. The postshock flow is, generally speaking, inhomogeneous. 
Suppose this inhomogeneit,y is a layer of finite thickness L,  not necessarily constant 
in time. This layer is bounded ahead by the shock front and either continuously 
passes behind into the homogeneous flow or is bounded behind by some surface, 
say, another shock front, a rigid boundary, a contact discontinuity, a sonic surface 
or a critical layer. This layer of inhomogeneity can be considered as a typical 
waveguide. Indeed, let a sound wave hit the shock front from the postshock side. 
The oscillating shock front responds by generating outgoing sound, vortical and 
entropic perturbations. The outgoing waves pass through the layer of inhomogeneity 
and leave the waveguide along with the flow (provided, of course, that the rear 
boundary is not rigid or does not make contact with the vacuum). Passing through 
the inhomogeneity and interacting with the rear boundary, the outgoing waves 
generate secondary sound waves. One of them, the so-called fast sound wave, moves 
downstream and leaves the waveguide, whereas the second one, the slow sound 
wave, moves upstream and is incident on the shock front, after which the process 
of reflection occurs repeatedly. Thus the oscillations within the waveguide support 
themselves without excitation from outside. 

A researcher traditionally finds the overall structure of the wavefunction of per- 
turbations along with the eigenvalue w* through solving the self-consistent Sturm- 
Liouville problem (this reduces to the integration of a system of differential equa- 
tions) with the appropriate boundary conditions and never thinks about the reso- 
nant properties of the wave process. We instead divide the process of solving the 
eigenvalue problem into two subproblems. We consider separately the process of 
reflection and transformation of the sound wave on the shock front and the process 
of reflection and transformation of the sound wave on the postshock inhomogeneity. 

To perform this we expand any small perturbation locally in modes moving up- 
stream and downstream. Let these modes be 6gi, i = 1,. . . ,4 (the fifth mode drops 
out due to  the translational symmetry of the problem along the shock surface). 
Let the mode 691 be the acoustic mode moving upstream while the other three 
modes travel downstream. These four modes coincide with the eigenfunctions in 
the case of homogeneous flow and thus become separated, but couple in the inho- 
mogeneous case, so that the eigenfunctions of the inhomogeneous flow consist of 
linear combinations of modes 69,. 

The wave 691 incident on the shock front generates an outgoing fast acoustic 
mode 692, a vortical mode 693 and an entropic mode 694. Then we can introduce 
the complex coefficients of the transformation of waves Tifi = 6gz/6g1, i = 2,3,4,  at 
the shock front, where the ratio is taken at the point just behind the shock front. 

The modes 6q2, bq3, 6q4, passing through the layer of inhomogeneity, generate 
the mode 691, which reaches the shock front. We can introduce additionally the 
coefficients of transformation in the postshock flow T Z  = Gql/bqi ,  i = 2,3 ,4 ,  where, 
again, the ratio must be calculated at the point just behind the shock front. 

Oscillations within the waveguide arise if the condition 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:1
2 

12
 D

ec
em

be
r 2

00
7 

SHOCK WAVES 111 

is fulfilled. The relationship (1) is in fact a dispersion equation allowing us to 
determine the frequency of oscillations w+. (We search for perturbations in the form 
exp(-iwt) in the steady state case or in the form exp(-iwlog t )  in time-dependent 
self-similar flow.) If w* has a positive imaginary part, oscillations, and hence the 
shock front, are unstable. 

We classify all shock instabilities according to  the behaviour of the coefficients 
of the transformation. 

(1) The first class are instabilities generated by the shock front itself. In this 
case the coefficients T f  go to  infinity at some complex frequency w k  with 
Im(w&) > 0. This corresponds to an anomalously high response of the front to  
the incident perturbations, or, in other words, the shock front emits unstable 
waves without excitation from outside. 

If the postshock flow is homogeneous (or we can negect the secondary reflec- 
tions in the postshock flow) the coefficients TPS vanish so that w k  is a root of 
equation (1). If we allow for the postshock inhomogeneity, the root of equa- 
tion (1) w+ shifts away from w& but still lies in its vicinity and has a positive 
imaginary part. As a rule, the root w* lies in this case in the area of over- 
reflection, that is, the coefficients ITf I exceed unity and are large compared to 
ITPSI. We discuss some examples of this kind of instability in the next section. 

(2) In the second class, alternatively, the coefficients ITPSI are infinite at some 
complex frequency WE with positive image part, so that the source of in- 
stability is now located downstream. This case is particularly found in the 
Sedov-Taylor hollow blast waves expanding in a power-law radially stratified 
stellar atmosphere with a density decreasing with radius. In this case post- 
shock material is concentrated into a thin shell inside of which is a vacuum. 
Goodman (1990) and Ryu and Vishniac (1991) showed that growing oscil- 
lations of the blast wave are forced by the convective instability of the flow 
developing at the inner edge of the shell. 

(3) A true resonant instability arises if the roots wLPs of both triple coefficients 
Tf and Tps do not have positive image components, but the root w* does. In 
the first two classes one of the two boundaries in the flow is not a mandatory 
ingredient of instability (instability exists though T f  or TPS vanishes). The 
interaction between both boundaries becomes crucial in the third class. 

Except for the possibility of classifying shock instabilities and thus of revealing 
their physical mechanisms, the introduction of the coefficients Tf and TPS provides 
another significant advantage. 

We note that the coefficients TP8 carry information about the global structure 
of the postshock flow and hence the problem of finding them is equivalent to  the 
procedure of solving the Sturm-Liouville problem. On the contrary, the coefficients 
Tf reflect the local process of transformation of waves on the shock front and 
can be found from algebraic equations derived from the perturbed shock boundary 
conditions. Analysing the frequency characteristics of the functions Tf we are able 
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to  determine the conditions of spontaneous emission of the shock front. If the root 
w& has a positive imaginary part, or at least there exists an over-reflection on the 
shock front a t  some Im(u)  > 0, we may expect the existence of an instability of 
class (1). Thus we obtain a powerful method of predicting this kind of instability 
without solving the Sturm-Liouville problem. This approach becomes especially 
advantageous when the correct statement of the rear boundary conditions or the 
numerical integration of the Sturm-Liouville problem present difficulties. 

2 THE MODELS OF SHOCK WAVES 

We selected three models of shock waves in inhomogeneous media for demonstration 
of an application of the approach developed here. 

2.1 

A simple model of an accelerating shock wave is a one-dimensional model of a plane- 
parallel shock in an atmosphere with exponentially decreasing density. This model 
is used, e.g., for the analysis of qualitative characteristics of the early stages of a 
supernova explosion, or the break-through of a layer of interstellar gas by a shock 
wave in the galactic fountain. 

The dynamics of a shock wave is self-similar. The similarity solution was de- 
veloped by Raizer (1964). Gurevich and Rumyantsev (1969) predicted instability 
of a shock wave against long-wavelength perturbations. Chevalier (1990) found in- 
crements of instability for arbitrary wavelengths k along the shock surface. The 
dispersion curve of Chevalier is shown in Figure 1 by the dashed line. Instability 
occurs if kL < 13, where L is the scale height of the atmosphere. 

The dependence of Im(w&) is plotted by the solid line in Figure 1. Though 
one finds a certain quantitative difference between the two curves, their qualitative 
behaviour is similar. Analysis shows that the curve of Chevalier lies in the area of 
over-reflection, which means that the instability of a shock wave in an exponential 
atmosphere is caused by the local instability of the shock front, whereas the resonant 
effects are insignificant. 

Shock Wave an an Exponential Atmosphere 

2.2 

A reasonable approximation of a galactic shock wave is a model of steady-state 
plane-parallel flow with a shock jump in a localized inhomogeneity of gravita- 
tional potential 9(z ) .  Let the gravitational potential have a well shape with depth 
!Po(\ko < 0) and width L. The gas enters the well from z = --oo with a supersonic 
velocity uom > 0. The shock front is settled at some point X, inside the well. The 
postshock flow is everywhere subsonic. The structure of the flow is described by the 
Bernoulli integral, the law of mass flux conservation and the condition of isentropy 
of the flow (Kovalenko and Levy, 1992). 

Galactic Shock Wave in a Gravitational Well 
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Figure 1 Imaginary parts of the dimensionless frequency spectra of perturbations of a shock 
wave in an exponential medium (Chevalier, 1990, dashed line) and the frequency of spontaneous 
emission of the shock front (solid line). The adiabatic index is y = 4/3. 

- 0.2 1 

0.0 l ' l l l l ' ' " ' l ~ ~ i ~ ~ ~ ~ l ~  
0.0 0.1 0.2 0.3 0.4 0.5 

kL 

Figure 2 Imaginary dimensionless frequency spectra of perturbations of a steady-state shock 
wave in a gravitational potential q(z) = rkocos2(z/2aL). Here *o/c:- = -2, X ,  = L/n, 
2nV(X,)/ct- = 0.9, M- = 2.85, y = 5/3. The results of exact calculations of Kovalenko and 
Lukin (1997) are plotted by the dashed line; the solid line represents the frequency of spontaneous 
emission. 

In the case k = 0 the root of the equation ITf I = 00 can be expressed analyti- 
cally: 

i 
CS+ 

(7 - 1)(2YM2 - y + 1)[M+ + l / ( y  - l)] w i  = -!i?(X,) 
M+(2yMZ - y f  1) + 2MZ S y  - 1 

* 

Here the subscripts '(-" and "+" refer to the states of the gas just before and just 
behind the shock front, respectively, the prime stands for the derivative with respect 
to x, y is the ratio of specific heats, and M is the Mach number. 

One can see from equation (2) that the shock front emits unstable waves if 
9' > 0, that is, on the rear side of the well relative to the flow. The flow is stable 
on the front side, where W < 0. Figure 2 compares the dependences on kL of 
the root w* (it takes purely imaginary values), obtained by solving the Sturm- 
Liouville problem (Kovalenko and Lukin, 1997), with the frequency of spontaneous 
emission w& (it is purely imaginary as well). The coefficients of the transformations 
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Table 1. 
shock wave 

Absolute values of the coefficients of transformation for the model of a galactic 

0.0 0.452 i 0.72 0.00 3.76 0.30 0.00 0.21 
0.2 0.398 i 1.94 5.31 4.96 0.72 0.26 0.20 
0.4 0.188 i 16.2 22.1 13.1 0.97 0.66 0.16 

calculated for three different values of w* are presented in Table 1. We see that the 
root w* again lies within the range of over-reflection. 

2.3 

Another modification of the problem of stability of a shock wave in a gravitational 
well, now in spherical geometry, is the problem of the stability of accretion of matter 
on to a point Newtonian mass. 

According to the classical Bondi solution (1952) an accretion from rest at infinity 
occurs either in a subcritical regime, in which the inflow is subsonic everywhere, or 
in a critical regime with the passage through a sonic point to  supersonic flow. In 
the latter case a steady-state spherical shock front may appear at the point &h 

inside the sonic sphere; the corresponding postshock flow is then subsonic up to  the 
origin. 

Referring to the results of the previous subsection one can suggest that the shock 
front is stable, since it stays at the front (relative to the inflow) side of the well. 
However the effects of non-planar curvature begin playing their role now. For the 
radial oscillations 1 = 0 we find the root 

Spherzcal Accretion with a Shock on t o  a Point Gravitational Object 

Here vT-,+ is the unperturbed radial velocity and q ( r )  = -Gm/r is the potential 
of the point mass m. 

It can be readily shown that the factor 2v,-v,+/R, - W(Rsh)  is always positive, 
therefore the shock front must emit unstable waves in the range 0 < 1 < l,,, where 
1 is the orbital wavenumber. Figure 3 portrays the dependence of WL on 1. 

The stability of the shock-free critical Bondi solution was shown by Garlick 
(1979). The stability of the solution with shock was not studied. We suppose that 
it was not done because the flow has a singularity a t  the origin and “there are no 
natural inner boundary conditions” as was emphasized by many authors beginning 
with Bondi. 

Meanwhile we can state the correct Sturm-Liouville problem if we allow for the 
supercritical inflow for which the postshock flow may pass through the sonic point. 
Multiple passage through sonic points is allowed in non-adiabatic inflows as well 
(Chang and Ostriker, 1985). Then the eigenvalue problem reduces to a finite range 
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Figure 3 Dimensionless increments of instability of a shock wave for a model of adiabatic super- 
critical accretion. The exact eigenvalue (Eremin, 1997) is shown by the dashed line; the frequency 
of spontaneous emission is shown by the solid line. Here M- = -2, y = 4/3; TB = (y- l)Gm/c;, 
is Bondi's radius. 

of radii between Rsh and the sonic radius R,. The calculations of Eremin (1997) 
confirm the existence of an instability (dashed line in Figure 3) in the supercritical 
regime. Since the instability is driven by the shock front itself, the role of the inner 
boundary conditions must be insignificant so we predict instability in case of critical 
inflow as well. 

3 CONCLUSION 

The analysis of the stability of shock waves in a homogeneous medium (D'jakov, 
1954; Kontorovich, 1957; Erpenbeck, 1962, etc) can be carried out analytically since 
it is reduced to  an algebraic procedure of the analysis of reflection (transformation) 
coefficients at the shock front. In the present paper we generalize this approach to  
the inhomogeneous case. This allows us, first, to formulate the eigenvalue problem 
in terms of the resonant approach which gives an insight into the physics of the 
instability and in particular allows us to identify the role of the shock front as a 
source or as a damper of instability. Second, it provides a convenient method of 
search and prediction of possible instabilities caused by the local instability of the 
shock front, by avoiding solving the differential Sturm-Liouville problem. We hope 
that the three examples presented in the paper demonstrate the real advantages of 
this method. 
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