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As part of a dynamical study of small transneptunian bodies, in particular, of the cometary Oort
cloud, a simulation of orbital evolution under the influence of the Galactic gravitational field was
performed. The tidal Galactic potential includes a term corresponding to the Sun'’s orbital motion
around the Galaxy’s centre (core) in the point-mass approximation, when the point-mass Galactic
core has the total mass of the Galaxy.

KEY WORDS Comets, Oort cloud, tidal Galactic potential, Sun’s orbital inclination, dynamic
simulation )

The first part of the simulation is the comparison of two analytical forms for the
Galactic potential, presented by P. P. Parenago (1950a, 1950b) and by A. Brunini
(1993), but taking into account the Sun’s orbital motion, resulting in the modified
restricted three-body problem.

We used (as in our papers (1987, 1988, 1989)) the rectangular coordinate system
OXY Z with origin located at the Sun and (XY )-plane coinciding with the mean
Galactic disc plane (the OZ-axis is in the direction of the Galactic pole). Then the
equations of particle motion are given by:

d*z fmz U
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:1_t-2-+r_3 = —a—z'-i-Rz, (1

where 72 = 22 + y? + 22 is the radius-vector of the particle, f is the gravitational
constant, m is the total mass of the Sun, Mp, and the outer planets, R; y,. are the
components of the disturbing function, including the orbital motion of the Galactic
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core around the Sun (in the given frame of reference), and
2,2
& exp(—Az ), 2)
(1+ &A)
Up: = 2nfp2?, ®)

Upar =

assuming that &, is the gravitational potential at the Galactic centre, A=R-v
and R is a constant, the radius of the Sun’s circular (that is, Galactic core) orbit.
In other words, A is the distance between the particle and the Galactic core. &
and A are constants and p is the mean density in the solar neighbourhood: p =
0.185 + 0.02M¢, pc3.

It is obvious that r/R <€ 1. Using this ratio as a small parameter it is possible
to expand the right-hand sides of the differential equations up to first-order terms.
The linearized equations of particle motion for r/R € 1 are (following Parenago)

(I):

d’z  fmz ®.x (z— Rcosuwt)
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dy  fmy ®.x (y— Rsin wt)
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and for Brunini’s case (II):

d’z fmz z(3 cos?wt — 1) + 1.5ysin 2wt

@ = T tIM R !

d?y fmy y(3sin® wt — 1) + 1.5z sin 2wt

w T T M R ’

d?z fmz  fM,z

- st +4nfpz, (5)

where w is the angular velocity of the Galactic core and M, is the mass of the
Galaxy: M, = 4 x 10'" M. The distance A is given by:

A:R(1—2z (6)

cos wt 2sinwt+r2 1/2
YR TR

In this simulation we did not take into account the inclination of the Sun’s orbit
to the mean Galactic disc plane. Both systems (I) and (II) were numerically in-
tegrated by the Everhart integrator, written in FORTRAN (subroutine RADA27)
with double precision on an IBM PC AT 386. The right-hand sides of the differential
equations were computed with an accuracy of 10~!3. Transformations from rect-
angular coordinates to orbital elements and vice versa were performed by standard
subroutines.
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As aresult we compared, for Parenago’s and Brunini’s potential expressions, the
change (the difference between the final and jnitial values) in the particle’s orbital
elements:

AE" = E?n—E;!ni, i=1)'-')7!

E (n,e,i,M,w,,a).

The total range of initial conditions was divided into several regions, according
to the boundaries of the “sphere of action”, the sphere of influence and Hill’s region
for the Sun—Galaxy—particle system.

Taking R as 8.5 kpc we have

5 = (m/M,;)z/sR = 3.657 x 10* a.u. (Tisserand),
s3 = 0.5(0.5mM,)"/3 = 8.695 x 10* a.u. (Opik),
s3 = 1.7x10° a.u. (Hill).

There is, however, a certain discrepancy between the estimate of the radius of
the solar “sphere of influence”; from 8.695 x 10* to 1.39 x 10° a.u. This should be
taken into account when choosing the initial conditions. The value of s, is deduced
from the equality of the accelerations acting on the particle, and s2 is found from
the equality of the acting forces.

Then the initial conditions for the inner range of the Oort cloud are:

3.657 x 10* < a < 8.695 x 104 a.u.,

e C (0.08-0.2) and e C (0.8-0.9)

(for this region the particle orbital periods T are estimated to be (6-10) x 10° yr)
and for the outer one:

8.695x 10* < a < 1.7x 10° a.u.,

e C (0.1-0.2) and e C (0.8-0.9).

Our calculations were performed in folowing system of units: unit of mass —
Mg; length unit — 10* a.u.; time unit ~10°% yr. In a given frame of reference x =
7.23824 x 10~¢ (length unit)~!, &, = 5.02832 x 10* (length unit/time unit)?, A =
1.31625 x 1010 (time unit)~2, w = 2.55 x 102 (time unit)~!. The Sun’s orbital
period is known to be 2.45748 x 102 time units.

In both of the cases we considered we found a number of interesting orbits
with i ~ 0 (near the Galactic disc plane) and i ~ 90° (perpendicular to it). The
qualitative picture of the long-term evolution of the inner region of the Oort cloud
at small values of 4orig in both simulations is similar. The amplitude of oscillations
in Ai is absolutely insignificant (< 1°).

Changes in the semimajor axis clearly reveal oscillations with a period of T5;
however, in this region

AdmeanBr > 0, Adameanr <0,

that is, Brunini’s term leads to a broadening, on average, of the inner region of
the Oort cloud with respect to the original orbital elements, and Parenago’s term
compresses these orbits. In the last case the amplitude of oscillations is greater.
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For the orbital eccentricity, Parenago’s term clearly showed oscillations with a
period of 275, and Brunini’s term gave a period of T3, but in the last case the
amplitude of oscillations is smaller. Indeed, the stable plane orbits become, on
average, more and more elongated.

The orbits in the distant region with ioig ~ 90° and 10% < Gorig < 1.39 X
105 a.u. show practically the same behaviour for both analytic expressions for
the potential: after one orbital period (~ 10° yr) they become hyperbolic with
continuously increasing values of Ae, and the changes in the semimajor axis and
inclination can be approximated by a hyperbola. In all simulations Ai ~ 0, that is,
the orbital plane has a tendency to lie near the Galactic disc.

The angular elements w and  for both simulations exhibit the same secular and
long-periodic behaviour. The mean anomaly M is characterized by purely secular
behaviour. In our simulations the precession of the nodes and apsides is shown to
occur in opposite directions. Indeed, the outer region of the Oort cloud under both
forms of tidal potential can be considered as a hyperbolic comet flow from the solar
system to the Galaxy (see Tsitsin et al. 1984, 1985a, 1985b).

Brunini’s form of potential is shown to flatten and to encircle, on average, the
non-planar particle orbits; for Parenago’s expression, these orbits become more
elongated. Numerous escapes of particles from the solar system (when the cometary
orbits tend to become hyperbolic) take place at distances of order s;.

The typical behaviour of the evolution of the particle orbits in the inner and
outer parts is presented on Figures 1 and 2, respectively.

The second dynamical simulation was an attempt to evaluate the influence of the
Sun’s orbital inclination (to the mean Galactic disc plane) using Brunini’s potential.
The equations of particle motion, assuming that the Sun’s (that is, the Galactic
core’s) inclination equals 6, are given by:

d’z  fmz z(3cos?wt — 1)
wts = M —
3sin wt cos wi(ycos @ + zsin 0)

+ fMy R3 !
d’y  fmy y(3sin?wt cos?§ — 1)
@t s T M 2

+ IM, 3sin wt cos O(x cos c:t + zsin wtsin @) ,

R

d’z  fmz z(3sin wtsin? 6 — 1)
wmts = M R

+ M, 3sin wtsin 6(z co;:)t + ysin wt cos 0 +anfpz,  (7)

when we take into account the first-order terms relative to r/R.

The total Galactic mass located in its core (centre) and moves in a circular orbit
(as assumed in the first simulation).

Numerical simulations, using subroutine RADA27 with double precision, were
performed for two values of #: (1) § = 0 and (2) 6 = 3.5°. As a result we compared



SIMULATION OF SOLAR SYSTEM BODIES 259

Table 1.

t én x 10° 1 n x 10°

3.495826 -0.762939 90.891478 -1.275539

6.991652 -0.846386 94.387305 -0.762939
10.487478 ~-0.739098 97.883131 0.17881
13.983304 —0.882149 101.378957 ~0.655651
17.479130 -0.715256 104.874783 -0.780821
20.974957 —0.905991 108.370609 -0.542402
24.470783 —0.685453 111.866435 -1.364946
27.966609 -0.888109 115.362261 -0.464916
31.462435 -0.691414 118.858087 -1.502037
34.958261 -0.780821 122.353913 -0.441074
38.454087 -0.721216 125.849739 —-1.364946
41.949913 —0.649691 129.345566 ~0.488758
45.445739 —-0.774860 132.841392 -0.971556
48.941565 -0.572205 136.337218 -0.619888
52.437391 —0.852346 139.833044 -0.458956
55.933218 -0.536442 143.328870 —0.840425
59.429044 -0.929832 146.824696 0.149012
62.924870 -0.977516 150.320522 -1.120567
66.420696 -1.001358 153.816348 -0.780821
69.916522 ~-0.858307 157.312174 -1.406670
73.412348 -1.019239 160.808000 1.245737
76.908174 -0.965595 164.303826 -1.633167
80.404000 —0.959635 167.799653 1.537800
83.899826 -1.072884 171.295479 -1.716614
87.395652 —0.888109 174.791305 1.549721

the corresponding difference in the changes of the orbital elements:
6E = AE(3)— AE(,,

E =(n,e,i, M,w,Q,a).

The integration interval included one solar orbital period T;. Figures 1 and 2
show oscillations of the orbital elements of very small amplitude with an obvious
period of 1/2T}. The order of magnitude for the difference in changes of the orbital
elements is:

n~2x107% &i~(1-3.1°,

fw o~ (1—3%), 62~ (1—2°),

da ~ 10% a.u.

Short—period oscillations have periods comparable to the particle orbital period
T5. In short-term behaviour the largest difference of the orbital elements occurred
at 273. Table 1 demonstrates the order of magnitude for the oscillations in the
orbital elements (in particular én) with respect to 6.
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Figure 1 The orbital evolution of the inner part of the Oort cloud (for a, n and ¢).
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Figure 2 The orbital evolution of the outer part of the Oort cloud (for a, n and e).
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We concluded that the component of dynamical friction induced by the non-
planar solar orbital motion has a negligible effect on the dynamics of the Oort
cloud, contrary to Brunini’s note (1993).

References

Brunini, A. (1993) Astron. Astrophys. 273, 684-694.

Chepurova, V. M. and Shershkina (Semenova), S. L. (1987) Astron. Chirk., No. 1478, 5.

Chepurova, V. M., Kirushenkova, N. V., Shershkina (Semenova), S. L. (1988) The Analysis of
Celestial Body Motions and the Estimation of the Accuracy of their Observations, Riga, 72-92.

Chepurova, V. M., Shershkina (Semenova}, S. L. (1989) Thes. rep. Conf., Methods of Studying
the Motion, Physics and Dynamics of Small Solar System Bodies, Dushanbe, p. 70.

Parenago, P. P. (1950a) Astron. J. 27, 329.

Parenago, P. P. (1950b) Astron. J. 29, 245.

Tsitsin, F. A., Chepurova, V. M., and Rastorguev, A. S. (1984) Astron. Chirk., No. 1310, 5-6.

Tsitsin, F. A., Chepurova, V. M., and Rastorguev, A. S. (1985a) Astron. Chirk., No. 1378, 1-4.

Tsitsin, F. A., Chepurova, V. M., and Rastorguev, A. S. (1985b) Astron. Chirk, No. 1408, 5-8.



