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Self-consistent motion of an initial perturbation in density, velocity and gravitational potential 
on the background of a stationary cylindrical configuration of gas with gravitation and pressure 
in Lagrange variables is studied. A non-linear partial differential equation for the description of 
the radial motion is obtained. The linearization of this equation is reduced to a Klein-Gordon 
equation. Its analytical solution with initial condition in the form of a delta-function has a formal 
oscillation character. A set of parameters which satisfy the linear approximation is studied. 

1 THEMODEL 

Antonov and Chernin (1977) show that cylindrical symmetry admits an equilibrium 
state of a gas with self-gravitation and pressure. The cylinder is supposed to be 
infinitely long and all physical values are assumed to depend only on the radius of the 
cylinder. The equilibrium is provided by the equality of the gravitational force and 
the force of the gas pressure at  every point. The quasi-two-dimensional modelling 
of the weak transverse non-homogeneity approximation for longitudinal motion is 
presented in Antonov and Chernin (1977) and Gromov and Perepelovsky (1996). 
In this article the model used by Antonov and Chernin (1977) and Gromov and 
Perepelovsky (1996) appears as the background for a small perturbations in velocity, 
density, pressure and gravitational potential. In the general case the perturbation 
may depend on three coordinates and may have a very complicated geometrical 
form. It is not possible to  study three-dimensional non-linear motion in the general 
case, but the small deviation from the stationary state admits the principle of 
superposition. According to  this it is possible to  study radial and longitudinal 
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114 A. GROMOV 

motions independently and then to  sum them, taking into consideration the fact 
that they are vectors. This article is dedicated to studying one-dimensional pure 
radial motion. 

A model of perturbation depending only on the radius of the cylinder is chosen. 
This means that the cylinder moves (as a whole) along the radius under the influence 
of an initial perturbation of the stationary state. The perturbation is distributed 
along the axes of the cylinder, thus its value is dependent on the radial coordinate 
only. Two causes are able to generate the initial perturbation: (1) the velocity is 
not equal to  zero for particles in the equilibrium state, or (2) the displacement of a 
particle from the equilibrium point is not equal to zero. Their combination is also 
possible. 

The mathematical description of this model is represented by the Cauchy prob- 
lem for three-dimensional non-stationary partial differential equations of motion, 
continuity, the Poisson equation and the algebraic equation of state: 

a V  V P  -+ (v . V ) v  = -- - va? 
at P 

aP - at + v ' (pv) = 0 

'7% = 4 ~ G p  

P = Ap7 

with initial conditions 

where P is the pressure, v is the speed, @ is the gravitational potential, p is the gas 
density, t is time, A = const, 1 6 y 5 2. v(r ,  0), P(r,O), @(r, 0), p(r,O), v(r,O), 
k (r ,  0), d(r,  0), p(r, 0) are specified functions. The system (1)-(5) describes the 
hydrodynamical motion of an ideal classical gas with self-gravitation and pressure. 

2 CHARACTERISTIC VALUES AND PARAMETERS 

The characteristic values are needed to pass from dimensional to dimensionless 
equations. The choice of characteristic values depends on the physical model. Hav- 
ing been chosen, these values constitute dimensionless coefficients of the equations. 
Depending on the initial and/or boundary conditions these coefficients are able to 
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SELF-GRAVITATING GAS 115 

play the role of small or large parameters. There are two kinds of characteristic 
dimensional values in this problem: one is connected with the stationary gas con- 
figuration (the background) and the second with perturbations propagating on the 
stationary background. The various perturbations dependent on the initial condi- 
tions differ by time characteristics (a period, for example). To compare them it is 
essential to have a time scale not depending on the perturbation. There is only one 
choice: to attach the time scale to the stationary configuration of the gas. 

The stationary configuration of the gas will be described by a series of character- 
istic values - the Jeans length LO, the gravitational potential 0 0 ,  the gas pressure 
PO, the mass of the particle rn, the concentration of the particles NO, the density 
pol the temperature To, and the sound speed CO: 

Then 

The full energy of the gas consists of gravitational energy and the energy of thermal 
expansion of the gas. The full energy is distributed between these two components 
depending on the adiabatic index y. The function p ( y )  describes this distribution 
as follows: 

Equations (6) and (8) give the correlation between the number of particles in a cube 
with edge length equal to the Jeans length and the parameter p(y ) :  

The perturbation will be characterized by the following values defined by the initial 
conditions: the wavelength XO, the period of perturbation t o ,  the velocity 210, the 
characteristic Mach number and the characteristic dimensionless wavelength. They 
are respectively: 

A parameter Q will also be used: 

It follows from (6), (9) and (10) that 
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116 A. GROMOV 

3 THE INITIAL SYSTEM OF EQUATIONS IN THE LAGRANGE VARIABLES 

To convert the dimensional equations (1)-(5) to dimensionless form the dimension- 
less radius, density, pressure, gravitational potential and velocity are introduced 
according to the following rules: 

r P P cp V 

LO Po PO 0 0  VO 
, cp=- ,v=- - .  (=- ,  6 = - ,  p = -  

In the cylindrical system of coordinates the dimensionless radius components of 
equations (1)-(5) are 

with initial conditions 

1 d ap 
t a< at -- (<-) = a46 

p = 6  7 

where 
functions and 

o),  P([, o), d(<, 01, b ( < ,  O ) ,  +(el O ) ,  P ( ( ,  O),  $(t, 0), &<, 0) are specified 

4 o t o  47rGpo LE , u 3 = -  , a 2 = -  (11 = - Pot0 
LO Po Love Lou0 ' a4 = 0 0  . 

voto 

According to (6)-( 12) the expressions for a 1 - ~ 4  become: 

Finally in Euler variables the equations being looked for are obtained by substituting 
(L from (11) into (18) and substituting the result into (13)-( 15): 

(19) 
-_ 1 dv + v- a v  = 1 dP - 1 a(P 

KO 6% a< 76 d< rCl(r)M,23? 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
16

:0
2 

12
 D

ec
em

be
r 2

00
7 

S EL F- G R AV ITATI N G GAS 117 

with the initial conditions (17). However the problem under consideration may be 
solved in Lagrange coordinates only. Applying the transformation rules (Samarskiy 
and Popov, 1975): 

(a is a dimensionless Lagrange mass variable) to equations (19)-(21) yields the 
system of equations describing the problem in Lagrange variables: 

with initial conditions: 

= o  a6 2 - + K O 6  - ar au 

where v(u, O), p(u1 O), 4(a, 01, b(u, 01, €(a1 01, V(U, 01, P(u, 01, i(a,O), &, 0) are 
specified functions. The explicit form of the dependence of the function ( (u ,  0) on 
u will not be used in this article and so is not studied. 

4 THE DEVELOPMENT OF THE RADIAL MOTION EQUATION 

In this section the system of equations (23)-(25) will be reduced to  one equation 
for the Euler coordinate ( ( c , ~ ) .  For all functions the dependence on (u, r )  will be 
omitted except the case T = 0. This means that 6 signifies 6(u, T ) ,  but for 7 = 0 we 
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118 A. GROMOV 

will write 6(u, 0). The Poisson equation (25) may be integrated directly with initial 
condition: 

According to the structure of.equation (25), const should be finite but the value is 
not essential and it does not matter what the constant is. The first integral of the 
Poisson equation is: 

where L(T) is some function which will be defined later. Excluding (6% from (23) 
and (27), the equation 

(28) 
-- € a v  - --- €2 & - 4n27C((7)a - J q T )  

soar au 7P (7 1 M,2 
- 

is obtained. 

Using the definition of velocity in the Lagrange variables: 
The following transformation is connected with the equation of continuity (24). 

and dividing (24) by b2 the-quation 

is obtained. Its integral is 

where G(u) is some function which will be defined later. The next stel, is substi- 
tuting p from (29) into the equation of state (16) and equation (28): 

To find the function L ( r )  we calculate (30) for u = t = 0: 

L(r )  i 0. 

To find the function G(o) we introduce a parameter (o(o): 
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SELF-GRAVITATING GAS 119 

whose physical sense is the acceleration of the particle with coordinate u at  time 
r = 0. Calculating (30) for r = 0 an ordinary differential equation for the function 
G(u) is obtained: 

where ' = $. To find the initial condition for this equation we calculate equation 
(29) at  the point u = 0 and obtain 

G(0) = 0. (33) 

So, the equation of radial motion which should be obtained in this section is 

with the initial conditions 

where 6(a, 0), t(u, 0) and ((u, 0) are specified functions. The function G(u) is de- 
fined by equation (32) with initial condition (33) (according to (26)). Equation (34) 
is a non-linear non-stationary partial differential equation which cannot be solved 
analytically in the general case. 

5 THE LINEARIZATION OF THE RADIAL MOTION EQUATION 

Sections 5 and 6 are devoted to studying small perturbations of the gas. Arbitrary 
radial motions are described by equation (34) with initial conditions (35). Accord- 
ing to the model the transformation of (34) and (35) to the linear approximation 
will now be made. Let us assume that a particle is in equilibrium at the point 
with Lagrange coordinate no. Since the deviation of the particle from the point 
of equilibrium is small, the Euler coordinate of the particle may be presented as a 
sum: 

t(u,  T )  = EO + $(u, r) where l$(g, .)I << t o  and €0 = [(go, 0). (36) 
To study the general case let us assume that the particle is displaced at the moment 
of time r = 0 from the point of equilibrium 00 to a new point with Lagrange 
coordinate u = uo + Au and has a velocity equal to v(u0 + Au), where Au is the 
particle displacement from the equilibrium point 60. So, the initial conditions for 
this model are 
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where 

A. GROMOV 

and q1. 
delta-function. Denote 

and Au are the parameters of the problem, and b[u - (UO + A r ) ]  is a 

5 = uo + Au. 
In addition to  (36) the condition 

will be used for the linearization of equation (34). The characteristic values used in 
(12) are now physical values calculated at the point UO. Equation (39) allows us to 
simplify the expression 

and after substitution of (40) into (34) the following equation is obtained: 

I - E  where G’ = $$ and Go - do l o o .  
To linearize (41) use (36). This substitution gives the equation 

To simplify this equation denote 

Then equation (42) reads: 

with initial conditions (38). B has the meaning of acceleration. According to this, 
two new characteristic values are introduced: 
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SELF-GRAVITATING GAS 121 

Equation (44) will be transformed now by the substitution 

U - i ?  u - 5  
2u* U* 

$(u, r )  = u(u, r )  exp - + c ( T * ) ~  - 

where ~ ( u ,  r )  is a new function. The result of the substitution (46) into (44) is: 

a z u  a2 U U -+-=o. -- 
a 7 2  w b * 2  (2u*)2 (47) 

For this equation the Cauchy problem is calculated with the following initial con- 
ditions which are obtained by transformation according to  (46): 

where $(a, 0) and $(u,O) are defined by equation (38). Equation (47) is the Klein- 
Gordon equation (Zaslavskij and Sagdeev, 1988). 

6 THE SOLUTION OF THE KLEIN-GORDON EQUATION 

To solve the Klein-Gordon equation the Riemann method of solving the Cauchy 
problem will be used (Koshl'akov et al., 1962). Equation (41 )  is a hyperbolic equa- 
tion. In the canonical coordinates (v, q): 

equation (47) is reduced to the form: 

a2u u --- aVaq 4 = O  

with initial conditions (48) transformed according to the rules (49): 

In the Riemann method the solution of equation (50) is determined by (51) and the 
Riemann function V(u ,  q). 

To describe the Riemann function two kinds of canonical variables are introduced 
as well: (v1p) are the coordinates of the point where the solution is found and 
( f i l  6) belong to  the line in which the initial conditions are specified. The function 
V satisfies the conjugate of equation (50): 
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122 A. GROMOV 

with the initial conditions: 

V(v,Ij) = 1, V ( t , q )  = 1. 

Let us find the Riemann function V in the form 

V = N ( p )  where p = d(v - fi)(@ - q ) .  

The substitution of (54) into (52) gives the ordinary differential equation 

1 
P 

N ” +  -”+ N = 0 

which has finite solution 

(53) 

(54) 

where Jo is a Bessel function of null order. The initial conditions (53) are satisfied. 
Let us return to equation (50). According to the Riemann method the solution of 
equation (50) satisfying the conditions (51) has the form: 

1 
2 

u(v, 7 ) )  = -{u[2a*wov] + u[2a*wo7)]} 

After substituting (51) and 

7 (wor)2 - (a - @)2 v - 1) = - (u - C)(b - 7)) = 
5. ’ (20* wo)2 

into (55) the solution of equation (50) with initial conditions (48) is 

u(a ,r )  = !! 2 i;61... + (a - o)] + 6[wor - (a - a)]}da 
0 

where J1 is the Bessel function of first order. This formula together with (46) defines 
the solution of the linear problem. 
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SELF-GRAVITATING GAS 123 

7 RESULTS AND DISCUSSION 

This article studies the pure radial motion of a gas with pressure and self-gravitation. 
We start from the Euler equations in the cylindrical coordinates (19)-(21) and (16) 
and by the transformation rules (22) the Lagrange equation (23)-(25) are obtained. 
This system is reduced to one partial non-linear non-stationary differential equa- 
tion (34) for the Euler coordinate ( ( u , ~ ) .  The linear approximation (44) of this 
equation is obtained with the extra conditions (36) and (39). Equation (44) is 
reduced to the Klein-Gordon equation (47) using the substitution (46). 

The cylindrical symmetry model of perturbation is used in this article. To study 
small perturbations of the stationary state the simple initial conditions (37), (38) 
are chosen. These conditions describe the model of perturbation analogous to  the 
movement of weight on a st.ring. The analytical solution of the linear problem (44), 
(371, (38) is represented by equations (56) and (46). 

The solution obtained has the formal character of oscillations, but there are 
two reasons for which this conclusion should be treated critically: first, this is the 
solution of a linear equation; the area of the initial conditions where the linear 
solution differs slightly from the non-linear one is not discussed in this article; 
second, the solution is obtained in Lagrange variables but when we are speaking 
about oscillation, Euler variables are meant. The transformation from Lagrange 
variables to Euler variables is not performed in this article. 

The solution obtained is non-symmetrical with respect to  changing the u direc- 
tion around the point 6 (see (46)). 

The solution obtained depends on three parameters V O ,  XO, t o  introduced in (9). 
00 characterized the initial perturbation, not depending on local properties of the 
medium and specified by the initial conditions, but XO and t o  should be defined by 
the other parameters of the problem. There are two problems corresponding to  two 
kinds of inital condition of the Cauchy problem. 

First, initial conditions are delta-functions and do not include characteristic 
length and time as in our case. The values XO and t o  should be defined by the 
interaction between the perturbation and the medium. To find them two extra 
equation are needed. The initial perturbation is approximately constant in the 
small environment of the initial point. So, X and t o  may be defined in this en- 
vironment by a solution of the dispersion equation corresponding to  the Klein- 
Gordon equation. The second equation is the approximation of the initial condition 

The second kind of initial condition is not a delta-function. Two characteristic 
length scales correspond to this problem: the length scale of the initial perturbation 
(initial impulse range, for example) and the length scale connected with the inter- 
action between the perturbation and the medium. The time scale may be defined 
by this interaction or from the approximation of the initial conditions. The area of 
tlie initial conditions where the linear solution differs slightly from the non-linear 
one is not discussed in this article, but we will now use the approximation of the 
init,ial conditions (48) to find XO and TO. Let the solution of (47) be represented by 

(37). 
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124 A. GROMOV 

the plane wave around the point 

u - exp 1(~o(a - O) - WOT). 

1 t o  
where 

w o = - ,  To=-. 
TO 4 5  

The dispersion equation corresponding to the Klein-Gordon equation (47) is 

2 1  w; = ( W O K O )  + -. 
( 2 L 7 * ) 2  

The approximation of the initial conditiw (48) gives 

Au(U, 0) . = Q. 
TO 

(57) 

Substituting (58) into the transformation rules (46) and using (37) we obtain the 
definition of TO: 

\E 

Q 
To = ?. 

This together with (57) defines no as well: 

1 (5)' = ( W O K O ) 2  + - 
(2u*)2. (59) 

Replacing the expression of wo from (43) and u* from (45) by the initial conditions 
and parameters of the problem the following equation is obtained: 

where B1 = and B2 = w-. This solution shows a set of parameters of 
this problem, which satisfies the linear approximation, defines no and gives the 
correlation between the parameters of the problem. The condition (39) is carried 
out in case no -, 0. Assuming ICO = 0 we obtain the main contribution in the 
solution of the equation (60): 
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