
This article was downloaded by:[Bochkarev, N.]
On: 12 December 2007
Access Details: [subscription number 746126554]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

Stochastic ejection from the sureace of small bodies 1.
Modelling
N. V. Kulikova a; A. V. Myshev a
a Institute of Nuclear Power Engineering, Obninsk

Online Publication Date: 01 March 1998
To cite this Article: Kulikova, N. V. and Myshev, A. V. (1998) 'Stochastic ejection
from the sureace of small bodies 1. Modelling', Astronomical & Astrophysical

Transactions, 16:2, 141 - 155
To link to this article: DOI: 10.1080/10556799808208153
URL: http://dx.doi.org/10.1080/10556799808208153

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556799808208153
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
16

:0
4 

12
 D

ec
em

be
r 2

00
7 

Astronomical and Astrophysical Transactions,  1998, 
Vol. 16, pp. 141-155 
Reprints available directly from the publisher 
Photocopying permitted by license only 

@1998 OPA (Overseas Publishers Association) 
Amsterdam B.V. Published under license 

in The Netherlandr under the Gordon and Breach 
Science Publisherr imprint. 

Printed in India. 

STOCHASTIC EJECTION FROM THE 
SUREACE OF SMALL BODIES 

1. MODELLING 

N. V. KULIKOVA and A. V. MYSHEV 

Institute of Nuclear Power Engineering, Obninsk, Kaluga region 

(Received November 15, 1996) 

The development of a stochastic model of eruptive ejection is used in the framework of a spatially 
perturbed twebody problem for object 3200 (Phaethon). The computer experiment allowed us to 
estimate the s t o h t i c  measure from a large number of Keplerian orbital elements of fragments 
ejected from the Phaethon surface and from the range of D-criterion variations calculated for 
these orbits relative to the Phaethon orbit and the average orbit of a posaible meteor stream 
(Geminids?). The ejection rates range within 200-300 m s-l; 1-1.2 km s-'. The ejection was 
simulated in the perihelion and aphelion of the Phthon 's  orbit. The probability functions are 
obtained for the semimajor axis, eccentricities, and perihelion distances M well M for inclination 
angles and perihelion argument for a large number of Keplerian orbits of ejected fragments. The 
analysis of calculated probability functions of the D-criterion allowed us to conclude that new 
formations will be more compact relative to the average orbit of the Geminids and less compact 
relative to Phaethon's orbit. This formation will also have a rather layered structure in depth 
and a rather inhomogeneous density in the longitudid direction. The simulation results obtained 
correlate well with observational data for the Geminids and in our opinion permit a fuller analysis 
of the given meteor stream. 

KEY WORDS Stochastic model, probability space, Phaethon, Geminids 

1 INTRODUCTION 

One of the trends in solving the problem of the origin of small bodies in the Solar 
System is .associated with Lagrange (Lagrange, 1815) who in the last century pro- 
posed a hypothesis of small-body formation by eruptive processes in planets. This 
idea was later developed by Proctor (Proctor, 1884) and Schulhof (Schulhof, 1891), 
and at the beginning of this century by Krommelin (Krommelin, 1910). 

In the 1930s the hypothesis that interplanetary material is formed partly as a 
product of volcanic processes in the giant planets was set up again (Vsekhsvyatsky, 
1933). When developing this hypothesis (Vsekhsvyatsky, 1953) it was proposed 
that the satellites of giant planets, on the surface of which high eruptive activity is 
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142 N .  V. KULIKOVA A N D  A. V. MYSHEV 

possible, may also be sources of small bodies in the Solar System and the processes 
of substance ejection (gas, dust, cometary ice, meteor particles, etc.) should be 
compared with similar processes in our Galaxy and other galaxies (Vsekhsvyatsky, 
1978). Space investigations during the last few decades by ground means and space 
vehicles have confirmed some aspects of this hypothesis (Keller ef al., 1986; Sagdeev 
e t  al., 1986; Voyager 2, 1989). Many opponents consider the absence of a strictly 
proved mechanism providing for substance ejection from the surface of celestial 
bodies as a weakness of the whole theory of eruption. 

However, in the last few decades the eruptive hypothesis has become the sub- 
ject of study for many scientists. On the one hand, it is connected with eruptive 
activity in giant planets and comets discovered by space vehicles; on the other 
hand, with the rapid development of fundamental studies of processes proceeding 
in the depths and on the surfaces of celestial bodies. In this context, the field of 
solved problems focused on establishing the nature and the formation of cometary- 
asteroidal-meteoric matter in space within an eruptive concept has become wider. 
First, there are astrophysical problems directed at the investigation and study of 
various mechanisms of substance ejection from the surface of celestial bodies. Sec- 
ond are the problems of celestial mechanics, the solutions of which are associated 
with determining the space structure of a set of orbits of most probable substance 
ejection and their evolution. 

Theoretical studies in combination with computer experiments and observational 
data are of particular concern in the analysis of celestial objects. The methods of 
stochastic formalism of substance eruption at any space point and the formation of 
new classes of small bodies have been developed using the concept of continuous 
formation of interplanetary small bodies. Theoretical aspects and the peculiarities 
of algorithms and methods were considered earlier (Kulikova and Mychev, 1989). 
This paper analyses the case of possible substance ejection from the surface of 3200 
1983 T B  object (Phaethon) within a spatially perturbed problem of the bodies. 

2 PROBLEM STATEMENT 

In conformity to the problem of small-body formation in space as a result of sub- 
stance ejection from a comet ‘or asteroid surface, the general model may be modified 
to the model of stochastic substance ejection from the surface of celestial bodies 
within the space-limited four-body problem considered by Kulikova e l  al. (1993). 

The coordinate system M X Y Z  (Figure 1)  is connected with a body (comet, 
asteroid or another small body), from the surface of which the substance is ejected 
and which is called as the parent body (PB) in what follows. The M X  axis is 
directed along a radius-vector connecting PB with the body S (the main body), 
relative to  which PB moves in a Keplerian orbit. The positive direction of the M Y  
axis coincides with the direction of movement of PB in the orbit. The M X Y  plane 
is the plane of the PB orbit. The M X  axis is perpendicular to  M X Y  and vectors 
MX, MY and MZ form a right triple. 
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STOCHASTIC EJECTION 143 

Figure 1 Coordinate systems: NN' is the node line; n is the longitude of asceding node of orbit 
M ;  w is the argument of perihelion M ;  Y is the true anomaly M ;  rw is the perihelion distance of 
orbit M ;  a is the angle of inclination of orbit M to the plane Xi SY1. 

By virtue of the fact that the character of the forces under the action of which 
the fragments are ejected from the PB surface is uncertain, the radius-vector and 
the fragment velocity vector as well as the ejection velocity values are stochastic 
variables. We define a stochastic variable for our problem using conventional meth- 
ods (Kulikova et  ol., 1993). To define a stochastic (i.e. probabilistic) variable is to 
give: 

(1) the range of all possible values for the radius-vector, (i.e. the set of points 
on the PB surface or of partit), for the velocity-vector, (i.e. the set of all possible 
ejection directions), and for fragment ejection velocity values (the range of variation 
of these values); 

(2) a probability distribution in this range, for which the following normalization 
condition is satisfied: 

P ( z ) d x  = 1, (1) J 
where P(t) is the probability that a stochastic variable takes the values between t 
and x + dt. 
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144 N. V. KULIKOVA AND A. V .  MYSHEV 

Denote the components of the radius-vector of the ejected fragments by M, I 

My and M,, and the components of the velocity-vector in the coordinate system 
M X Y  2 by V, , Vy and V, . Then these components may be represented in Cartesian 
coordinates with stochastic unit vectors W k  (k = 1,2) as: 

(2) 
M ,  = W;TO, My = Wire, M ,  = W ~ T O  
v, = W&-J, v, = W+O, v, = w&o 

where ro is the distance between an ejected fragment and the centre M at the 
moment of ejection, vo is the initial ejection velocity and 

(w:)2 + (W$ + (W$ = 1 (k = 1,2) .  

Between the vector coordinate components W k  (k = 1,2)  the following condition 
is to be satisfied which characterizes the nature of fragment ejection from the PB 
surface: 

where C1 = cos On , Cz = cos O u ,  i.e. On, flu are the angles determining the nature 
of fragment ejection. It is accepted that if 8, = 30’ and 0, = 90°, the ejections are 
“direct”; if en = 0’ and 8, = 30’ they are “oblique” (Kulikova e i  al., 1993). 

The initial values of fragment ejection velocities vo are taken according to the 
chosen law of probability distribution vo - ~ ( v o ) .  The Cartesian coordinates of 
the unit vectors W k  (k = l , 2 )  are connected with the direction angles 4j and 0; 
(j = 1,2) by the following relations: 

c1 <‘(w; .W? + wz’ m,Z+ w; w3”) 5 cz (3) 

W! = cos . ,/I - ~ 0 ~ 2  e;, 

W; = sin ‘pj . c 1 - cOsz e! , W: = cos e;. (4) 

The values of the f u n c t i w  sin ‘pj , cos ‘pj , cos 0; specify a “random” direction 
of the vectors WA (k = 1,2) and to estimate them various modelling procedures for 
the probability distribution are used (Neumann, 1951), the choice of which depends 
both on the statement of the problem and on its computer implementation, and on 
the operating characteristics of the computer system and the quality of the random 
number generator. 

Such a scheme permits the simple algorithmization of the initial modelled ejec- 
tion process by a Monte-Carlo method and subsequent studies of this stochastic 
process in two versions: 

(1) ejection is studied at certain points of the PB orbit, i.e. a static version; 

(2) ejection is studied for a definite time interval of PB motion along the orbit, 

For the second version it is necessary to consider the numerical integration of 

i.e. a dynamical version. 

the equation of PB motion within the perturbed-space problem of two bodies: 
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STOCHASTIC EJECTION 145 

Y f Z  

Figure 2 
ejected fragment. 

Ejection geometry: the direction angles of the radius-vector and velocity-vector of an 

where p = k2. (ml + m2), ml, m2 are the masses of the main and the parent bodies 
(PT), k2 is a Gaussian constant, and k' is the total perturbed acceleration which- 
may include also gravitational and non-gravitational disturbances, the account of 
which is specified on the basis of the statement of the problem. 

For further numerical studies of the model both in the first and second versions, 
a heliocentric coordinate system SX1YlZ1 (Figure 2) is introduced which is related 
to the body S ;  the plane Xl"SY1 is the plane of the ecliptic; the SX1 axis is directed 
to the vernal equinox point T. 

The components of the radius-vector M,, My, M ,  and the velocity-vector V. ,  
V,, V, are represented with the help of random numbers in the coordinate system 
M X Y Z .  These components of the ejected fragments are then reestimated in the 
coordinate system S X I Y I Z 1 ,  with allowance for the PB dynamics if the second ver- 
sion of the problem is considered. Conversion from the coordinate system M X Y Z  
to the system SX1YlZ1 is accomplished with the algorithm described by Kulikova et  
al. (1993). Next, the heliocentric Keplerian orbital elements of the ejected fragment 
are found from classical ratios (Kulikova et at., 1993). 
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146 N. V. KULIKOVA AND A. V. MYSHEV 

In computer modelling of the process of fragment ejection from the parent- 
body (PB) surface, we obtain a statistical representation of the set of orbits into 
which fragment ejection is most probable. Because of limited computer resources, 
it is difficult to obtain the statistics of fragment orbits sufficient to find a confidence 
interval for Keplerian orbits of the fragments. Therefore a probability space in which 
the probability measure is estimated is used to describe this set mathematically. The 
algorithm for the construction and estimation of the probability measure in the 
elemental space of the KtSplerian motion is considered explicitly in our monograph. 
The probability measure includes all available information about the structure of 
the set of orbits into which the fragments are ejected, and allows us to calculate 
estimates of the most important characteristics of Keplerian orbits: mathematical 
expectation and dispersion. To estimate these, the following equations are used 

i= l  

n; 

i = l  

where n, is the number of intervals which divides the range of the j t h  element f j  - 
of the Keplerian orbit of an ejected fragment; A: - is the ith interval of the range 
of variation of the j t h  element fj; Pj(Af) is the estimate of the probability measure 
in A;;  and fj - is the midpoint of the interval A; .  

In the case when it is possible to obtain an analytical form for the probability 
measure P,(Ai) or its approximation in ’the range y j  of the j t h  element of the 
Keplerian heliocentric orbit of the ejected fragment, equations ( 6 )  and (7) taken 
the form (Kulikova e t  al., 1993) 

fiifj} = Jtfi{fj} - fj12 . Pj(db),  (9) 
YJ 

where Pj(db) = Pfj(z)& and PfJ(z) is the probability density of the j t h  element 
of the fragment orbit in %. 

As a result of fragment ejection from the parent-body (PB) surface, the frag- 
ment may form a stream or an association if the set of their orbits meets certain 
criteria. In meteor astronomy this criterion is orbit similarity. To establish a degree 
of similarity the so-called D,,-criterion is used in our model calculation and the 
equation for the D,,-criterion is 
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STOCHASTIC EJECTION 147 

II = w1 + w2 + 2 arcsin{cos[(il + i 2 ) / 2 ]  . sin[(RI - Q2)/2] . sec(l/2)}. 

In the range of variation of the &-criterion value the probability measure is con- 
structed in a similar way to  that used for the set of orbital elements of ejected 
fragments. Then a measure of compactness of orbits forming a stream or an as- 
sociation is the mathematical expectation of D,,-criterion values calculated from 
(6) and (8), and the dispersion calculated from (7) and (9) will be a measure of 
scattering of the D,,-criterion value. 

3 CALCULATION RESULTS 

The numerical experiments were performed in the first version which simulate sub- 
stance ejection from Phaethon’s surface. The initial velocity values wo for isotropic 
fragment ejection ranged within wo E (200-300) m s-l and wo E (1-1.2) km s-l. The 
first value corresponds to  substance ejection velocities in sublimation (Sherbaum, 
1968), and the second one to ejection from the PB surface as a result of its encounter 
with the interplanetary medium. The ejection was observed at the perihelion and 
at the aphelion of Phaethon’s orbit for its sunlit side taking account of expected 
direct ejections. For the exponential distribution of vo with probability density 
function ~ ( v o )  = (l/b)exp{-(wo/b)}, the scale parameter b was taken to  be equal 
t o  250 m s-’. This distribution of wo was chosen for the following reasons: first, 
on the basis of physical implications of the hypothesis on the exponential character 
of substance ejection from the surface of celestial bodies (Vsekhsvyatsky, 1967); 
second, in order to  study the ejection process for various laws of wo distribution and 
to establish the regularities, if any, in the structure of the set of orbits of ejected 
fragments under these conditions. 

Results obtained in modelling the isotropic ejection of fragments from Phaeth- 
on’s surface at the perihelion and at the aphelion of Phaethon’s orbit are analysed in 
detail in our paper (Kulikova and Mychev, 1995). In short, with substance ejection 
a t  the perihelion of Phaethon’s orbit at velocities 210 E (200-300) m s-l , the orbits 
of ejected fragments have the following parameters. The values of the semimajor 
axis of fragment orbits are most probably concentrated in the area of 0.006 a.u. 
in width and the perihelia of fragment orbits are rather densely concentrated in 
the range 0.1395-0.1405 a.u. The range of variation of orbital eccentricities is also 
extremely small. The variations in the values of the angular elements i, w ,  R are of 
a complex oscillatory character. In this case the space of the set of ejected fragment 
orbits has a layered structure in the formation depth. 

At ejection velocities 210 E (1-1.2) km s-l the range of variation of semimajor 
axis values has a complex co~nfiguration and a significant width 1.2720-1.3135 a.u. 
Simultaneously, the eccentricity values vary within even smaller limits (width of 
0.005) than at low ejection velocities and have a simple functional dependence; in 
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148 N. V. KULIKOVA AND A. V. MYSHEV 

a,,=1.2700 a.u. 
0.003 a.u. 

lf(a)3 

a,,=1.2700 a.u. 'tn7 T r3 0.003 a.u. 
0.8 ,2 
0.6 ' 

a, a.u. an 1.330 

Figure 3 Probability densities of semimajor axis: curves l , 2 ,  model of exponential ejection: the 
scale parameter is 250 m s-l; curves 3,4, model of isotropic ejection: the ejection velocity is 200- 
300 m s-'; curves &,3, ejection a t  the aphelion of orbit M; curves f , 4 ,  ejection a t  the perihelion 
of orbit M. 

Figure 4 Probability densities of orbital perihelia. Symbols as in Figure 3. 
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STOCHASTIC EJECTION 149 

fact the variations in angular element values are well-approximated by a low-degree 
polynomial. 

In modelling fragment ejection at the aphelion of Phaethon the tendencies of 
variations in orbital element hold true for all calculated velocities. However, the 
linear dimensions of variation ranges increase for all values and a pronounced os- 
cillatory character of angular element variations is established. In the general case 
this means that the set of orbits of ejected fragments will have a more or less “lay- 
ered” structure in the formation depth. So, more or less densely populated (i.e. 
discharged) regions of different dimensions may form in space. 

The functions were calculated for the D-criterion probability density relative to 
Phaethon’s orbit and the Geminids orbit (Kulikova and Mychev, 1995). 

Analysis of the calculated data has shown that at low ejection velocities at the 
aphelion of Phaethon’s orbit the set of fragments is less compact relative to the 
mean orbit of the Geminids than relative to Phaethon’s orbit. In this case the 
local extrema f( Dcr)  specify the “layered” formation structure. At higher ejection 
velocities the formations will have a more “blurred” but more extended structure. 

In modelling fragment ejection at the perihelion of Phaethon’s orbit the val- 
ues of the mathematical expectations of D,, for Phaethon and the Geminids are 
comparable and equal to 0.48 x lo-’ and 0.45 x respectively, whereas the 
despersion of D,, is quite different, i.e. 0.25 x loq2 and 0.93 x As the value of 
D,, despersion reflects the extent to which fragment orbits fill the space relative to 
the object studied, in this case the space filling relative to Phaethon’s orbit is more 
dense than relative to the Geminids orbit. The expected alternation of dense and 
“discharged” regions of new formations permits the assumption of the presence of 
a complex layered association of small bodies near Phaethon’s orbit as well as near 
the mean orbit of the Geminids. Hence the object 3200 Phaethon (TB 1983) may 
be one of the most probable sources of Geminid replenishment. 

The exponential ejection of fragments was simulated with the scale parameter 
for velocities equal to 250 m s-’. It turned out that in fragment ejection at the 
perihelion of Phaethon’s orbit the range of semimajor axis values is much wider 
than in case of isotropic ejection a E (1.2701-1.3751) a.u., i.e. its width is 0.1 
a.u. and the variations themselves are equiprobable in the whole interval (Fig- 
ure 3). The perihelia of these fragment orbits are compactly concentrated in the 
range q E (0.139-0.140) a.u. (Figure 4). The maximum of the probability density 
function of eccentricities is shifted to high eccentricity values and differs in form 
from its analogues for isotropic ejection (Figure 5). For the angular elements i, w ,  
s2 the probability density function for angles of inclination has two local extrema 
in the range 21.886-22.007’ (Figure 6) and the probability density function for the 
arguments of perihelion and longitudes of the ascending node vary similarly to such 
functions in isotropic ejection at velocities TJO E (200-300) m s-’ (Figures 7, 8). 

In modelling the exponential ejection at the aphelion of Phaethon’s orbit we 
have the following characteristics of the Keplerian orbits of ejected fragments. The 
range of semimajor axis variations is narrower a E (1.270-1.279) a.u. The form of 
the probability density function is extremely simple and is well approximated by 
a low-degree polynomial; it is nearly identical to the relative function for isotropic 
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Figure 5 

u 0.001 
Y 0.001 A 

en, 0.883 0.888 0.895 e 
en2 0.890 0.900 0.915 e 

Probability densities of eccentricities. Symbols as in Figure 3. 

3.0 
2.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

b =2 1.859"(1,2,3) 
iO= 20.637'(4) - 0.027"(1,2,3) 

0.05" (4) 

/3 

Y 
(---.-.-'..-----'.--..r.l. 1 

h 2 1.037 21.437 21.837 i.grd. 

Figure 6 Probability densities of angles of inclination. Symbols as in Figure 3. 
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Q, =264.672"( I ,2: 3) an? =26 I - 125'(4) 
' 

I . -  * a *  * a '  * - *  . * .  * - .  ' . .  - . .  - I - -  b coru 325.w 326 .M 317.286 born 

Figure 7 Probability densities of perihelion argument. Symbols as in Figure 3. 

I . . = . . . . . . ' . - . - - - . . . ' . . . . . . . . ' . . . ' . .  - 
Q"2 262.125 13.IU 264.12s QQ.- 

Figure 8 Probability densities of node longitude. Symbols as in Figure 3. 
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Table I. 

Ejection model 

Isotropic ejection Exponential ejection 
Orbital vo E (200-300) m s-l b = 250 m s-l 
elements f (v)  = (l/b)exp{(b/v)} 

Perihelion 

M 

1.3304 
0.1385 
1.5309 
0.8946 
22.0752 
321.7430 
264.9380 

D1/2 
~ - -  
0.3242 x 10-1 
0.0000 
0.5592 x lo-' 
0.2577 x lo-' 
0.5835 x 10-1 
0.1 1243 
0.01215 

M 

1.3313 
0.1395 
1.53248 
0.8951 
22.0705 
321.1950 
264.9390 

D'/2 

0.3531 X lo-' 
0.0000 
0.6112 X lo-' 
0.2770 x lo-' 
0.3603 X lo-' 
0.2700 X lo-' 
0.1227 X 10' 

Aphelion 

a, a.u. 
q ,  a.u. 
P7 Year 
e 
i ,  (grad.) 
w ,  (grad.) 
0, (grad.) 

M 

1.2746 
0.1460 
1.4355 
0.8850 
22.1000 
322.4400 
264.9830 

D1/2 

0.2105 x 
0.3518 x lo-' 
0.3000 x 
0.2598 x 
0.9386 x 10' 
1.3254 
1.9822 

M 

1.2746 
0.1461 
1.4356 
0.8854 
22.0833 
322.0560 
264.9900 

D1/2 

0.2177 x 
0.3796 x lo-' 
0.3178 x 
0.2807 x 
0.9746 X 10' 
1.2458 
2.0149 

ejection velocities of ZIO E (200-300) m s-l within the accuracy of Monte Carlo 
methods. The probability density functions of perihelia for a given case and for 
isotropic ejection at low velocities have a similar form with three local extrema 
and a similar variation range, 0.015-0.016 a.u. The probability density functions of 
angles of inclination, arguments of perihelion and longitudes of the ascending node 
have a harmonic form with a large spatial extension. The form of these curves is 
analogous to similar functions obtained in modelling the isotropic ejection at low 
velocities at the aphelion of Phaethon's orbit (Figures 6-8). 

Table 1 presents the estimates of mathematical expectation and dispersion of 
the elements a, e l  q, i ,  w ,  52 for the initial fragment ejection velocities. Similar 
estimates obtained in modelling the isotropic ejection at low initial velocities are 
given for comparison. It is clear that the values obtained practically coincide within 
the accuracy of Monte Carlo methods. The greatest discrepancy between estimates 
is observed for arguments of perihelion (at aphelion - 0.4' and at perihelion - 0.55O); 
however, in this case they do not exceed 0.1% of the desired value. Therefore, it may 
be concluded that the space scales of regions of clustering of the orbits of fragments 
are similar for the two models of ejection within the considered limits of accuracy. 
The probability functions of the Keplerian orbital elements a, el q,  i ,  w ,  R of ejected 
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b) 

Figure 9 Probability densities for D-criterion values (exponential model of ejection): curves f,2, 
ejection at the perihelion; curve 1 ,  probability density of D-criterion values relative to Phaet.hon’s 
orbit; curve 2, as in curve 1 but relative to the mean Geminids orbit; curve 3, probability density 
for D-criterion values relative to Phaefhon’s orbit in ejection at the aphelion M ;  curve 4 ,  relative 
to the mean Geminids orbit in ejection at the aphelion M .  

fragments represent the numerical space parameters of the structure of the set of 
orbits to which the fragments from Phaethon’s surface are most probably ejected. 

Figure 9 shows the probability density functions for Dc, values calculated both 
relative to Phaethon’s orbit and relative to the observed mean orbit of the Geminids. 
These functions reflect the degree of compactness of the set of ejection fragment 
orbits and the effect of such factors as a model of substance ejection, the initial 
ejection velocity values, and the position of the parent-body in the orbit at the 
moment of ejection. 

It is clear that in fragment ejection at the perihelion of Phaethon’s orbit they 
cluster more compactly around Phaethon’s orbit and less compactly relative to the 
Geminids orbit (Figure 9). The local extrema in the D-criterion probability function 
shows the “layered” of the set of orbits in space, to which the fragments are most 
probably ejected. In ejection at the aphelion of Phaethon’s orbit the fragments fill 
the space of Keplerian orbits relatively uniformly. 

Table 2 presents estimates of mathematical expectation and dispersion in the 
D-criterion values for a set of orbits of ejected fragments relative to Phaethon’s 
orbit and the observed mean orbit of the Geminids for two models of ejection at 
two positions of the parent-body. The table shows that in the case of exponential 
ejection the fragment orbits are mcat compactly clustered around Phaethon’s orbit 
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Table 2. 

Ejection model 

Orbit relative ezponential isotropic 
to  which the ejection ejection 
D-creterion 

value i s  estimated Perihelion 

M [Dcr.]  D’I2[Dcr.] M [ D c r . ]  D’I2  [DcT.] 

Phaethon’s orbit 0.5192 x 0.2519 Y 0.4815 X 0.2555 x 
Mean orbit of 0.4811 x 0.1188 x 0.4550 x 0.9296 x 

Geminids 

Aphelion 

Phaethon’s orbit 0.2147 x lo-’ 0.1022 x lo-’ 0.8409 x 0.4097 x lod2 
Mean orbit of 0.5165 x lo-’ 0.1744 x lo-’ 0.1285 x lo-’ 0.3576 x 

Geminids 

in ejection at the perihelion of its orbit. In ejection at  the aphelion the fragment 
orbits are rather uniformly clustered around the parent-body orbit and around 
the observed mean orbit of the Geminids, but in this case more dense and less 
dense (discharged) regions are formed in the space of the set of fragment orbits. 
In the case of the isotropic model of ejection at  the perihelion and at  the aphelion 
of Phaethon’s orbit the dimensions of the stream relative to Phaethon’s orbit are 
smaller than relative to the Geminids. 

So, the Geminids seem to  be significantly replenished at the expense of disinte- 
gration products of object 3200 Phaethon (TB 1983) only in isotropic ejection of 
substances at  the perihelion of Phaethon’s orbit. In other cases such a replenishment 
is possible but the meteoroid complex of Phaethon itself is more likely. 

The results of computer experiments with modelling the process of fragment 
ejection from Phaethon’s surface, in our opinion, convincingly illustrate the pos- 
sibility of stochastic methods in celestial mechanics. Stochastic modelling of such 
processes permits (unlike deterministic approaches) the most informative and the 
fullest description of quantitative and qualitative initial structures of a complex 
dynamic system of new formations. 
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