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The nonlinear a w  dynamo waves existing in the incompressible medium in the case when the 
dissipative coefficients of turbulence depend on the temperature is studied in this paper. The latter 
incorporates investigation of O L - ~  solar nonlinear dynamo waves when only the first harmonics 
of magnetic induction components are included, for the velocity the only second harmonics are 
presented for pressure zero. In general, a w  nonlinear dynamo waves exist during a definite 
period of time, this period depends on the dynamo number and other parameters of the medium. 
The amplitude of the second harmonics of the velocity and pressure are sufticiently small to be 
ignored. In the case when we ignore the second harmonics in the nonlinear equation, the turbulence 
magnetic diffusion coefficient increases with the temperature while the coefficient of turbulence 
viscosity reduces, and during the definite interval of time the value of the dynamo number is 
greater than 1. Under these conditions the stationary solution for the nonlinear equation for the 
dynamo wave's amplitude exists. This means that the magnetic field excites saciently. The 
amplitude of the dynamo waves moves oscillatorily and reaches a stationary state. Using these 
results we can explain the existence of Maunder's minimum. 

KEY WORDS 
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Nonlinear a-w dynamo waves, turbulence dissipative coefficients, stationary so- 

1 INTRODUCTION 

It is known (Parker, 1979; Priest, 1982), that to excite (a*) dynamo waves it is 
necessary to take into the account the coefficient of magnetic diffusion turbulence 
q ,  which is of the order of q = vL, where L is the moving length. This magnitude is 
equal to the local scale of altitude for the solar convection zone and is proportional 
to temperature. Accordingly we can assume that q = q~(T/To)*l, where T and TO 
are the temperature of the excited and the unexcited medium. Analogously, we can 
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consider that for the kinematics of the viscosity v = ~O(T/TO)"~ , for the coefficient of 
temperature conductivity x = xo(T/To)"S and for the a = cro(T/To)"'. In case the 
plasma is entirely un-inductive and non-turbulent nl = -1.5; n2 = 2.5; n3 = 2.5. 
The aim of this work is to solve the problem of the nonlinear dynamo and waves in 
the incompressible medium when the dissipative mefficients of turbulence depend 
on the temperature. The calculations are done in the local bartesian coordinate 
system with the origin at the centre of the sun. 

In the first section the nonlinear equations for dynamo waves are given and 
analytical and numerical investigations of the equations are performed. In the 
second section the adopted results for the Sun are discussed. 

2 INVESTIGATION OF THE NONLINEAR DYNAMO WAVE EQUATIONS 

We investigate dynamo waves with the help of magnetohydrodynamic equations in 
the present paper. We assume that the medium is uncompressed and conductive, the 
turbulence is dissipative and coefficients depend on temperature. The calculations 
are done in the local bartesian orthogonal stationary coordinate system with the 
origin at the centre of the Sun. The z-axis is directed locally orthogonal to  the 
solar surface, y is directed to the North pole, locally placed along the tangent of 
the meridian and the x-axis direction is a long the West (toroidally). 

The main equation of induction is given in Priest (1982): 

aB/% + (vV)B = (BV)v - curl (VcurlB) + curl (aBA,). t 1) 

divv = 0, p = const. (2) 

The second one is the equation of continuity: 

The next is the equation of motion: 

acurl V 
at + curl [curl v ,  v] = 1/4rp(curl [curl B, B] + curl F). (3) 

The last equation is an equation of energy: 

a p / &  + (vV)p = 1/4r(y - l)V(curlB)' + (7 - l)div(xVp) + (7 - l)H. (4) 

Here B and v are the vectors of magnetic induction and velocity respectively, p 
is density, p is pressure, 7 is a relative heat, i, is the unit vector along the x-axis, 
B, is the x component of the magnetic induction. The last equation is the equation 
of state of an ideal gas p = (R/p)pT,  where T is temperature, R is the constant, p 
is the average atomic mass, ,y is a coefficient of thermal conductivity. 

In the equations (3) and (4) F and H are the force of viscosity and effective 
viscosity dissipation respectively. From Priest (1982) we can consider: 
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where zl = z, x2 = y, x3 = z ,  vl  = v2, v2 = vy, v3 = v,. 
The coefficients '7, v x, y depend on temperature (or on pressure as T/To = 

( P / P o ) :  
'7 = '7o(P/Po)"' (7) 

Here 770, V O ,  XO, a0 are constant values. 
The equations (1-4) can be solved with the help of perturbation theory. All the 

functions take the following form: f = fo + fi. Here fo is the unperturbed term 
and fi is the perturbed function. Let us consider, that the unperturbed density 
p = PO, pressure po ,  the unperturbed quantity of the magnetic field is equal to zero 
and the velocity vo has only x components: 

vo = ( v , ~  + vZyy + v,,z)i,, where v,~, vry, v,, are constant quantities. 
In accordance with the equation (4) we investigate the non-perturbed state 

(gravity is ignored): 

a p o / a t  + (v0V)po = div(xoVp0) + (y - ~ ) H o ,  (10) 

where 
2 Ho = Povo(~,y + v2,). 

Let estimate the characteristic length L and time t ,  when the non-perturbed 
pressure is changed. The estimation is done in the convected region, where ps = 
8 x lo1' din cm-l, PO = gr ~ m - ~ ,  x 5 vo = 10" cm2 s-', lVzy1 2 IV,,l 2 R,  
R is the frequency of the Sun's rotation, IV,,IRQ 5 10" cm s-l, RQ is the radius 
of the Sun. 

First of all we will determine the characteristic length L. If apo/& = 0, IVpol Y 
po/L. In accordance with equation (11) we will get: L = 1 0 6 R ~ .  When (Vpo) = 0, 
and bpo/at Y p o / t , ,  t ,  Z 105to (to = 22 year). In this conditions we can suggest 
that PO depends weakly on time and coordinates. In this case we can use po as a 
constant in the equations for perturbed quantities. 

For the perturbed terms of the equations (1-4) we will get: 

aB'/at + (voV)B' = -(v'V)B' + (B'V)v' + qocurl [(1+ p'/p)"'curlB'] 

+ curl [ a o ( l +  p/po)"'B,iS,]; (12) 

a(cur1 v'/at + (v0V)curl v' = 
- 

(curl v0V)v' + (curl v'V)vo + (curl v'V)v' 
(v'V)curlv' + curl [curl B', B']/4np 

+ curl F'; (13) 
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a p ' / a t  + (v0V)p' = -(v'V)p' + (7 - 1)q0( 1 + p'/po)"l(curl B')'/47r 
+ xodiv[(l +~'/po)"~V(~'/po)] + (7 - 1)(H - Ho). (14) 

These equations are right only for the characteristic times t' and characteristic 
length L which satisfies the following conditions: 1' << 105to (to = 22 year), L << 
106RQ. 

The perturbation terms in (12-14) we can consider as: 

B, = 
B; = 

P'/PO = 
v; = 

v; = 

B: = 

V' = 
Y 

c p =  

&u2 exp(icp) + C.C., 
BoA-1kzwu4 exp (icp) + C.C., 
-BoA-'k,wu4exp (icp+ U I )  + C.C., 
uo + usexp(i2cp) + u; exp(-i2cp), 
us exp(i2cp) + C.C., 
uloexp(i2cp) + C.C., 
uloexp(i2cp) + C.C., 

kyy + k,z + Sw /(1 + u ~ ) " ' / ~ d t .  
t 

0 

Here k,, kz are y ,  z components of the wave-number; w = d m  is the 
frequency of the linear dynamo waves; A = kZv,, - kyv,,; 6 = 1, when aoh > 0, 
6 = -1 when a g h  < 0, C.C. means complex conjuction. Bo is a constant, which is 
determined as a value of perturbed magnetic induction at the time t = 0. uo is a 
real function of the variable 7 ,  i.e. Im uo = 0, and in the equation (18) u; mcans 
the complex conjuction of the function 216. 

The components of magnetic induction include a characteristic phase of oscilla- 
tion cp, which as we can see from the equation (22), depends on w - the frequency 
of the linear oscillation of dynamo waves. Taking into the account these conditions, 
we can suggest that  the oscillations of the perturbed magnetic induction include 
only the first harmonics of the dynamo waves. According to the equation (18) the 
perturbed pressure consists of the terms with zero and second harmonics of dynamo 
waves, but the perturbed velocity components from (19-21) contain the second har- 
monics of the dynamo waves only. We can also consider that  in the equations in 
(12-14) the terms of third-order higher harmonics are negligibly small and are ig- 
nored. In our discussion we consider those terms which contain U 6 ,  us, . . .u16 only 
in the first order. 

In accordance with the latest discussion we divide our investigation into two 
parts: in the (a) section nonlinear dynamo waves are investigated only with the 
zero order harmonics of pressure, the second harmonics of velocity and pressure are 
not taken into the account. In section (b) investigation is included of the nonlinear 
dynamo waves as with the zero-order harmonics of pressure, the second harmonics 
of velocity and pressure also. As we can see from equations (15-17), Bouz is an am- 
plitude of the z component of magnetic induction, and B 0 ~ 4  is an amplitude of the 
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NONLINEAR DYNAMO WAVES 131 

function (B'V)v,/w. We must say that all the perturbed values are homogeneous 
in the z direction and we can substitute in the equation (12-14) 6/62 = 0 (Priest, 
1985). 

(a) We investigate dynamo waves not taking into account the second harmonics 
of dynamo waves for the perturbed velocity and pressure. In this case the following 
equations are adopted: 

duo/dT = CdLi(Iuz12 + do l~41~)  +p,Cz(Lz - N-"'), (23) 
d ~ 2 / d ~  = ~4 - [L1 + i6( 1 + U O ) " ~ / ~ ] U ~ ,  (24) 
du4/dr = i26(1+ UO)" 'U~ - [L1 + i6(1 + UO)" ' /~]U~.  (25) 

Here T = wt, C, = 2(y - 1)/3-', C2 = y(y - l)M,&, /3 = 4npoBoz1 

M-1 = vlvF1, v1 = li-'(v& + vZz) 2 1/2 , 

V -  = (yp~p, ' ) ' /~  is the sound velocity in the unperturbed medium, pm = v0qO1 is 
the magnetic number of Prandtl (Priest, 1982), 

do = w2k2A-2, 

N = w2q-2k4 is the dynamo number (Priest, 1982). 
First of all we investigate the equations (23-25) in the case n2 = 0 and n4 = 0 

and with the following initial conditions: when T = 0, Re u2 = 1, Imuz = 0, 
Reu4 = 1; Im 214 = 6, uo = 0. Using all these conditions we will obtain: 

k2 = k-: + h i ,  L1 = (1 + u ~ ) " l N - l / ~ ,  Lz = (1 + U O ) " ~ N - ~ / ~ ,  

~ ( u o )  = 1 + 2C;b1{N1/2(1 - n1)-'[(1+ ug)'-"l - 11 - UO}, (29) 

where CIO = C1(1+ 2do), N < 1, uo > 0. 

maximal value (u2)l = ~ 2 ~ ~ ~ ,  and ( u o ) ~  = 2101. 

Now we have to find the point of time t l ,  (71 = w t l ) ,  when uz reaches its 

At that moment (L1)1 = ,510 = 1, 

where uo1 = N1/(2"1) - 1. 
In accordance with equation (30), 212 reaches its maximal value when nl > 0. 
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132 A. D. PATARAYA AND T. A. PATARAYA 

From equations (26) and (28) when ug = 1, we can consider that the moment 
of time t2 > 0 ( t z  = wtz) can be given as: 

here 2102 is a solution of the following algebraic equation 

When nl = 1, equation (33) can be given as: 

Let investigate equations (26-32) when N M 1. In this case we obtain: 

(36) 

t i  = [ n l ~ l o w ~ ( 1 +  an>1-1/2~n[(~  + + ~ r k ' ~ ] ,  (37) 

t z  F3 2tl. (38) 

UZrnax = (1 + a n )  1/2 

Here an = (N - 1)'/(4nlClo), nl > 0, N > 1. 

the stationary value of the functions as: uz = uzo, 214 = 2640, uo = 2100. 
Now we investigate the stationary solution of the equations (23-25). We mark 

Under these conditions we obtain: 

G(1+ U O O ) " ~ / ~ [ ~  + 2do(l+ U O O ) " ~ ] ~ ~ Z , - , ~ ~  = PmC2N-1/2[1 - (1 + 2100)nz]. (41) 
In accordance with the equations (40,41), for the existence of stationary solutions 

it is necessary to satisfy the following inequality: 

(42) 1 > Nn1/(2n1-n4). 

The inequality (42) can be satisfied with the following conditions: 

or 
(2) N < 1, n2/(2n1- n4) > 0. (44) 

Let investigate the stationarity of the solution of the equation (23-25) with 
the help of perturbation theory for the nonlinear wave. If the perturbed value is 
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NONLINEAR DYNAMO WAVES 133 

proportional to exp(q.r), for the * we get the fourth-order algebraic equation. The 
discussion of this equation shows us that Re q < 0 (Korn and Korn, 1968) if we 
satisfy the inequality: 

n2 01 (45) 

(46) 2721 - n4 > 0. 

So n2/(2n1 - n4) < 0 and in accordance with the (43) N > 1. 
When n4 = 0 the criterion of stability gets the following form: 

n2 < 0, nl > 0, 

(1 + In21/nl)2n1-n4)/lnal > N > 1. (47) 
(b) Now we investigate the nonlinear dynamo waves taking into account the 

second harmonics for the velocity and pressure. In this case the equations (12-14) 
with consideration of (15-23) give the following form: 

duo/dT = ClLlD2 - 0.5ClnlL1(1 + u ~ ) - ~ ( D l u ;  + D;&j) 
+ p m ~ 2 ~ - ' / ~ [ ( 1 +  ~ 0 ) ~ ~  - 111 (48) 

duz/dT = 214 - (L1 + i6/H2 + nlL1(1+ U O ) - ~ U ; U ~ ,  (49) 
duq/dr = i26u2 - (L1 + i6)u4 -k nlL1(1+ U0)-1u;u6, (50) 

dua/dT = -(4pmL2 + i26)us + i2n2p,1/2L2(1+ U O ) - ~ U ~ .  (52) 

du6ld.r = -0.5C1L1D1 + C l L l n l ( l +  u0)-1D2u6 - 4prnyp;'L3uug 

+ pmC2nzL2(1 + U O ) - ~ U ~  + i47p,L~v$-~bU8 - i26U6, (51) 

Here VZ = (R,V., + kzVcz)IC-2, L3 = (1 + ~ o ) ~ ~ N - ~ / ~ ,  pr = W O / X O  is a Prandtl 
number (Priest, 1982), 

(53) ~ 1 =  ~3 + dou4, 

D21~21~  + dob4l2. (54) 

2 

First of all we will investigate the self-oscillations of the amplitude UO, u6 and 
us when the magnetic induction is ignored. I t  means that u2 = 214 = d = 0. The 
oscillation uo, U 6  and us do not depend on each other. If in the equation (49) 
u2 = '164 = 0 and one considers uo = 0 and the perturbed term ub x exp(qlt), in 
this case 

q1 = VoIC2n2C2prn (55) 
if n2 > 0,ql > 0. 

Now we will discuss the oscillation of u6 and u3 when u2 = 214 = 6 = 0 with the 
help of the equations (51-52). If the nonperturbed terms are equal to  zero u6 and 
us, and ukl uQ x exp(q2t) for the q 2  we will get: 

92 = 0.5prnqo~i2{n2~2 - 4(nz1 + 1) f [ ( n 2 ~ 2  - 4nz1 + 4)' - 32n2yMT21 2 1/2 1. (56) 

Here M T ~  = bVF1 .  
In accordance with (56) when n2 _< 0, Im q2 = 0. 
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When n2 = 1 and n2 > 0, Im q # 0 if the following inequality is correct: 

V$ > 32-'yn2(7 - l>V;"VF2. (57) 

When n2 = 0, Re qz < 0. 
If n2 > 0 and Cz > 4nz1(ni1 + l ) ,  in this case Re q > 0. 
Let look for the stationary solution of the equations (48-52). Denote the station- 

ary solution of the function in this way: u2 = u20, u4 = 2140, 216 = u60,  ug = ugo, 
and uo = '1100. For these values we will obtain the following dependences: 

U 4 o  = L;b'(i6 + 61(2L10 - 1)'/2)U20, 121401~ = 2LTt,21.11201~, (58 )  
?&O = n ~ ' ~ ~ ~ u ; ~ 1 ~ 2 0 1 - ~ ( 1  + u o o ) [ ~ ~ ~  - 61(2~10 - 1)'12 

+ ib(Ll0 - 1)3, (59) 
[261(2~10 - I)'/' + 4do][L:o + 1 - 261(2~10 - 1)'12](2 - n 2 ~ 3 )  + nlPL: 
~ 7 ( 7  - l)p,M~,[Llo - 1 + 2do(l - 61(2L10 - 1)'/2)](L20 - N-l/') = 0, (60) 

For the existence of the stationary solution of the equations (48-52) it is nec- 
essary that Llo 2 0.5. We look for the stationary solutions with the following 
conditions: 

1%01 >> 1, 1?J401 >> 1, 1%01 < 1. 

3 DISCUSSION 

(1) The asymptotic solutions for the amplitudes of the dynamo waves obtained in 
the equations (26-29) when the coefficients of viscousity and a are considered to  
have constant values (nz = 0, n4 = 0) are given. It is shown that the amplitude 
of the magnetic field reaches its maximal value (the magnetic field gets stronger) 
when n l  > 0 ,  the period of time t ,  during which the magnetic field reaches its 
maximal value (38) was found. The equation for the dependence of the magnetic 
field on the dynamo number is obtained. We can say exectly, that the magnetic 
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field strengthens when the dynamo number N > 1. In the case N m 1, the rate of 
strengthening of the magnetic field (ratio of the amplitude of the magnetic field to 
its meaning when t = 0) is proportional to ( N  - 1)2p~ where PO = 4rpo/B:  is for 
the unperturbed medium. We can see that the strengthening of the magnetic field 
is high when ( N  - 1)2/3~ >> 1. 

( 2 )  In the case when nl # 0, n2 # 0 and n4 # 0, the stationary solution of 
the equation for the amplitude of the magnetic field and pressure is given. The 
conditions of stability of this solution can be shown as: 

nl > 0, 122 < 0, 2n1-  n4 > 0, N1 > N > 1. 

Here N1 = (1 + ln21n1)2nl-n4)/ln21. If N is near to N1 the perturbed amplitude 
oscillatorily approaches the stationary state. 

The period of oscillation T > 5(nlp , ) - ' /2 [ (n l  + Inzl)/nl]ln21/[2(nl+1)] can last 
several hundred years. With these oscillations the existence of the Maunder mini- 
mum can be described. 

In the case when we take into account the second harmonics of the dynamo 
waves for the velocities and pressure, we will get the following results: 

(1) The stationary solution is obtained after the solution of the equation (48-52) 
and is given in (58-62). These solutions exist if n2 < 0, (1 + u 0 0 ) ~ ~ N - ~ / ~  2 0.5 ,  
(1 + u00)n2 > 0. 

uoo is the stable meaning of the zero order harmonic of the pressure. 
( 2 )  It can be shown, that the stationary solutions of the equations (48-52) are 

stable if the Prandtl number p ,  = V O / X O  5 2. 
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