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The stability of the shocked and the shock-free gas flows in the gaseous galactic disc is discussed. 
It is shown that the periodic shock-free supersonic flow between the spiral gravitational potential 
wells is unstable due to the parametric instability and thus should be re-organized into the shocked 
flow. The steady-state shock at the rear side of the well (relative to the flow) is subject to the 
local K&&ility. This instability is suppressed if the shock is at the front side of the well. 

KEY WORDS Hydrodynamic instability, shock waves, galaxy dynamics 

Each element of a gas, orbiting the centre of a flat spiral galaxy, periodically crosses 
the sbiral arms and experiences the periodic variation of the gravitational field. 
Since gas hits the arms supersonically, shock waves may form (and do form). It 
is widely believed that a galactic shock wave arises if the strength of the spiral 
gravitational field exceeds a certain critical value (Roberts, 1969; Shu et al., 1973). 
For a weaker field the flow should remain smooth. In what follows I try to cast 
some doubt on the truth of this commonly accepted opinion. Using simple argu- 
ments I show that a smooth flow needs only to be periodic and supersonic to be 
unstable. 

Let us consider an evolution of the small-amplitude perturbations in a periodic 
gas flow via the gravitational potential wells. In the case where the shock-free flow 
is dynamically unstable, the flow must reconstruct itself, so it is likely that shocks 
will be formed. To simplify the analysis I neglect the effects of multi-dimensionality 
and rotation, and consider 1-D, planar, steady-state, undisturbed perfect gas flow, 
described by function f(z) = Lp~(z), vg(z), p~(z)]; the notations are standard. The 
undisturbed flow is spatially periodic, that is, f(z) = f(z + a),  as well as the po- 
tential *(z) = Q(z + a). The linear perturbation is 3-'D ahd can be written as 
S f  = [Sp(z), Sv(z), bj(z)]e-'wt+'ky,  where y is'a coordinate transverse to the flow 
direction. Solving five coupled linearized hydrodynamic equations with periodic 
boundary conditions Sf(0) = Sf(a), one finds the wave function bf(z) and an eigen- 
value w ,  which is in general complex. 
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Figure 1 Contours of constant maximum transition coefficient 1q1. Contour levels extend from 
Iql = 1.01 with increments of 0.05. Coefficients are calculated as a grid of 60 x 80. The left-hand 
side of the plot suffers insufficient resolution. 

To clarify the physical nature of the instability I shall delay for the present the 
particular solution to the boundary problem and consider the general solution for 
the infinite sequence of wells. Suppose the perturbation before the nth well can be 
expanded in five normal modes - two adiabatic modes, two vortex modes, and an 
entropic one, with amplitudes c, = (c1 , . . . , cg),,. The amplitudes of waves emergins 
from the well are related linearly to those entering the well: c,+l = Ben, where B 
is the transition matrix. The solution to this algebraic equation can be expressed 

as a superposition of exponents, that is, cn = C A&, n = 0, 1 , 2 , .  . . , where Ai 

are some amplitudes and qi are the transition coefficients. The perturbation will 
increase with n if there is any IqjI  > 1. 

One can easily show that three of Iqjl are identically unity (they meet the inter- 
action of entropic and vortex modes with the acoustic ones), whereas the other two 
Iqjl may differ from 1 but cannot be both concurrently less than 1. 
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Figure 1 presents a contour plot of the maximum absolute value of Iqil with 
frequency on the vertical axis and inflow Mach number MO on the horizontal axis. 
The contours are spaced between 1.01 and the maximum value 1.4 with an increment 
of 0.05. The well was chosen in the form of 

where cSo is the sound speed of the inflow. Gas is taken as monatomic (y = 5/3) 
and the normal impingement of the waves (k = 0) is assumed. 

As seen, the coefficient Iqlmax equals 1 everywhere, except in narrow bands 
(where lqlmax > 1) issuing from the centre of coordinates. Here, an astute reader is 
certain to recognize them as the well-known Bragg zones of opacity for the waves in 
periodic structures. Within these zones there is a close coupling between two acous- 
tic modes, one of which has a negative energy. The energy exchange between the 
modes leads to the concurrent growth of their amplitudes and hence to instability. 
Remarkably, that instability exists at given MO > 1. 

Turning back to the boundary problem one can roughly estimate the correspond- 
ing dimensional increments of instability as 

If we take Iqlmax = 1.4 as is in Figure 1, we find that amplitude increases twice after 
one revolution in a bisymmetrical system. 

The plot does not change significantly with varying k. and U(z), and only I q l m a  
falls to 1 with 4 + 0. 

These simple arguments appear to indicate the absence of a critical potential for 
the shock wave formation, in contrast to the standard concept (Roberts, 1969). The 
transition of linear perturbations to the non-linear regime and formation of shocks 
should occur with necessity, though this process may take more time the weaker the 
deviations of the potential are. To give more exact quantitative estimates multi- 
dimensional calculations are desirable. 

Another problem that merits detailed study is the dynamic stability of the galac- 
tic shock waves. Of the known instabilities for shock waves two types stand out as 
being much more studied - the instability of accelerating shock waves and ther- 
modynamic instabilities caused by the specific equation of state of gas. 

Fridman and Khoruzhij (private communication, 1993) proposed a new reso- 
nance mechanism of instability in the inhomogeneous flow. Their idea is as fol- 
lows. Suppose a steady-state shock wave is in the potential well (Figure 2). A 
sound wave io hits the shock surface;. the front generates a decayed reflected sound 
wave ro along with the entropic and vortex waves (as is known, a shock wave in 
a homogeneous flow is stable (D’jakov, 1954; Erpenbeck, 1962) and, particularly, 
reflects the acoustic waves falling from behind with decay); a part of the sound 
wave leaves the well as a transmitted wave t o ,  and it is reflected partially back 
as the wave il. Since only one outgoing wave is far from the well, it looks like 
a spontaneous radiation of sound by the shock. The hypothetical FK instability 
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Figure 2 Schematic illustration of multiple wave reflections within the potential well. 

rests on the assumption that the secondary reflection at the rear side of the well 
proceeds with amplification due to the interplay between the acoustic and entropic 
waves. 

To verify the FK hypothesis I carried out a linear analysis for the steady-state 
shocked flow through the potential well. The primary purpose of stability analysis 
is finding the intrinsic modes of the shock front, that is, waves radiating by front 
(strictly speaking, by the system “front-well”). It is convenient, however, to solve 
a more general problem of front response to the perturbations incident to it. It 
happens that ignoring the secondary reflections in the post-shock flow allows us to 
reduce the problem to the analytically soluble one. 

The most interesting and, perhaps unexpected, finding was that the shock front 
amplifies reflected sound waves in the case where pre-shock pressure gradient coin- 
cides with the direction of flow 

v p o  ‘VO > 0, (2) 

and damps otherwise. This happens because the shock front “feels” the inhomo- 
geneity of the flow and thereby the reflection coefficient at the front differs from that 
for the homogeneous case. Within the region of frequencies, where the overreflection 
takes place, there always exists a root, say woo, at which the reflection coefficient 
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Figure 3 Increment of instability as a function of the Mach number shown for the perturbations 
with different wavenumbers k. The amplitude of the well is @/e0 = -1. The shock front is 
located at the rear side of the well, potential gradient in this point is Q'Q/C:~ = 0.17. 

turns to infinity. The existence of this root means that the shock would be unstable 
even if there were no secondary reflections in the inhomogeneous post-shock flow, 
and so resonance is not an essential feature of this instability. 

Numerical integration, allowing for the secondary reflection, gives the exact 
root with frequency close to woo. For a few oblique sound waves this frequency 
is purely imaginary. The condition for instability (1) is fulfilled at the rear side 
of the well. The corresponding increments for the modes with different preshock 
Mach numbers Mo are displayed in Figure 3. These curves show that the insta- 
bility primarily manifests itself as a growing displacement of the front (the mode 
k. = 0), so that the front moves away leaving a shock-free flow in the well. The 
modes rippling the front would be less pronounced. At the same time for the front 
standing at the front side of the well the condition for overreflection is not fulfilled 
and no unstable modes were found numerically. The results found are in perfect 
agreement with numerical hydrodynamic experiments (Kovalenko and Levy, 1992). 
A more detailed description of the results will be given in (Kovalenko and Lukin, 
1996). 
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