
Astronomical and Aatrophpaical Tranaactionr, 1998. 
Vol. 15, pp. 255-262 
Reprintr available directly from the pnbhher 
Photocopying permitted by license only 

QlSS8 OPA (Overseas Publishers Asmciation) 
Amrterdam B.V. Pablirhed under licenae 

in The Netherlands under the Gordon and Breach 
Science Pnbhhen  imprink. 

Printed in India. 

DYNAMIC SIMULATION OF SMALL SOLAR 
SYSTEM BODIES 

S. L. SEMENOVA' and V. M. CHEPUROVA2 

'Institute of Science and Technique Information of Russian Academy of Science, 
Astron. Depart., ul. Usievicha 20A, 125219 Moscow, Russia 

Sternberg State Institute of Astronomy, Celest. Mech. Depart., Universitetskii 
pr. 13, 119899 Moscow, Russia 

(Received June 20, 1996) 

As part of a dynamical study of small transneptunian bodirs, in particular, of the cometary Oort 
cloud, a simulation of orbital evolution under the infiuence of the Galactic gravitational field waa 
performed. The tidal Galactic potential includes a term comeponding to the Sun's orbital motion 
around the Galaxy's centre (core) in the point-mass approximation, when the point-mass Galactic 
core has the total m s  of the Galaxy. 
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The first part of the simulation is the comparison of two analytical forms for the 
Galactic potential, presented by P. P. Parenago (1950a, 1950b) and by A. Brunini 
(1993), but takipg into account the Sun's orbital motion, resulting in the modified 
restricted three-body problem. 

We used (as in our papers (1987,1988, 1989)) the rectangular coordinate system 
OXYZ with origin located at the Sun and (XY)-plane coinciding with the mean 
Galactic disc plane (the 0 2 - a x i s  is in the direction of the Galactic pole). Then the 
equations of particle motion are given by: 

d2z fmz 8U -+- = -++, dt2 + 82 

Pz fmz 8U -+- = - + R z ,  dt2 r3 8.2 

where r2 = z2 + 3 + z2 is the radius-vector of the particle, f is the gravitational 
constant, m is the\ total mass of the Sun, Ma, and the outer planets, &,v,z are the 
components of the disturbing function, including the orbital motion of the Galactic 
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core around the Sun (in the given frame of reference), and 

a, exp( -Xz2) 
( l + n A )  ' UP,, = 

UBr = 2afpz2, (3) 

assuming that 0, is the gravitational potential a t  the Galactic centre, A = 3 - 7, 
and R is a constant, the radius of the Sun's circular (that is, Galactic core) orbit. 
In other words, is the distance between the particle and the Galactic core. tc 
and A are constants and p is the mean density in the solar neighbourhood: p = 

It is obvious that r /R  < 1. Using this ratio as a small parameter it is possible 
to expand the right-hand sides of the differential equations up to first-order terms. 
The linearized equations of particle motion for r /R  < 1 are (following Parenago) 

0.185 f 0.02M~ PC-~. 

(1): 

- f m z  Cpc, (X - RCOS wt) - d2z - 
dt2 r3 ( ~ + K A ) ~  A 

d2Y 
dt? r3 (1 + A 

1 

f m y  (P,K (y-  Rsin wt) - --- _ . -  

Oetc z 20,At fmz - -  d2z 
dt 2 r3 ( I + K A ) ~ A  ( l+ tcA) '  
- = --- 

and for Brunini's case (11): 

x(3 cos2wt - 1) + 1.5ysin 2wt 
R3 

y(3 sin? wt - 1) + 1-52 sin 2 d  
R3 

- -- - jmX + f M g  
d2x 
dt2 r3 

- -  jmY + f M ,  dt - +  

- 
1 

d2y -- 
1 

(4) 

where w is the angular velocity of the Galactic core and Mg is the mass of the 
Galaxy: Mg = 4 x 1O"Mo. The distance A is given by: 

cos wt 

In this simulation we did not take into account the inclination of the Sun's orbit 
to the mean Galactic disc plane. Both systems (I) and (11) were numerically in- 
tegrated by the Everhart integrator, written in FORTRAN (subroutine RADA27) 
with double precision on an IBM PC AT 386. The right-hand sides of the differential 
equations were computed with an accuracy of 10-13. Transformations from rect- 
angular coordinates to orbital elements and vice versa were performed by standard 
subroutines. 
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As a result we compared, for Parenago’s and Brunini’s potential expressions, the 
change (the difference between the final and jnitial values) in the particle’s orbital 
elements: 

A E ~  = E P - E ? ~ ,  i = 1  , . . . , 7 ,  
E’ = ( n , e , i , M , w , ~ , a ) .  

The total range of initial conditions was divided into several regions, according 
to the boundaries of the “sphere of action”, the sphere of influence and Hill’s region 
for the Sun-Galaxy-particle system. 

Taking R as 8.5 kpc we have 

s1 = (m/Mi)z /5R = 3.657 x lo4 a.u. (Tisserand), 
sz = 0.5(0.5rnM,)’/3 = 8.695 x lo4 a.u. (Opik), 
83 = 1.7 x lo5 8.u. (Hill). 

There is, however, a certain discrepancy between the estimate of the radius of 
the solar “sphere of influence”; from 8.695 x lo4 to 1.39 x lo5 a.u. This should be 
taken into account when choosing the initial conditions. The value of s1 is deduced 
from the equality of the accelerations acting on the particle, and s2 is found from 
the equality of the acting forces. 

Then the initial conditions for the inner range of the Oort cloud are: 
3.657 x lo4 < a < 8.695 x lo4 a.u., 
e C (0.08-0.2) and e C (0.8-0.9) 

(for this region the particle orbital periods T2 are estimated to be (6-10) x lo6 yr) 
and for the outer one: 

8.695 x lo4 < a < 1.7 x lo5 a.u., 
e C (0.1-0.2) and e C (0.8-0.9). 
Our calculations were performed in folowing system of units: unit of mass - 

Mo;  length unit - lo4 a.u.; time unit -lo6 yr. In a given frame of reference K = 
7.23824 x (length unit)-’, QC = 5.02832 x lo4 (length unit/time unit)2, A = 
1.31625 x (time unit)-’. The Sun’s orbital 
period is known to be 2.45748 x lo2 time units. 

In both of the cases we considered we found a number of interesting orbits 
with i - 0 (near the Galactic disc plane) and i - 90° (perpendicular to it). The 
qualitative picture of the long-term evolution of the inner region of the Oort cloud 
at  small values of iofig in both simulations is similar. The amplitude of oscillations 
in Ai is absolutely insignificant (< lo). 

Changes in the semimajor axis clearly reveal oscillations with a period of T2; 
however, in this region 

(time unit)-2, w = 2.55 x 

AameanBr > 0, AameanP < 0, 

that is, Brunini’s term leads to a broadening, on average, of the inner region of 
the Oort cloud with respect to the original orbital elements, and Parenago’s term 
compresses these orbits. In the last case the amplitude of oscillations is greater. 
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For the orbital eccentricity, Parenago’s term clearly showed oscillations with a 
period of 2T2, and Brunini’s term gave a period of T2, but in the last case the 
amplitude of oscillations is smaller. Indeed, the stable plane orbits become, on 
average, more and more elongated. 

The orbits in the distant region with io,.jg - 90° and lo5 < aoAg < 1.39 x 
lo5 a.u. show practically the same behaviour for both analytic expressions for 
the potential: after one orbital period (- lo6 yr) they become hyperbolic with 
continuously increasing values of Ae, and the changes in the semimajor axis and 
inclination can be approximated by a hyperbola. In all simulations Ai - 0, that is, 
the orbital plane has a tendency to lie near the Galactic disc. 

The angular elements w and R for both simulations exhibit the same secular and 
long-periodic behaviour. The mean anomaly M is characterized by purely secular 
behaviour. In our simulations the precession of the nodes and apsides is shown to 
occur in opposite directions. Indeed, the outer region of the Oort cloud under both 
forms of tidal potential can be considered as a hyperbolic comet flow from the solar 
system to the Galaxy (see Tsitsin et al. 1984, 1985a, 1985b). 

Brunini’s form of potential is shown to flatten and to encircle, on average, the 
non-planar particle orbits; for Parenago’s expression, these orbits become more 
elongated. Numerous escapes of particles from the solar system (when the cometary 
orbits tend to become hyperbolic) take place at distances of order 82. 

The typical behaviour of the evolution of the particle orbits in the inner and 
outer parts is presented on Figures 1 and 2, respectively. 

The second dynamical simulation was an attempt to evaluate the influence of the 
Sun’s orbital inclination (to the mean Galactic disc plane) using Brunini’s potential. 
The equations of particle motion, assuming that the Sun’s (that is, the Galactic 
core’s) inclination equals 8, are given by: 

d2z fmx Z ( 3 C o s ’ W t  - 1) 
fMg R3 

-+- = 
dt2 r3 

3 sin wt cos wt (y cos 8 + z sin 0) 
R3 + fMg I 

- d2y+fmy = fMg y( 3 sin’ wt cos2 8 - 1) 
dt2 1.3 R3 

3 sin wt cos O(z cos wt + z sin wt sin 0) 
R3 

d’z fmz z(3 sin’ ut sin’ 8 - 1) -+- = fMg dt2 r” 

+ fMg 

+ fMg 1 

R3 
3 sin wt sin 8(x  cos wt + y sin wt cos 0 

R3 + 47rfpz1 (7) 

when we take into account the first-order terms relative to r / R .  
The total Galactic mass located in its core (centre) and moves in a circular orbit 

(as assumed in the first simulation). 
Numerical simulations, using subroutine RADA27 with double precision, were 

performed for two values of 8: (1) 8 = 0 and (2) 0 = 3 . 5 O .  As a result we compared 
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Table 1. 
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3.495826 
6.991652 

10.487478 
13.983304 
17.479130 
20.974957 
24.470783 
27.966609 
31.462435 
34.958261 
38.454087 
41.949913 
45.445739 
48.941565 
52.437391 
55.933218 
59.429044 
62.924870 
66.420696 
69.916522 
73.412348 
76.908174 
80.404000 
83.899826 
87.395652 

-0.762939 
-0.846386 
-0.739098 
-0.882149 
-0.715256 
-0.905991 
-0.685453 
-0.888109 
-0.691414 
-0.780821 
-0.721216 
-0.649691 
-0.774860 
-0.572205 
-0.852346 
-0.536442 
-0.929832 
-0.977516 
-1 .OO1%8 
-0.858307 
-1.019239 
-0.965595 
-0.959635 
-1.072884 
-0.888109 

90.891478 
94.387305 
97.883131 

101.378957 
104.874783 
108.370609 
111.866435 
115.362261 
118.858087 
122.35391 3 
125 .a9739 
129.345566 
132.841392 
136.337218 
139.833044 
143.328870 
146.82469f3 
150.320522 
153.816348 
157.312174 
160.808000 
164.303826 
167.799653 
171.295479 
174.791305 

-1.275539 
-0.762939 

0.17881 
-0.655651 
-0.780821 
-0.542402 
-1 3 4 9 4 6  
-0.464916 
-1.502037 
-0.441074 
-1 364946 
-0.488758 
-0.971556 
-0.619888 
-0.458956 
-0.840425 
0.149012 

-0.780821 
-1.406670 

1.245737 

1.537800 
-1.716614 

1.549721 

-1.120567 

-1 633167 

the corresponding difference in the changes of the orbital elements: 

E = (n,  e, i ,  M ,  w ,  S Z ,  a). 

The integration interval included one solar orbital period TI. Figures 1 and 2 
show oscillations of the orbital elements of very small amplitude with an obvious 
period of 1/2T1. The order of magnitude for the difference in changes of the orbital 
elements is: 

6n - 2 x 6i - (1 - 3.1°), 

6w - (1 - 3 9 ,  6SZ - (1 - 20), 

6a - 10' a.u. 

Short-period oscillations have periods comparable to the particle orbital period 
T2. In short-term behaviour the largest difference of the orbital elements occurred 
at 2T2. Table 1 demonstrates the order of magnitude for the oscillations in the 
orbital elements (in particular an) with respect to 0. 
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Figure 1 The orbital evolution of the inner part of the Oort cloud (for a, n and e). 
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Figure 2 The orbital evolution of the outer part of the Oort cloud (for a, n and e). 
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We concluded that the component of dynamical friction induced by the non- 
planar solar orbital motion has a negligible effect on the dynamics of the Oort 
cloud, contrary to Rrunini’s note (1993). 

References 

Brunini, A. (1993) Asiron. Astrophys. 273, 684-694. 
Chepurova, V. M. and Shershkina (Semenova), S. L. (1987) Astron. Chirk., No. 1478, 5. 
Chepurova, V. M., Kirushenkova, N .  V.; Shershkina (Semenova), S. L. (1988) The Analysis of 

Celestial Body Motions and the Esiimaiion of ihe Accuracy of their Observaiions, Riga, 72-92. 
Chepurova, V. M., Shershkina (Semenova), S. L. (1989) Thes. rep. Cod., Methods of S t d y i n g  

the Motion, Physics and Dynamics of Small Solar System Bodies, Dushanbe, p. i 0 .  
Parenago, P. P. (1950a) Astron. J .  27, 329. 
Parenago, P. P. (1950b) Astron. J .  29, 245. 
Tsitsin, F. A., Chepurova, V. M., and Raslorguev, A. S. (1984) Astron. Chirk., No. 1310, 5-6. 
Tsitsin, F. A,, Chepurova, V. M., and Rastorguev, A. S. (19858) Astron. Chirk., No. 1378, 1 4 .  
Tsitsin. F. A., Chepurova, V. M.. and Rastorguev, A. S. (1985b) Asiron. Chirk, No. 1408, 5-8. 


