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As basic research problems in practical astronomy and geodesy, the formulation of the mapping 
functions both of the refractive delay and of astronomical refraction are studied in an analytical 
manner in this paper. First, we have proved that the complementary error function can be related 
to expressions for the atmospheric refraction integrals of the signal delay and also of the signal 
bending angle as well. An improved continued fraction expansion of the complementary error 
function is then derived to describe the new mapping functions of the refractive delay and astro- 
nomical refraction at radio and optical frequencies, respectively. Not only do the new mapping 
functions have good convergence at an elevation coverage near to the horizon, but they can also be 
applied to various atmospheric profiles at high accuracy, better than 1 cm for refraction delay and 
better than O i ’ 3  for angular bending at an elevation angle near to 2?5 or lower over a wide range 
of meteorological and geophysical conditions. Some extra corrections are also briefly summarized 
in this paper. 

KEY WORDS Atmospheric refraction: mapping functions 

1 INTRODUCTION 

Astronomical refraction is one of the oldest topics in astronomy. As said by New- 
comb almost 90 years ago, “There is perhaps no branch of practical astronomy on 
which so much has been written as on this, and which is still in so unsatisfactory a 
state” (Newcomb, 1906). In modern space techniques, the refractive delay is a criti- 
cal topic in applications to astrometry, geodesy and geophysics. It is known that the 
accuracies of modern space techniques, such as Very Long Baseline Interferometry 
(VLBI), Satellite Laser Range (SLR) and Global Positioning System (GPS), have 
reached one centimetre or better; however the accuracy of atmospheric refraction 
is in the same magnitude of accuracy (Herring e l  al., 1990). Much effort has been 
made in different aspects of this field; some progress was reported in the last few 
decades upon discussions of mathematical expressions and of physical properties 
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62 HAOJIAN YAN 

for atmospheric refraction (Chao, 1972a, b; Davis el al., 1985; Herring, 1992; Niell, 
1996), but less progress has been made in the theory. 

In mathematics atmospheric integrals are not analytically integrable, and in 
physics the atmosphere of the Earth is complicated and changeable with time, 
space and other geographic and geophysical parameters. But there is a critical 
situation met in refraction research: the formulas used for astronomical refrac- 
tion in classical astronomical observations (the Astronomical Almanac, 1996) and 
for refractive delay in modern techniques are based on series expansions of refrac- 
tive integrals (Marini and Murray, 1973) or on mathematical empirical expressions 
(Marini, 1972; Davis el a/., 1985; Herring, 1992); and the accuracies of these for- 
mulas for atmospheric refraction corrections are greatly limited for observational 
elevations near 10' for astronomical refraction and to  5' for refractive delay. The 
method of series expansion has been used for hundreds years in astronomical refrac- 
tion (Woolard and Clemence, 1966) and was also recently considered in refractive 
delay. The accuracies of this method are limited, and some compensative terms or 
tables have to be added when higher accuracies are required (Saastamoinen, 1972). 
The empirical continued fraction form of the mapping function was first introduced 
by Marini (1972); it has contributed to the research of refractive delay. Because of 
the defaults in the mathematical form, the old continued fraction mapping function 
has poor behaviour when observational elevation is near the horizon. More sophis- 
ticated discussions on astronomical refraction and atmospheric profiles have been 
offered by Radau (1882), Danjon (1952) and Garfinkel (1967). 

The main subject of this paper is the discussion of the theoretical derivation 
of the mapping function and to  establishing new models of high accurate mapping 
functions of refractive delay and astronomical refraction for practical astronomy, 
geodesy and modern space technique facilities. 

2 ATMOSPHERIC PROFILES 

The atmosphere of the Earth is divided into a neutral layer near the Earth and an 
outer ionized layer. We will only deal with the former in this paper, for the effects 
of latter can be cancelled to  some extent by multifrequency observations. Because 
of the complexity of the true Earth's atmospheric construction in space and of the 
variability in time, the research of atmospheric refraction becomes more difficult. 
The first step in refraction study is to use a rather simple mathematical atmospheric 
model t o  describe the true atmosphere. 

An exponential atmospheric profile was derived from the static isotherm condi- 
tion (Thayer, 1961; Rowlandson and Moldt, 1969). Although the exponential model 
is too simple for an accurate resolution of the mapping function, i t  has a special 
role in theoretical deduction of the new mapping function (Yan and Ping, 1995;. 
Yan, 1996). Another commonly used atmospheric profile in refraction research is 
Hopfield's quartic refractivity profile (Hopfield, 1969; 1971), which is based on the 
assumption of an atmosphere with constant lapse rate of temperature. This model 
still has some use today in GPS applications. The model widely used in modern 
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ATMOSPHERIC REFRACTION 63 

space techniques is a spherically symmetric, layered atmosphere constructed by the 
troposphere with a constant lapse rate of temperature near the E.uth’s ground and 
the stratosphere with constant temperature up the troposphere. The boundary 
between the troposphere and the stratosphere is the tropopause. It is commonly 
agreed that this atmospheric model is a good approximation to the true atmosphere 
(Allen, 1973). More detailed discussion about atmospheric profiles needs be related 
to local or global characteristics of the atmosphere of the Earth (Herring, 1992; 
Niell, 1996). 

3 BASIC MATHEMATICAL PROBLEMS 

In propagation of electron~agnetic signals through the medium near the Earth, the 
Fermat principle holds: an electromagnetic wave travelling between two arbitpary 
points A and B takes the shortest path; and the travel time 

A 

is a niinimuni. From the law of refraction the astronomical refraction Aro defined 
as the difference between the true zenith distance (0 and the arrival zenith distance 
zo at a station, see Figure 1 (here the source S is considered to be a t  infinity), can 
be expressed as an integral (Saastanioinen, 1972): 

Figure 1 
assumed to be at infinity). 

The signal path and the chord from source to receiver (the position of the source S is 
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no 

where n is the refractive index of the atmosphere, which is defined as the ratio 
of the constant light velocity in vacuum, c, to the instantaneous light velocity, u,  
at the field point, and no is the value taken at the station; x is the arrival zenith 
distance of the signal taken at the field point on the path. The refraction correction 
of the signal delay in atmospheric propagation, Au, is then written as the difference 
between the optical distance u and the geometrically straight distance X between 
the source S and receiver P (Figure 1); 

Aa = a - X = J n d l -  Jdz ,  

which can be related to an integral along the vertical coordinate h: 

hs 

Au = “-ldh + 60, 
cos x 

(3) 

(4) 

where dl and dx are. the elements on the signal path and on the chord x between the 
source and receiver, reapecti,vely; ho and ha are the heights of the station and the 
top of the atmosphere, respectively; 6a is called the ray-bending correction term in 
refractive delay, which originates from the difference of geometric lengths between 
the path of the signal 1 and the straight line x within the source and receiver, and 
is much smaller than the first main term. 

Equations (2) and (4) are the basic mathematical equations for studying refrac- 
tive corrections of the signal delay and bending. 

It was a revolutionary step in atmospheric refraction research to divide the 
refractive delay into the mapping function and the zenith delay, as made by Marini 
(1972). Since the zenith delay can be described fairly well by ground meteorological 
measurements at a station, the study of the mapping function becomes the basic 
problem in atmospheric refraction. We then write the atmospheric delay Au as 
(Marini, 1972): 

Au = Aa,m(E,p), (5) 

in which Auz is the zenith delay; m(E,p) is the mapping function; here E, in 
contrast to Marini’s expression, is the true elevation; and p represent the meteoro- 
logical and geophysical variables, such as temperature, pressure, humidity, height 
of the tropopause etc. Some continued fraction forms of the mapping function can 
be found in Marini (1972), Davis e i  al. (1985) and Herring (1992), but all of them 
are mathematically deficient in rigorous derivations and physically less connected 
to the geophysical characteristics. 
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ATMOSPHERIC REFRACTION 65 

4 GENERATOR FUNCTION METHOD 

Rowlandson and Moldt (1969) demonstrated that refractive features of an exponen- 
tial atmospheric profile could be approximately expressed by a complementary error 
function. Yan and Ping (1995) and Yan (1996) further proved that expansion forms 
of the complementary error function could offer appropriate forms of the mapping 
functions to both refractive delay and astronomical refraction. 

In an exponential atmospheric profile, the distribution function of refractivity, 
N ( h ) ,  is written as a function of the vertical coordinate h of the field point (F’roome 
and Essen, 1969): 

N ( h )  = N o e - w ,  (6) 

where the refractivity N is related to  the refractive index n by 

N = 106(n - 1); 

and No is the value measured at a station of heigh ho; the parameter 

RT H=- 
Mil (7) 

in equation (6) is defined as the effective height of the atmosphere of exponential 
profile, in which R is the universal gas constant, M the molar mass of the a t m e  
sphere, T the temperature of the atmosphere in Kelvin and g is the gravitation 
acceleration constant taken at the centre of the vertical air column (Saastamoinen, 
1972). The effective height H of the atmosphere can also be written as a vertical 
integration function of the refractivity N :  

m 

H = - N ( h ) d h .  
NO ‘ J  

For convenience, we set ho = 0; this will have no influence on our discussion. If we 
ignore the ray-bending term in equation (4), then the refractive delay Aa in the 
Earth’s atmosphere can be approximately expressed by the integrals along the path 
of the signal I: 

Aa w 1 N(I )  dl .  
I 

(9) 

This equation is widely used in the literature. If we further use an integral along 
the chord x connecting the receiver P and the source S instead of integrating along 
the path, and note the approximate relationship between h and x: 
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66 HAOJIAN YAN 

we can deduce the mapping function in equation ( 5 )  related to  the complementary 
error function (Yan and Ping, 1995): 

In the above equation, the complementary error function erfc(r) is defined as: 
00 

(12) 
2 

e r f c ( z )  = - J e-Ya d y ,  

which is taken to be the generator funct ion of the mapping function of the refractive 
delay; ro is the radius of the Earth and €0 is the true zenith distance at the station; 

J;T 

7 

and the parameter 

is defined as the normalized effective zenith argument.  
From equation ( 2 )  and the differential relation 

we can rewrite the astronomical refraction Aro as the 
00 

N ( h )  dh. ~ z O m 1 0  -6sin -J- z 
H ncos z 

(14) 

approximation: 

ho 

According to the definition of refractive delay, the above expression can be formally 
written as (Yan, 1996) 

(16) 
Au 

H AZO = sin €0 L r n ' ( ( 0 )  = 10-6No sin < o r n ' ( < O ) ,  

where the function rn ' ( (0)  can be defined as the mapping funct ion of astronomical 
refraction, which can also be related to  the complementary error function similar 
to the case of refractive delay in equation (11). 

The errors in the above approximate procedures applied in this section can be 
reduced to some extent by the proper selection of the coefficients of expansion of 
the complementary error function as shown in the following sections. 

5 ZENITH DELAY 

The value of the zenith delay Auz in equation ( 5 )  can be easily calculated from the 
integral 

h m  

Auz = J N dh,  
ho 
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ATMOSPHERIC REFRACTION 67 

in which the refractivity N at radio frequencies can be obtained from the Smith- 
Weintraub equation (Smith and Weintraub, 1953): 

(18) 
P e e 
T T T2 N = 77.6- - 12.8- + 3.776 x lo5-, 

in which P is the total pressure in mbars, T the temperature in Kelvin and e the wet 
partial in mbars. At optical frequencies, we have to take the dispersive effect into 
account (Gardner and Rowlett, 1976). We can write the frequency-related group 
refractivity N ,  as (Yan, 1996): 

(19) 
P e 
T Ng = 82.4148f(A)- - 11.268,, 

in which the frequency correction term 

(20) 
0.01598 0.0002224 

f ( A )  = 0.94075+ 7 + A4 1 

is written as a function of wavelength A.  In contrast to the expression given by 
Marini and Murray (1973), in the above expressions the relation 

f(0.5320) = 1 

holds. 
The zenith delay can be proved to have a similar relation to  the exponential 

atmosphere for our atmospheric model mentioned in Section 2 (Appendix B, Yan 
e i  al., 1996): 

where the gravitation acceleration constant g is represented by (Saastamoinen, 1972) 

in which the correction term for latitude 4 and height ho (in kilometres) of a station 
is written as: 

W(4 ,  ho) = 1 - 0.00266 cos 24 - 0.00028ho. (23) 

At optical frequencies, the zenith delay can be simply obtained by 

Agz = f (A) 

- - (0.0024178P0 + 0.00014586eo), 
W(4l ho) 

in which Au60.532 means the corresponding value for a YAG laser, X = 0.532 pm. 
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68 HAOJIAN YAN 

6 MAPPING FUNCTION 

From the continued fraction expression of the incomplete r-function (Press et  ol., 
1991), the complementary error function erfc(z) can be readily written as a con- 
tinued fraction 

It is therefore appropriate to rewrite the mapping function of equation (11) as an 
improved continued fraction form 

m(t0) = Dl 1 (26) 
1 

Da 
DQ 

la .ec ( o + D I  
CO. to+  

cos €0 + sec t o +  

in which at radio frequencies the coefficients Di can be obtained under the atmo- 
spheric model mentioned in Section 2 by means of a least squares adjustment for 
integrated values along the paths of signals: 

+ 

+ 
- 

0.4613983 + 2.864 x lO-'(Po - 1013.25) 
8.99 x 10-6eo - 6.98 x 10-6ei 

9.4694 x lO-'(p + 6.5) 
2.4946 x 10-3(ht - 11.231) + 1.8072 x 10-4(ht - 11.231)', 
0.8276476 + 2.056 x lO-'(Po - 1013.25) 
2.3820 x 10-4eo - 4.76 x 10-6ei 
5.1125 x 10-4(T0 - 15) + 1.23 x 10-6(To - 15)' 
3.6479 x 10-2(p + 6.5) 
1.5321 x 10-'(ht - 11.231) + 9.4802 x 10-4(ht - 11.231)', 
2.531492 + 1.093 x 10-4(P~ - 1013.25) 
2.6179 x 10-'eo + 1.33 x 10-'ei 
3.7103 x lO-'(To - 15) + 4.95 x 10-6(To - 15)' 
1.6022 x lo-'(@ + 6.5) 
8.9980 x 10-'(ht - 11.231) + 4.9496 x 10-'(ht - 11.231)', 
47.07844 + 1.595 x lO-'(Po - 1013.25) 
3.9026 x 10-'eo + 2.41 x 10-4ei 
4.1713 x 
1.6313(p + 6.5) 

1.0914 x 10-4(To - 15) + 1.30 x 10-6(To - 15)2 

- 15) + 2.16 x 10-4(T0 - 15)2 

9.9757 x 10-'(ht - 11.231) + 4.4528 x 10-'(ht - 11.231)', (27) 
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ATMOSPHERIC REFRACTION 69 

in which PO is the total ground pressure in millibars; eo the wet partial pressure 
in millibars; TO the ground temperature in Celsius; p the tropospheric temperature 
lapse rate in K km-’, and ht the height of the tropopause in kilometres. The above 
version is named UNSW931. The accuracy of the UNSW931 model is better than 
1 cm to an elevation lower than 205 over a wide range of meteorological conditions. 
The constant system of geophysical parameters in this paper is taken as: the radius 
of the Earth is ro = 6378 km; the gravitational accelaration is g = 978.40 cm s-* 
(Saastamoinen, 1972); T(K) = T(OC) + 273.15; the universal gas constant is R = 
8314.34 Joules kmol-’ K-’;  and the molecular weight of the atmosphere is Mo = 
28.970 kg kmol-’. It should be noticed that apart from the definition of the effective 
height of the atmosphere in the exponential model of equation (7), the parameter 
H of a non-exponential atmospheric profile is re-defined as the normalized effective 
height of the atmosphere and represented by equation (8). 

For optical frequencies we have the coefficients Di as follows: 

0.463184 + 3.019 x 10-5(Po - 1013.25) 
1.222 x ~ O - ~ ( T ~  - 15) + 1.1 x ~ O - ~ ( T ~  - 15)’ 
9.122 x 10-3(X - 0.532) + 2.74 x lO-’(X - 0.532)’ 
0.828752 + 1.905 x lO-‘(Po - 1013.25) 

5.887 x 10-3(X - 0.532) + 1.82 x lo-’(,! - 0.532)’ 
5.203 x 10-4(To - 15) + 0.6 x 10-6(To - 15)’ 

2.53662 + 0.9095 x 10-4(Po - 1013.25) 
3.869 x 10-3(To - 15) + 0.3 x 10-6(To - 15)’ 
2.787 x lO-’(X - 0.532) + 8.76 x lO- ’ (X  - 0.532)’ 
47.1584 + 1.377 x 10-3(P0 - 1013.25) 
3.584 x lO-’(To - 15) + 1 . 1  x 10-4(T0 - 15)’ 
4.291 x l O - ’ ( X  - 0.532) + 1.34 x 10-4(X - 0.532)’, (28) 

where X is the wavelength of the signal in micrometres. Equations (24) and (28) 
can be used in place of the formulas given by Marini and Murray (1973) for low 
elevations of the SLR facility with higher accuracies. The formulas of Marini and 
Murray have been used for more than twenty years and are used in the elevation 
range above 10’. 

For astronomical refraction, the mapping function m‘(<o) in equation (16) can 
be written as (Yan, 1996): 

where the normalized effective zenith argument I was defined in equation (13), and 
H is the normalized effective height of the atmosphere given by equation (8). 

The meteorological parameters in A1 and A2 of the above equation also come 
from the least squares adjustment procedure of the numerical integrals of equa- 
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70 HAOJIAN YAN 

tion (2) along the paths of signals for different ground meteorological parameters 
and various elevations. At radio frequencies, these coefficients can be written as: 

A1 = 0.5753868 + 0.5291 x 10-4(Po - 1013.25) - 0.2819 x 10-4eo 
- 0.9381 x 10-6ei - 0.5958 x 10-3(T~ - 15) + 0.2657 x 10-5(T~ - 15)' 

A2 = 1.301211 + 0.2003 x - 1013.25) - 0.7285 x 10-4eo 
+ 0.2579 x 10-5ei - 0.2595 x lO-'(To - 15) + 0.8509 x 10-5(To - 15)'. (30) 

The parameters To, PO and eo are the same as before. The atmospheric profile is 
the same as in Section 2. The accuracy of equations (29) and (30) is better than 
01'3 in the elevation range above 2 O  for a wide range of meteorological conditions. 
For radio frequencies, the wet partial pressure distribution is baaed on the expo- 
nential distribution model given by Allen (1973) and incorporated with the Magnus 
empirical formula (Marini and Murray, 1973). 

At optical frequencies, the appropriate coefficients of equation (29) are: 

A1 = 0.5787089 + 0.5609 x 10-4(Po - 1013.25) 
- 0.6229 x 10-3(To - 15) + 0.2824 x 10-5(To - 15)' 
+ 0.5177 x 10-3e~ + 0.29 x 10-6e$ 
- 0.1644 x lO-'(A - 0.532) + 0.491 x lO- '(A - 0.532)' 

A2 = 1.302474 + 0.2142 x 10-4(Po - 1013.25) 
+ 0.1287 x 10-'eo + 0.65 x 10-6ei 
- 0.6298 x lO-'(A - 0.532) + 0.189 x lO-'(A - 0.532)' 
- 0.2623 x lO-'(To - 15) + 0.8776 x 10-5(T~ - 15)', (31) 

in which the dispersion is compensated these can be used for the polychrome laser 
technique. In equations (28), (30) and (31), we do not take the tropospheric temper- 
ature lapse rate P and the height of the tropopause ht as variables of the mapping 
function, because they are usually not available for normal stations; 80 we take 
P = -6.5 km and ht = 11.23 km in the above equations. 

7 CORRECTION TERMS 

In Yan and Ping (1995) and Yan (1996), some necessary correction terms in atmo- 
spheric refraction have been discussed. The correction related to the position of a 
station is given by equation (23) which originates from the correction of the gravi- 
tation acceleration constant. The wavelength correction is involved in the mapping 
functions by equations (28) and (31) for refractive delay and astronomical refraction, 
respectively; and the influence on the zenith delay is described by equation (24). 
For a finite-distance object observed at low elevation the correction formulas can 
be found in Yan (1996). 
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Figure 2 Geometry of a finite-dirtsnce object. 

Marini (1972) first noticed the correction of a finite distance object in refractive 
delay, but his results had less accuracy. As shown in Figure 2, Murray (1983) defined 
the arrival direction zo as the tangent to the light trajectory at the observer, the 
true direction (0  = 90° - E as the direc4on connecting the observer P to the 
source S, and the proper direction €0 as parallel to the direction tangent to the 
light trajectory at the source, 2nd Q the equivalent point of observation; PQ is the 
equivalent height for the source S. The proper direction is that direction in which 
a hypothetical observer would see the source if there were no atmosphere. From 
Section 6 we can see that the proper direction corresponds to the angular argument 
of the mapping function for a finite-distance object (Yan, 1996), and it is obvious 
that for an objectal infinity the true direction is in coincidence with the proper 
direction. 

From Figure 2, if the refractive index at the source S is unity, n(r,) = 1, we 
have the equivalent height: 

sin €0 

and the difference A0 is written as: 

which describes the correction of the angular argurpent in the mapping function. 
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72 HAOJIAN YAN 

The true zenith distance can be accurately calculated by the ephemeris of the object 
and the geophysical parameters. Then the correction for the angular argument is 
written as (Yan, 1996): 

ro At9 = -(nosin zo - sin € 0 ) .  
2 

(34) 

Here 2 is the geometric distance between station and source, and no is the value 
of the refractive index at the station. In the above expression the arrival zenith 
distance can be computed from the astronomical refraction formulas mentioned in 
the previous sections. 

8 DISCUSSIONS 

As one of the basic problems in practical astronomy and modern space techniques, 
atmospheric refraction corrections both in delay and bending of signals through the 
medium near the Earth are discussed in this paper in the manner of the generator 
function of atmospheric refractive integrals. It is a serious problem in astronomy 
and geodesy that the observational accuracy of modern space techniques has almost 
reached the same magnitude as that of the atmospheric delay correction (Herring 
et  al., 1990), and the routine formulas for astronomical refraction are only suitable 
for elevations above 10' and the accuracy is worse than OI3 in the range of usage 
(the Astronomical Almanac, 1996). The improved continued fraction form of the 
mapping function deduced from the complementary error function provides an ap- 
propriate construction of the mapping functions not only for refractive delay and 
but also for astronomical refraction at  radio and optical frequencies, respectively. 
The old continued fraction form of the mapping function (Marini, 1972) is an ap- 
proximation from the angle of the generator function method. The introduction 
of the normalized effective zenith argument I to the mapping function by equa- 
tion (13) has changed a parallel plate atmosphere to  a spherical model, and has 
also related the mapping function to the interior of the atmosphere as well. The 
angular argument in the mapping function is better to be taken as the true (or 
the proper for a finite-object) elevation rather than the arrival direction. The true 
direction can be more accurately obtained by calculation than the arrival direction 
which is usually read by measurements. 

In comparison with the routine formulas, our new correction formulas have in- 
creased the accuracies of computation by about one order of magnitude for delay and 
by about two orders for bending, especially for low-elevation observations. From 
the results of integrals along ray tracking, the formulas for refractive delay havv 
a theoretical accuracy better than 1 cm to an elevation 2P5 and for astronomical 
refraction have better than 01'3 to an elevation of about 2'. This improvement. 
certainly promotes the development of astronomical refraction research which has 
been using series expansions for centuries. The frequency-related mapping function 
also includes the dispersion of the atmosphere at  optical frequencies. Some further 
correction terms are listed for high-accuracy ranging and angle measurements in 
practical astronomy and surveying. 
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