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A new method of calculating the vertical structure of optically thick accretion discs is proposed. 
In orda  to solve the problem, a search for the eigenvdues of the dimensionless parameters for a 
set of four ordinary differentid equations with definite boundary conditions was undertaken. It is 
shown that the vertical structure of opticdly thick accretion discs can be satisfactorily described 
by polytropic models. 
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1 BASIC EQUATIONS 

We consider the structure of geometrically thin accretion discs. To a first approx- 
imation the matster in such discs is moving along Keplerian orbits with tangential 
velocity 

v,,, = E= wr. 

The vertical structure of such accretion discs can be determined through solving 

Along the normal to the disc plane (along the 2-coordinate) hydrostatic equi- 
a set of four ordinary differential equations with definite boundary conditions. 

librium takes place: 

We investigate the structure of those regions of accretion discs where gaseous pres- 
sure dominates: 
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The second differential equation is the equation of continuity: 

d Z  1 
dC p' 
- = -  

connecting the Lagrangian mass-coordinate C [ 51 with the Euler space-coordinate 
2. The total'surface density of the matter in the disc at the given radius r is 
therefore 

2 0  

2 ~ 0  = 2 J p d z  
0 

where 20 is the half-thickness of the disc. 
Differential rotation with finite viscosity u gives rise to the dissipation of the 

kinetic energy of the Keplerian motion with energy generation in the unit volume: 

6 [q] = -wrrpr-, 
dw 

am s dr 

where 
dw 

wUrv = -pur- 
dr 

are the tangential viscous tensions. 
It is well known that accretion with high-power energy generation in Keplerian 

discs is possible only in the presence of highly developed turbulence and/or small- 
scale magnetic fields. To describe the turbulence in accretion discs we introduce the 
dimensionless a-parameter in terms of which the viscous tensions can be written as 
(see Shakura, 1972; Shakura and Sunyaev, 1973): 

w& = aP. 

The a-parameter ia proportional to the square of the turbulent Mach-number M: = 
u:/u: and its values are limited to the interval 0 < a 5 1. 

In convectively stable regions of accretion discs the thermal energy generated by 
the shear tensions is transferred to the surface of the disc by the radiation flux Q: 

To calculate the structure of optically thick accretion discs one can use the radiative 
transfer equation in the diffusive approximation: 

where cr = a p  is the density of the radiative energy and n is the opacity (Rose- 
land's average). Consider the regions dominated by free-free and free-bound ab- 
sorption for which Kramer's law K = KR = ~op/'i'''/~ is valid, as well as the regions 
dominated by scattering by free electrons with K = KT = 0.38. 
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If the dependence of the energy release and opacity on the density and tem- 
perature obeys a power law the set of equations (1)-(4) can be transformed into 
dimensionless equations and then solved as a problem to search for eigenvalues of 
the dimensionless parameters of the set of equations. Similar problems occur in the 
calculation of the structure of stellar interiors (see Dibay and Kaplan, 1976). It is 
convenient to rise the dimensionlw mass coordinate 

c 
CO 

g = -  

as the independent variable. Furthermore, let us introduce the dimensioiiless vari- 
ables p = p, t = z,  j = p/pc (Pe,  T,, p, are the values in the equatorial plane P6 

disc surface). 

where 2 = 0), I = z, z q = & (90 = (y) cf is the total radiative flux from unit 

After introducing the new variables, the set of equations looks like: 

2 KRAMER’S OPACITY 

Firstly let us consider the situation with ~ f f  > K T .  

2.1 Boundary Conditions 

In the plane of the equator we clearly have 

p(0) = 2 ;  z(0) = 0; q(0)  = 0; t ( 0 )  = 1. 

Let us find the solution of the obtained set of equations, together with the phc+ 
tospheric solution at the point u = 1 near the surface. In the main part of the 
disc body with its significant optical thickness we can neglect the energy release 
in the photospheric layers when the optical thickness is 7 - 1, so we can use the 
well-known approximate solution for the temperature (see Sobolev, 1985) 

1 + %  114 -=(+ T I 

Ter 
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where r is the optical thickness for the absorption measured from the photospheric 
surface toward the disc interior. Let the point u = 1 be identified with the point 
r = 2/3, where T = T'r. So, for the dimensionless variable i the boundary condition 
is 

where 
COnOpc 

to = - 

is the dimensionless value proportional to the total optical thickness of the disc. 
This value is a free parameter varying within a wide range. 

In order LO find the boundary condition for the dimensionless value p we divide 
both parts of equation (1) by the opacity ~g and introduce a new variable r for 
dr = - ~ f f p d Z .  Then equation (1) can be written as which 

TJIZ 

l d P 2  W ~ Z O ! ~ ? P / ~  -- - - 
2 d r  KO11 

Within the photospheric layers the Z-coordinate is believed to be practically con- 
st.ant and equal to the half-thickness of the disc 20. Integrating this equation up to 
the point r = f we can find the boundary condition for the dimensionless value p: 

where 

The function f(7) w 1 if r = 2. 
Clearly for the variables z and q we have 

z ( u  = 1) = 1; q(u = 1) = 1. 

Thus for the set of four ordinary differential equations of first order we have 
eight boundary conditions. It is possible to satisfy all of these conditions only if the 
four dimensionless parameters I I 1 ,  IIz, II3, lT, have. definite values. After numerical 
integration of the set of equations for the given value of the free parameter 70 we 
can find Ill, 112, n3, 114. 

2.2 The Results of Calculations 

The results of numerical calculations are shown in Table la and ill the illustrations 
(see Figure In). 
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0 
Table la. r = q p d Z  is the real opticd depth 

10970 n1 n2 n3 nr n' n" 1ogr 

20 

6.00 
5.80 
5.60 
5.40 
5.20 
5 .00 
4.80 
4 .60 
4.40 
4.20 
4.00 
3.80 
3.60 
3.40 
3.20 
3.00 
2.80 
2.60 
2.40 
2.20 
2.00 
1.80 
1.60 
1.40 
1.20 
1 .00 
0.80 
0.60 
0.40 
0.20 
0.00 

7.75 
7.71 
7.67 
7.62 
7.56 
7.50 
7.44 
7.36 
7.27 
7.18 
7.07 
6.95 
6.82 
6.67 
6.50 
6.31 
6.10 
5.87 
5.60 
5.31 
4.98 
4.62 
4.23 
3.79 
3.33 
2.83 
2.34 
1.86 
1.42 
1.05 
0.75 

0.465 
0.466 
0.468 
0.469 
0.471 
0.473 
0.475 
0.477 
0.480 
0.483 
0.487 
0.491 
0.496 
0.501 
0:508 
0.515 
0.524 
0.534 
0.546 
0.560 
0.576 
0.596 
0.619 
0.647 
0.679 
0.716 
0.756 
0.798 
0.838 
0.876 
0.908 

1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.131 
1.130 
1.130 
1.129 
1.128 
1.126 
1.124 
1.120 
1.114 
1.106 
1.095 
1.081 
1.065 
1.050 
1.036 
1.025 

0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.398 
0.398 
0.398 
0.398 
0.397 
0.397 
0.395 
0.393 
0.389 
0.383 
0.371 
0.354 
0.326 
0.286 
0.237 
0.185 
0.136 

2.873 
2.854 
2.833 
2.809 
2.782 
2.752 
2.718 
2.680 
2.637 

2.536 
2.476 
2.409 
2.334 
2.250 
2.156 
2.051 
1.933 
1.802 
1.655 
1.492 
1.312 
1.113 
0.896 
0.663 
0.417 
0.168 

-0.072 
-0.290 
-0.476 
-0.626 

2.590 

2.868 
2.850 
2.830 
2.808 
2.783 
2.754 
2.723 
2.687 
2.647 
2.602 
2.552 
2.496 
2.434 
2.384 
2.285 
2.198 
2.101 
1.993 
1.874 
1.743 
1.600 
1.446 
1.282 
1.110 
0.936 
0.764 
0.604 
0.461 
0.341 
0.245 
0.172 

6.46 
6.25 
6.04 
5.82 
5.61 
5.40 
5.18 
4.97 
4.76 
4.54 
4.33 
4.11 
3.90 
3.68 
3.47 
3.25 
3.04 
2.82 
2.60 
2.38 
2.16 
1.94 
1.72 
1.50 
1.28 
1.05 
0.83 
0.61 
0.40 
0.19 

4.01 

Since we have no complete turbulence theory it is reasonable to consider constant 
energy release from unit mass in the accretion disc. Then, obviously 

q=a  and I I3=1.  

The results of the calculation of equations ( l ) ,  (2) and (4) are in Table l b  and in 
Figure l b .  Comparing Table la with Table l b  one can evaluate the uncertainty 
which always exists in a phenomenological theory of disc accretion. 

2.8 The Polytropic Approtimation 

In a number of works on accretion discs the vertical disc structure is approximated 
by the polytropic equation of state 

P = Ir'p'+f. 
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0 

Table l b .  T = yrpdZ is the real optical depth 

lo9 7% nl n2 n3 n4 n' n" logs 

6.00 7.80 
5.80 7.77 
5.60 7.72 
5.40 7.67 
5.20 7.62 
5.00 7.56 
4.80 7.49 
4.60 7.41 
4.40 7.32 
4.20 7.22 
4.00 7.12 
3.80 6.99 
3.60 6.86 
3.40 6.70 
3.20 6.53 
3.00 6.34 
2.80 6.12 
2.60 5.88 
2.40 5.61 
2.20 5.31 
2.00 4.98 
1.80 4.61 
1.60 4.21 
1.40 3.77 
1.20 3.30 
1.00 2.81 
0.80 2.32 
0.60 1.84 
0.40 1.41 
0.20 1.04 
0.00 0.75 

0.463 
0.464 
0.466 
0.467 
0.469 
0.471 
0.473 
0.475 
0.478 
0.481 
0.485 
0.489 
0.494 
0.500 
0.506 
0.514 
0.523 
0.533 
0.545 
0.559 
0.576 
0.596 
0.620 
0.647 
0.680 
0.716 
0.756 
0.798 
0.839 
0.876 
0.908 

0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.437 
0.436 
0.436 
0.436 
0.435 
0.435 
0.433 
0.431 
0.427 
0.421 
0.412 
0396 
0.373 
0.339 
0.294 
0.241 
0.187 
0.137 

0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.399 
0.398 
0.398 
0.398 
0.398 
0.397 
0.397 
0.395 
0.393 
0.389 
0.383 
0.371 
0.354 
0.326 
0.286 
0.237 
0.185 
0.136 

2.902 
2.883 
2.861 
2.836 
2.809 
2.778 
2.743 
2.704 
2.661 
2.612 
2.558 
2.496 
2.428 
2.351 
2.265 
2.169 
2.061 
1.941 
1.806 
1.657 
1.491 
1.307 
1.106 
0.886 
0.651 
0.406 
0.159 

-0.079 
-0.294 
-0.478 
-0.627 

2.901 
2.883 
2.862 
2.839 
2.813 
2.784 
2.752 
2.715 
2.674 
2.629 
2.577 
2.520 
2.456 
2.384 
2.304 
2.215 
2.115 
2.005 
1.883 
1.750 
1.604 
1.447 
1.281 
1.108 
0.932 
0.761 
0.601 
0.460 
0.341 
0.246 
0.173 

6.44 
6.23 
6.01 
5.80 
5.59 
5.37 
5.16 
4.95 

4.52 
4.31 
4.09 
3.88 
3.66 
3.45 
3.23 
3.01 
2.80 
2.58 
2.36 
2.14 
1.92 
1.70 
1.48 
1.26 
I .04 
0.82 
0.60 
0.39 
0.19 

4 . 0 1  

4.73 

In this case the last two equations of energy balance can be removed from the 
set of equations while the solution of the two remaining equations can be written 
as 

2 n+l. p = ( l - 2 )  9 t = 1 - 2 2 ;  

2 

u = - c = -/(l PCZO - z2)"dz. 

0 
co co 

In doing so, on the one hand the'dimensionless parameter IIl is connected with the 
polytropic index (written as n') by the relation 

nl = 2(n' + l), 

and on another hand there is an obvious connection of the polytropic index (written 
as n") with the dimensionless parameter II, 
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Figure 1 
coordinate u for the case ICT < w .  

The dependence of the dimensionless physid variables z, p, t and q on the mass- 

The values of the polytropic indexes calculated using the earlier parameters III and 
II2 are shown in Tables la and lb. Notice the closeness of the values n' and n" 
for accretion discs of large optical thickness; it is an indication of the possibility 
of using the polytropic approximations for such discs. However, the quality of 
the approximate polytropic solutions worsens with decreasing optical thickness (see 
the bottom of Tables la and lb). In particular, the polytropic approximation is 
unjustified in the surface layers of the disc. 
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Table 2a. 

6.00 6.99 
5.80 6.96 
5.60 6.92 
5.40 6.87 
5.20 6.82 
5.00 6.77 
4.80 6.70 
4.60 6.63 
4.40 6.55 
4.20 6.47 
4.00 6.37 
3.80 6.26 
3.60 6.13 
3.40 5.99 
3.20 5.84 
3.00 5.67 
2.80 5.48 
2.60 5.26 
2.40 5.02 
2.20 4.76 
2.00 4.47 
1.80 4.15 
1.60 3.81 
1.40 3.43 
1.20 3.03 
1.00 2.61 
0.80 2.19 
0.60 1.77 
0.40 1.38 
0.20 1.03 
0.00 0.74 

0.492 
0.493 
0.495 
0.496 
0.498 
0.500 
0.503 
0.505 
0.508 
0.512 
0.516 
0.520 
0.525 
0.531 
0.538 
0.546 
0.555 
0.566 
0.578 
0.593 
0.610 
0.629 
0.652 
0.678 
0.707 
0.740 
0.776 
0.813 
0.849 
0.884 
0.914 

1.150 
1.150 
1.150 
1.150 
1.150 
1.150 
1.150 
1.150 
1.150 
1.150 
1.150 
1.149 
1.149 
1.149 
1.149 
1.149 
1.148 
1.147 
1.146 
1.145 
1.142 
1.138 
1.133 
1.126 
1.117 
1.105 
1.091 
1.075 
1.059 
1.044 
1.032 

0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.460 
0.459 
0.459 
0.458 
0.458 
0.456 
0.454 
0.450 
0.444 
0.435 
0.420 
0.398 
0.366 
0.324 
0.274 
0.219 
0.166 

2.497 
2.479 
2.459 
2.437 
2.412 
2.384 
2.352 
2.317 
2.277 
2.233 
2.183 
2.128 
2.066 
1.997 
1.920 
1.834 
1.738 
1.631 
1.512 
1.381 
1.236 
1.077 
0.904 
0.716 
0.516 
0.307 
0.094 

-0.115 
-0.312 
-0.485 
-0.630 

2.484 
2.468 
2.449 
2.428 
2.405 
2.379 
2 3 4 9  
2.317 
2.280 
2.239 
2.193 
2.142 
2.084 
2.021 
1.950 
1.872 
1.785 
1.689 
1.585 
1.472 
1.349 
1.219 
1.083 
0.943 
0.801 
0.663 
0.533 
0.415 
0.312 
0.226 
0.159 

3 THOMPSON OPACITY 

Let us consider the situation when KT ;j KR.  

9.1 The Boundary Conditions 

If u = 0 the boundary conditions remain the same: 

p ( 0 )  = 1; z(0)  = 0; q(0)  = 0; t ( O )  = 1. 

As is well known, in photospheres whose opacity is dominated by Thompson scat- 
tering, thermalization takes place at the effective optical depth (see for instance 
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"able 2b. 

log6 nl n2 n, n' n" 

6.00 7.10 0.488 0.500 2.549 2.542 
5.80 7.06 0.489 0.500 2.531 2.525 
5.60 7.02 0.490 0.500 2.510 2.506 
5.40 6.97 0.492 0.500 2.487 2.485 
5.20 6.92 0.494 0.500 2.462 2.461 
5.00 6.87 0.496 0.500 2.433 2.434 
4.80 6.80 0.498 0.500 2.401 2.404 
4.60 6.73 0.501 0.500 2.365 2.371 
4.40 6.65 0.504 0.500 2.324 2.333 
4.20 6.66 0.507 0.500 2.279 2.291 
4.00 6.46 0.511 0.500 2.229 2.244 
3.80 6.34 0.516 0.500 2.172 2.191 
3.60 6.22 0.521 0.500 2.109 2.133 
3.40 6.08 0.527 0.500 2.038 2.068 
3.20 5.92 0.534 0.499 1.959 1.995 
3.00 5.74 0.542 0.499 1.871 1.915 
2.80 5.55 0.551 0.498 1.773 1.826 
2.60 5.33 0.562 0.498 1.664 1.728 
2.40 5.09 0.574 0.496 1.544 1.622 
2.20 4.82 0.588 0.494 1.410 1.505 
2.00 4.52 0.605 0.490 1.262 1.380 
1.80 4.20 0.625 0.485 1.099 1.247 
1.60 3.85 0.648 0.476 0.923 1.107 
1.40 3.46 0.674 0.463 0.731 0.963 
1.20 3.06 0.704 0.444 0.528 0.818 
1.00 2.63 0.737 0.417 0.315 0.676 
0.80 2.20 0.773 0.380 0.099 0.542 
0.60 1.78 0.811 0.333 -0.112 0.421 
0.40 1.38 0.848 0.278 4.310 0.316 
0.20 1.03 0.883 0.221 -0.485 0.228 
0.00 0.74 0.914 0.167 -0529 0.160 

Zeldovich and Shakura (1969), Mihalas (1978)) 

2' 

-7* = - /JGizFpdZa 1. 

2 0  

At. the depth where T* N 1 the Thompson scattering optical depth is 

Therefore, the boundary condition for the dimensionless temperature can be written 
as: 

i ( a =  1 ) =  [8 -- lT4 ( 1+--7 )]'I4 - [ 4 I l . 4 ~ ( ~ *  = 1)]'14 
3 KTCo KTCO 
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Figure 2 
coordinate u for - KT > en. 

The dependence of the dimensionless physiCa variables z, p, t and q on the mass- 

Correspondingly, for the preasure one can obtain: 

T ( T *  = 1) p ( .  = 1) = II1n2 
UTE0 ' 

Besides that we have two obvious boundary conditions 

r(u = 1) = 1'; q(u = 1) = 1. 

Thus, here convenient free parameter is the ratio of the total optical depth KTEO 
to the optical depth of scattering occurring at the therrnalization depth 

KTCO 

1)' 
6 =  

v ( r +  = 
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The subsequent solution of the set of ordinary differential equations is similar 
to that for the disc regions with Kramer opacity. The results obtained together 
with the polytropic approximation, are shown in Tables 2a and 2b and illustrated 
in Figure 2( o,b). 
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