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The author is developing a stochastic approach to formalize the mathematical models and to 
study the models describmg the behaviour of dynamic systems in celestial mechanics and stellar 
dynamics. The essence of the approach is that the mathematical models take a stochastic form 
and the behaviour of this set is desaibed by a probability space. The mapping of solutions for 
dynamic systems is constructed in this space. 
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1 INTRODUCTION 

Any system in celestial mechanics, even rather strictly determined in the sense of 
mathematical formalism as well as in studying its mathematical models, exhibits 
a chaotic dynamics. The present-day theories of motion in the framework of the 
N-body problem, as a rule, are developed in conservative dynamic systems. It is 
impossible to consider a great number of gravitational and nongravitational factors 
in such systems. Both the conservative and dissipative systems display a chaotic 
dynamics. The dynamics of such a type in dissipative sjstems has not been studied 
in the framework of the N-body problem either in celestial mechanics or stellar 
dynamics. The temporal behaviour of such systems may be either determinate or 
stochastic. Hence, both the determinate and stochastic chaos manifests itself in 
them. The determinate chaos is mainly under study at present. In many cases 
an ergodic theory is used. This theory is acceptable only for a.restricted class of 
problems being true for stationary or “semistationary” processes. The nature of 
such processes is unknown in a strict sense. In the celestial mechanics and stellar 
dynamics with uncertain parameters and a great variety of factors in a system, the 
dynamic systems exhibit a stochastic dynamics very clearly. To investigate this 

271 



272 A. V. MYSHEV 

dynamics, the development of new formalization approaches to the problem and of 
methods for studying the mathematical models of such problems is necessary. The 
author is developing the stochastic approach to formalize mathematical models and 
to study the models describing the behaviour of dynamic systems in celestial me- 
chanics and stellar dynamics. The essence of the approach is that the mathematical 
models take a stochastic form and the behaviour of this set is described by a prob- 
ability space. The mapping of solutions for dynamic systems is constructed in this 
space. 

2 PROBLEM STATEMENT (MODELS) 

The chaotic dynamics in the N-body problem, as a rule, is stipulated by objec- 
tive and subjective uncertainties. Among objective uncertainties is a complex wave 
character of the gravitational and nongravitational disturbances which are included 
in the mathematical model in a determinate manner. Subjective uncertainties (con- 
ventionally at least) can be stipulated by the following reasons: a) gravitational and 
nongravitational disturbances are stochastically described; b) uncertain initial con- 
ditions of a dynamic system; c) a stochastic character of variations of some (may 
be all) variables in a dynamic system; d) a linear character of the operators ap- 
proximating the input mathematical model and etc. This type of uncertainties is 
stochastically described in the mathematical model. 

When studying the chaotic dynamics in the N-body problem with objective and 
subjective uncertainty factors present, the mathematical models in this problem can 
be constructed in the following ways. 

In the first way of problem formalization, the right sides of the differential equa- 
tions are determinate functionals of determinate and stochastic variables and ran- 
dom parameters. Then the equations and initial conditions may be written as 

where Fd are determined force vectors; x d  is a vector of determined variables; X,t 
is a vector of stochastic variables; Y is a vector of random parameters. 

In the second way of formalization, the right sides of the differential euqations 
include both the determined and stochastic functionals, and the problem takes the 
form 

d X / d t =  Fd( t ,Xd,Xs t ,Y)  -k Fst( t ,Xi ,X: , ,Y‘ ) ;  
Xdlt=to = PI(t0, x,”); x&lo = Pi(t0, xio); 
Xst( t=to = P3(tO, x:t); X&to = Pi(t0, xi!); (2) 

Y = P& Y ) ;  Y’ = P& Y’); 
where F,t is a vector of the stochastic functionals, other symbols are similar to the 
first way. 
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It is clear that the first way of problem formalization is a special case of the 
second one. 

The third way of formalization consists in the fact that Eqs. (1) and (2) can 
be supplemented by partial differential equations of the Vlasov or Kolmogorov- 
Fokker-Planck type. In this case such equations in a vector form can be presented 
as follows: 

BPldt + FBP/dX + PaF/dX = 0 ,  (3) 
where X is a vector of stochastic variables; F is a vector of functionals in the right 
side of Eqs. (1) and (2); P is a vector of probability measures. 

The development of another mathematical models of the dynamic systems spec- 
ified by a particular problem, in a strictly mathematical sense, is a combination of 
the above ways. 

3 METHODS FOR STUDYING MATHEMATICAL MODELS (BERNOULLI’S 
SCHEMES) 

Two methods for studying the chaotic dynamics of different dynamic systems are 
used now: first, the method of moments; second, the problems of type (1) and (2) 
are supplemented by &. (3). The application of the theory of moments is limited 
by a second-order theory. The theory of solving equations of type (3) is applied to 
linear equations and requires stationary conditions and a Markov behaviour of the 
process under study to be satisfied. The applied and theoretical studies of chaotic 
dynamics show that these methods are suitable for a narrow class of problems. 

The suggested methods (Bernoulli’s schemes) of computer modeling nonlinear 
correctly stated problems (1) and (2) are always applicable; they have no restrictions 
and do not require the conditions of a stationary state, ergodicity and the Markov 
property to be satisfied. It is the primary merit of the methods suggested and the 
universality of their application. Let us briefly characterize the methods and the 
scheme of their development. 

The primary idea of the suggested methods is that the behaviour of the sets 
(1) and (2) is described by a probability space ( B ,  F ,  P ) ,  where B is a space 
of expected states of a dynamic system in the extended phase space (b E B is a 
trajectory in B ) ;  F is an event algebra in B; P is a probability measure in the event 
class F. Since the computer simulation allows one to study dynamic systems with 
a limited number of variables and parameters, the finitedimensional spaces ( B ,  F, 
P )  are considered, i.e. B is finite-dimensionally divided into a subset. P includes 
all available information about the set ( l ) ,  (2) at given initial conditions. The 
solution of this set is constructed as its finite-dimensional mapping in ( B ,  F, P ) .  
Theoretical and practical studies Kulikova, Myshev,. Pivnenko (1993) and Myshev 
(1993) show that it is not always possible to estimate P in the initial space (B, 
F, P) and, hence, to construct the mapping of the solution for the problem under 
study. In these cases it is suggested to map ( B ,  F ,  P )  in another metric probability 
space (Y, G ,  p) where the solution of the set (l), (2) is possible. Such a map is 
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constructed from the following prerequisites: first, the initial space (B, F, P) may 
be of arbitrary character (and not necessarily metric) and is the range for estimating 
variables and parameters of the set (l) ,  (2); second, the set ( l ) ,  (2) is solved in the 
metric space (Y , G, P )  which is the range of parameter variations in the set ( l ) ,  (2) 
with a simple functional dependence; third, the choice of (Y , G, P )  is stipulated by 
the fact that here the probability metrit and probability relations between variables 
and parameters of the set ( l ) ,  (2) are constructed much easier. One of the ways 
to construct such maps for systems in celestial mechanics is described by Kulikova, 
Myshev, Pivnenko (1993). 

As shown by Myshev (1993, 1995), in this case the solution is presented as 
an expectation and a dispersion of the moat probable solutions described by the 
probability space (Y , G, P ) .  The spectrum-periodogram of the probability measure 
P and the expectation of solutions as well as their functional correlation dependence 
is an indicator of the set ( l ) ,  (2) transition to chaos and outcome of it. A measure 
of trajectory compactness in the set (l), (2) is the mathematical expectation of the 
functional q ( E )  defined in the probability space (Q, Q, P) where Q is the range 
of functional q(E) variations, E is the parameter vector defined in Y. In many 
problems of celestial mechanics, both applied and theoretical, the D - criterion is 
taken as q(E).  

When mapping the initial ( B ,  F, P) to the metric ( Y ,  G, P )  space is constructed 
and the functional dependencies between variables and parameters of these spaces 
are determined, it is necessary to estimate P in (Y, G, P ) .  The algorithm for 
this estimation is treated at length by Kulikova, Myshev, Pivnenko (1993). Let us 
consider the main steps in estimating P for computer simulation. 

First, the space Y is divided into subsets Ai(Y = UiAi) so as to take into 
account the following errors: a) an error in the difference operator approximating the 
problem (l), (2); b) approximation errors accumulated in a computer; c) ashift error 
and statistical Monte-Carlo error. These conditions (called agreement conditions) 
are calculated before the computer simulation and are the input parameters in 
numerical experiments. 

Second, a computer experiment with studying the set (l), (2) dynamics on a 
given interval is continued until the agreement conditions are fulfilled. 

Third, when a computer experiment is completed, P is estimated, solutions of 
the set (l) ,  (2) are mapped and its dynamics is analyzed. 

As the agreement conditions are reached during the final time interval, the 
subsequent problem of solving the'set ( l ) ,  (2) can be replaced by forecasting P in 
the space (Y, G, p )  using the apparatus of predicting stochastic filters. 

In conclusion, the described scheme is simply realized and allows one to obtain 
the accuracy stipulated by computer architecture. 

4 CONCLUSIONS 

The method suggested for computer simulation of the stochastic dynamics of the 
systems (l), (2) according to Bernoulli's scheme is more universal and allows one to 
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obtain the solutions inaccessible for other methods. First, it is explained by the fact 
that it can be used for all nonlinear problems. The only and necessary condition for 
the application of Bernoulli’s scheme is an adaptivity of the law of large numbers 
and the central limiting theorem to variables and parameters of the set (1)’ (2). 

The studies of the chaotic dynamics in planetary astronomy, meteoric and 
cometary astronomy performed according to Bernoulli’s scheme Kulikova, Myshev, 
Pivnenko (1993) and Kulikova, Myshev (1995) as well as the processed observational 
data are indicative of the prospect of this method in the above fields. 
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