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A post-Newtonian approximation is used to find the equation of motion of a spherically symmetric 
radiating shell moving in a central gravitational potential. A Schwarzschild metric inside and a 
Vaidya metric outside is used. 

KEY WORDS Spherical shells, dynamics, post-Newtonian corrections 

1 INTRODUCTION 

The radiating shell was used in previous papers (Hamity and Gleiser, 1978; Hamity 
and Spinosa, 1984; Castagnino and UmGrez, 1983; Aquilano and Castagnino, 1985; 
Aquilano, Castagnino and Lara, 1987) as a model of a burster or a supernova 
explosion. A relativistic model was used, but the exact solution is very difficult to 
find (Aquilano, Barreto and NGiiez, 1991); so in this paper we present a method, 
of computing the post-Newtonian corrections of a classical model, because it is 
generally a simpler problem to solve. 

The usual post-Newtonian approximation only deals with free falling particles, 
so we must generalize the formalism to particles that move under the action of an 
external force. 

We obtain the approximation of the shell with a Schwarzschild metric inside and 
a Vaidya metric outside, because for this case we can use the well-studied relativistic 
model. 
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2 R. 0. AQUILANO et  al. 

2 THE EXACT EQUATION OF MOTION AND THE POST-NEWTONIAN 
ORDER 

We consider a Schwarzschild metric 

where m is the m a s  of the central object. If R(r)  is the shell radius, the metric on 
the shell will be 

As all the shell particles move radially and (as c = 1 )  ds2 = d r 2  we have 

- 2 m -  
R 1 - 2 " - -  1.- 7 2m - 

R 

where u is the usual velocity of the shell particles, i.e. u = dR/dt, while we will 
R = d R / d r .  Using R, equation (2.3) reads 

Now let us introduce the exact equations of motion of a shell moving between a 
Schwarzschild metric and a Vaidya metric (Vaidya, 1951; Hamity and Gleiser, 1978; 
Hamity and Spinosa, 1984). They are 

R ( l -  B )  = mo 

m+ mo - 1 [R+x- R ( R + B )  
B 

where 

is the proper mass of the shell and m+ = h+m-, where +I is the total mass (proper 
mass plus energy) of the shell. From these equations we can obtain 
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SPHERICAL SHELL DYNAMICS 3 

where LR = -h+(k + B)-l can be considered as the shell-radiated luminosity 
reaction force (Hamity and Gleiser, 1978; Hamity and Spinosa, 1984; Castagnino 
and UmCrez, 1983). Therefore equation (2 .1)  reads 

This equation can be used to change the derivative of the absolute velocity in 
equation (2.7) to a coordinate time derivative. We obtain 

du - m- (1 - 2 m ~ - / R ) ~  - 3u2 
d t  - R2 ( 1 - 2 m - l R )  

( 1  - 2 ~ n - / R ) ~  - 
A3 

- -  

where 
(2.10) 

Now we expand equation (2 .9)  up to order ~ / F ,  taking into account that up to 
this order 

= m+ - m- = m. (2.11) 

We obtain 

. .  

(2 .12)  m 3 d u  m- 2m-2  m- d r  
d t  - R2 R3 - - -- +- +3u2-+ R2 (dt) [-=- $1. 

3 POST-NEWTONIAN EQUATION OF MOTION 

In order to perform this programme we must compute the potentials a, Q and 
C from the ordinary post-Newtonian approximation for our particular case; we 
compute the absolute force f p  in the radial motion. 

- 

In general the potentials Q and are obtained as 

( 0 )  
Too(t, Z') 

@(t,f) = -G/  d3x' 1% - 5'1 
( 2 ) .  

( t ,  El)+ GT' ( t ,  2') 

J d3X'T;'O(t, Zc') 
c ( t , Z )  = -hG 1% - %'I (3.3) 
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4 R. 0. AQUILANO e t  al. 

(n) 
where G is Newton’s constant and TP’” is the order n of the expansion of the energy- 
momentum tensor (Weinberg, 1972). In our radial model the potential is simply 

m- a = - -  
R .‘ 

(3.4) 

The other two potentials can be computed indirectly. In general we have that 
the ratio between the proper time and the coordinate time up to  fourth order is 
(Weinberg, 1972) 

In our particular case we can expand equation (2.3) up to order Z‘, and we obtain 

(4) 

or using equation (3.4) 

( $>2= 1 + 2@ - u2 + 2’pu2. 

Comparing this equation with equation (3.5) we have 

‘p2 + 9 - < .Ti = 0. 

(3.7) 

Let us consider a rotating spherically symmetric body that in the rest reference 
system has an angular velocity w .  We know that 

where 7 is the angular mementum. In our case we deal with a static central body; 
then Tm- = 0 and therefore 7 = 8. Thus 

(3.10) 

Using equations (3.4), (3.10) and = 0, the equation of motion, up to fourth 
order, is 

(4) 

(3.11) - -- 
dt  
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SPHERICAL SHELL DYNAMICS 5 

where fR, f o  and m are the absolute radial force, the time component of the 
absolute force and the rest mass of a small piece of the shell, respectively. Now, let 
us introduce a vierbein field ef: tangent t o  the coordinates curves at each point of 
the shell. The small increment of the coordinates measured in the vierbein will be 

dx: = eidxp (3.12) 

where the subindex a means anholonomic coordinates. We are only interested in 
the radial and time-like components and as 

the relevant components of equation (3.12) read 

dta = ( 1 - - 2;-)112dt 

dr, = (1 - %)-'l2dr. 

(3.13) 

(3.14) 

In fact 

ds2 = ( 1 - - 2;-) d t2 -  ( 1-- 2;-)-l dr2 = dt: - dr: (3.15) 

and also 
112 -112 

f," = ( 1 -  7) 2m- fol f? = (l- R (3.16) 

and using equation (3.13) we have 

dt 
d r  

2m- 
R 

dt 
fR = (1 7 -) F:, fo = -F," (3.17) 

where F," and F," = FFup are the ordinary classical radial force and the ordinary 
classical energy of the small piece of the shell, and u p  is the ordinary classical 
velocity measured in the vierbein, related to  u = dR/dt, by 

- 1  2m- 
dt a (3.18) 

Thus, from equation (3.17) we have 

(3.19) fR = (1 - ?) 2m- ;t;F,", dt f o  = 2m- 

Let us now analyse the term m-l( fR  - 
tion (3.19) we have: 

f0v )  of equation (3.11). Using equa- 
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6 R. 0. AQUILANO et al. 

which, taking into account equation (2.3), reads 

With equation (3.11), we finally have 

(3.21) 

(3.22) 

This is the equation of a small piece of the shell. If we now consider the whole shell 
the equation will not change because the ratio F F / m  is the same for every part 
of a homogeneous shell. Finally if we realize that three forces are acting on the 
shell, the central body attraction, the exterior radiation force ( -LR)  and the shell 
self-gravity force, 

mm -- 
2R2 

(see Castagnino and UmCrez, 1983, equation 3-K) 

and that the first force is already taken into account by the Schwarzschild metric, 
we then have 

mm 
2 R2 

F," = -LR - -. (3.23) 

Thus, our post-Newtonian approximation method yields the equation of motion 

(4) 

d u  m- 2m-2 3m- d r  l m  
- - -- +-+- R2 u2+ (;ii) [-~s- g] (3.24) 
dt  - R2 R3 

which coincides with equation (3.11), which was obtained by expanding the exact 
equation of motion up to  order t?/F, as we have promised to demonstrate. 

4 CONCLUSION 

As all of this procedure is logical and straightforward, and yields the correct result 
in the case we have studied, we believe it can be successfully used in other more 
complicated cases. 

In a recent paper (Aquilano e2 al., 1995) we observed, in a practical case, that 
the observed values in X-ray novae disappear if we do not use the post-Newtonian 
corrections. 
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