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G. S. BISNOVATYI-KOGAN' and N .  V. POGORELOV2 

'Space Research Insti tute,  Russian Academy of Sciences, 84/32 Profsoyuznaya St, 
11 781 0 Moscow, Russia 

101 Vernadskii A v e . ,  Moscow 11 7526, Russia 

(Received November 15, 1995) 

Gas dynamic features of slowly rotating axially symmetric gas accretion on to a gravitating centre 
are investigated. The process of flow restructuring is studied as the angular velocity of accreting 
matter approaches the Keplerian angular velocity. For spherically symmetric accretion the con- 
ditions are found of the existance of a steady-state state supersonic solution for various extertnal 
boundary conditions. A numerical study is performed on the basis of the Lax-Fiiedrichs-type 
second-order numerical scheme with an implicit approximation of the term in the Euler equations. 

Institute for  Problems in Mechanics, Russian Academy of Sciences, ,  
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1 INTRODUCTION 

Accretion on to  neutron stars and black holes produces the main energy supply 
in galactic X-ray sources. X-ray sources with high-mass companions include long- 
period pulsars whose origin is yet to  be explained (Nagase, 1989; Lipunov, 1992). 
Owing to a high-speed stellar wind, the angular momentum of falling matter is often 
insufficient for accretion disk formation at  the level of the Alfvknic radius, where 
the magnetic pressure of the neutron star is balanced by the dynamic pressure of 
the falling gas. The angular momentum gained, in this case, by the neutron star 
from the falling gas has been shown (Bisnovatyi-Kogan, 1991) to  be such that the 
equilibrium rotational period of the X-ray pulsar might be long. It is rather difficult 
to estimate the equilibrium rotational period because the formation of outflowing 
streams which carry away the angular momentum is possible (Illarionov and Kom- 
paneetz, 1990; Lovelace el al . ,  1995). The accretion picture is three-dimensional, 
and its numerical simulation is very complicated. I t  has been performed only for the 
case of accretion on to a gravitating centre, showing the presence of Rayleigh-Taylor 
instabilities (Matsuda et al . ,  1989). The nature of these instabilities is unclear, and 
a numerical origin cannot be excluded (Steinolfson et al . ,  1994). 
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To investigate the formation of long-period pulsars, a model is necessary for 
accretion on to  a magnetized neutron star from the stellar wind in a binary. To re- 
duce a three-dimensional problem to two dimensions, we can consider either conical 
accretion of non-rotating gas or accretion of slowly rotating gas on to  a stationary 
star. In the first case (Koide et  al., 1991), the average angular momentum acquired 
by the neutron star is zero due to  the flow symmetry, so i t  cannot be applied to 
long-period X-ray pulsars. 

Our aim is to consider accretion on to  
a magnetized star with the AlfvGnic radius RA >> R, (star radius) taking into 
account an interaction between the gas and the magnetosphere, and possible outflow 
formation. As a first step, we consider accretion with full penetration of the gas 
through the magnetosphere substituted by the inner boundary with the radius R, 
and neglect magnetogasdynamic effects. 

Beskin and Pidoprygora (1995) presented an approximate solution for the accr- 
retion of a non-rotating gas on to  a slowly rotating black hole within the framework 
of general relativity. In this work we consider the accretion of a rotating gas in the 
Newton approximation up to  rotation velocities close to  the Keplerian velocity. 

Three different modes are usually considered to  be constituent parts of astro- 
physical accretion and have been investigated fairly well (Bisnovatyi-Kogan, 1989; 
Lipunov, 1992). 

Here we used the second approach. 

(1) Spherically symmetric accretion occurs if the star velocity v, is much smaller 
than the speed of sound a ,  in accreting matter, and the angular momentum 
is negligible. 

(2) Cylindrical accretion occurs if v, 2 a,, with the angular momentum van- 
ishing. 

(3) Accretion disk is formed if the total angular momentum of the matter is 
sufficient for its formation. 

Real accreation is, in fact, a combination of the above-mentioned modes. 
From the gas-dynamic viewpoint, it is of interest to investigate the process of 

transition from regime 1 to regime 3 for v, << urn as the rotational velocity of the 
accreting matter approaches the Keplerian velocity. We consider the polytropic flow 
of a perfect gas with polytropic index 7 = 1.4. Calculations are performed using the 
second-order space high-resolution Lax-Friedrichs-type numerical scheme proposed 
by one of the authors (Barmin and Pogorelov, 1995). A detailed description of the 
scheme is given by Barmin ei al. (1996). A three-dimensional Bondi-Hoyle accretion 
has been investigated recently for an accretor (star) radius varying from 10 to  0.02 
Bondi radii, so that both subsonic and supersonic regimes of the accretion can be 
realized (Ruffert, 1994). In our study we are mainly interested in a qualitative 
tracing of the flow restructuring as its angular velocity increases. For this reason 
the Euler equations are solved, and the external flow is supposed to  be supersonic. 
On the other hand, the star size is assumed to be sufficiently small; the inner, also 
supersonic, is fixed at finite distance from the gravitational centre. The effects of 
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ROTATING GAS ACCRETION 265 

the boundary conditions on the existence and properties of a stationary supersonic 
accretion for the chosen computational region are investigated. 

2 SPHERICALLY SYMMETRIC SUPERSONIC ACCRETION 

Let us consider accretion gas flow between two spheres with the inner and outer 
radii equal to R, and R o ,  respectively. If the flow at a distance R o  is assumed to  be 
supersonic, then all flow parameters should be fixed at this boundary. The question 
is what parameter values can be imposed at  a given distance for the existence of 
a stationary solution. If the flow is shockless and polytropic, the following three 
conservation equations must be satisfied: 

4 r R 2 p U  = M ,  (1) 

Here p ,  p ,  U are, density, pressure and radial velocity, respectively, R is a cur- 
rent distance from the gravitating centre, M is the star's mass. The values of 
the accretion rate ilk, the constant li, and the Bernoulli constant hto are fixed at 
R = R o .  Introducing dimensionless variables with the units of velocity, pressure, 
density, and length equal to Uo, poU;, P O ,  and R,, respectively, and designating 
Mo = Uo/ao, a0 = ( y p ~ / p o ) ' / ~  and S = G M / U : R , ,  we can rewrite system (1)-(3) 
in a dimensionless form using the same notations for dimensionless values of U ,  R, p ,  
p ,  and a = ( - y p / ~ ) ' / ~  (indices 0 and * correspond to the outer and inner boundaries, 
respectively) : 

Being subsonic at infinity and supersonic a t  R = Ro, the flow becomes sonic 
U = Ug = ag at some point R = Rg 2 R,, where (Bisnovatyi-Kogan, 1989) 

At the sonic point equations (4)-(7) reduce to 

5 - 3 7  s = hto. -- 
4(7 - 1) R B  
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Figure 1 The computational region. 

If RB 2 Ro and the flow comes from infinity] the value hto must satisfy the 
inequality 

S.  
5 - 37 

4(y - 1)Ro 
0 < h*o < (9) 

3 ACCRETION WITH ROTATION 

In this section we consider the process of the axially symmetric rotating flow ac- 
cretion on to a gravitating object. The analysis is performed on the basis of a 
numerical solution to the Euler gas-dynamic equations. The gas is assumed to  be 
perfect with the following caloric equation of state: E = p/(y - l ) p ,  where E is the 
internal energy per unit mass and y = 1.4 is the polytropic index. The system of 
governing equations in the Cartesian coordinate system, shown in Figure 1, reads: 

where 

U =  

aU dE d G  -+ -+  - + H  = 0: 
at ax aZ 

, E =  1 
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H = -  P 
X 

267 

(u2 - u 2 )  + G M x W  
2uu 

uw + G M ~ +  

r U 

Here e = p / ( 7  - 1) + p ( u 2  + u2 + w 2 ) / 2  is the total energy per unit volume. 
As far as the gravitational field is considered spherically symmetric, the polar com- 
putational domain (R ,  e )  is chosen with the inner and outer radii equal to  R, and 
Ro, respectively (see Figure 1). On normalizing the quantities of density, pressure, 
and velocity by P O ,  W.  R, , pow; RS, where po is the density at  R = Ro and w, is the 
gas angular velocity at R = R, at the equator for a constant angular momentum 
distribution, the source term can be rewritten in the dimensionless form as 

U 

(u2 - u2)  + s x y  
2uu H = -  

X u w  + S X W  

Here S = GM/w?R:. The form of the other vector components in equation (10) 

From now on we consider only dimensionless parameters. 
The following procedure is used to  construct the initial and boundary conditions. 

(1) Introducing a dimensionless parameter a = UO/UK*,  where UO is the radial 
velocity on the outer boundary and U K ,  = ( G M / R , ) l I 2  is the Keplerian 
velocity on the inner boundary, we fix the values on the outer boundary as if 
the flow were spherically symmetric: 

remains unchanged. 

po = 1; uo = aS112; po  = a2S/yM,2; wo = 0,  

where WO is the 9-component of the velocity and MO = Uo/ao. 
The corresponding parameter values inside the computational region are adop- 
ted equal to those at  the boundary. 
We can find the dimensionless values of entropy and total enthalpy as follows: 

(2) the following initial distribution of the angular velocity is assumed: 

w = L -  z2 - & if R > 20 (constant angular momentum) { w = 0.0025 if R 5 20 (constant angular velocity) 

The y-component u (normal to the plane of Figure 1) of the velocity v is then 
u = wx.  
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(3) The values of p and p in the whole computational region are modified. As- 
suming U(R,B) = Uo and W ( R , e )  = 0, we find new pressure and density 
values from the formulae 

After this all values on the external boundary are fixed because i t  is super- 
sonic. N o  boundary conditions are necessary on the inner circle, since the flow 
through it is supersonic. 

4 NUMERICAL SCHEME 

A point clustering towards the internal boundary circle is performed to  obtain a 
sufficiently fine flow resolution in the vicinity of the gravitating centre. The following 
formula is used: 

ePC - 1 
R = R, + (Ro - R*)- 

e p - 1 '  

with the clustering parameter p. 
If we introduce a polar mesh 

El = ( I  - l ) A l ,  I = 1 , 2 , .  . . , L ;  8, = (n - 2.5)A8, n = 1 , 2 , .  . . , N ;  
RI = R(Jl) ,  A( = 1/(L - l ) ,  A8 r / ( 2 N  - 8) 

with the centre in the accretor position, then for each cell system (1) in a finite- 
volume formulation takes the form 

where n = ( n ~ ,  n2) is a unit outward vector normal to the cell surface 
The assumption is made of a piecewise parabolic distribution of the primitive 

gas-dynamic parameters q inside the cells to  specify values on their boundaries, and 
slope delimiters are used to obtain the non-oscillatory property. 

The averaged slope inside the cell in the radial direction is determined as (Sawada 
e l  al., 1989) 
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where 

The left and right boundary values are then estimated as 

41+1/2 = Q l  + ZAqI, qI-1/2 = 91 - TAq/, 
' - R 1 -  L 

Aql  = minmod (Aql, 2pAR1,SuARl). 

Here 
sign(a)min(lal, lbl, Icl) 
0 otherwise 

if bc > 0 minmod(a, b ,  c) = { 
Found the values of qL and qR on both sides of the cell boundary, the appropriate 

fluxes E are calculated using the modified Lax-Friedrichs formula (Barmin and 
Pogorelov, 1995): 

E(UR, UL) = '[E(UL) + E(UR) - R(UR - UL)], 
2 

where the matrix R is a positive diagonal matrix with the entries equal to  the 
spectral radius (the maximum of eigenvalue magnitudes) of 

aE 
l3U 

on its diagonal. This scheme is a considerable simplification of the numerical al- 
gorithm as compared with the methods based on a precise characteristic splitting 
of the Jacobian matrices, while preserving the non-oscillatory property. Within an 
accuracy of the second order, it is less dissipative than the original Lax-Friedrichs 
scheme. Similarly, the fluxes through another pair of cell surfaces are obtained. 

As seen from equation (12) the source term is approximated implicitly to  provide 
better stability of the numerical scheme. A proper linearization of this term per- 
formed to  realize the numerical procedure of obtaining the time-converging steady- 

- 

state solution: 

The promotion of the solution in time is performed to  an accuracy of the first order 
using the formala: 
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Figure 2 Logarithm pressure and density isolines. Full computational region, S = 250. 

5 ANALYSIS OF NUMERICAL RESULTS 

All the results presented in this section have been obtained in the ring region with 
the dimensionless inner and outer circle radii being R, = 1 and Ro = 100, respec- 
tively, with 56 cells in the angular direction and 104 cells in the radial direction, and 
with the clustering parameter p = 4.  The calculations were performed until their 
full time-convergence had occurred in a quarter of the ring, with the appropriate 
reflection conditions applied in the planes of the flow symmetry. 

The method presenting the results obtained is the following. In Figures 2-18 
the isolines of different gas-dynamic parameters and the streamlines of the flow are 
presented in the lower and upper parts of the figure divided by the rotational axis. 
Figures 2 and 3, 7-9, and 13-15 correspond to the whole computational region. In 
these figures 18 isolines are presented with a constant step between the maximum 
and minimum values of the functions indicated in the corners, that  is, the isoline 
value for any function f can be found from the formula f; = fmin + i x (fmax - 

fmin)/19. In the regions with no captions in the corner, streamlines are shown. 
Figures 4-6, 10-12, and 16-18 present the magnifield central part (50 computational 
zones) of the corresponding figures related to  the whole computational region. 

The following dimensionless parameters are chosen primarily to  study the ac- 
cretion flow behaviour for the case of slow rotation (this choice is consistent with 
considerations from Section 2): 

(Y = 0.1; = 1.4; Mo = 1;  S = 250. 
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Urn i n= -21.280 

Figure 3 Streamlines and U isolines. Full computational region, 5’ = 250. 

I logp,”, = 3.695 

10gp,i, = 0.0 1 1 

Figure 4 Logarithm pressure and density isolines. Inner subregion, S = 250. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:1
9 

13
 D

ec
em

be
r 2

00
7 

272 G. S. BISNOVATYI-KOGAN AND N. V .  POGORELOV 

1 Wmax= 1.239 

Vm i n= 0.004 

Figure 5 Isolines of v and W .  Inner subregion, S = 250. 

Urn i n= -21.280 

Figure 6 Streamlines and U isolines. Inner subregion, S = 250.  
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log pmvl = 2.. 84 5 I 

10gp,i, = 0.005 

Figure 7 Logarithm pressure and density isolines. Full computational region, S = 25. 

Wmax= 1.342 

Wm i n= - 1.342 

Vm i n= 0.004 

Figure 8 Isolines of z1 and W. Full computational region, S = 25. 
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Urnax= -0.507 

Urn i n= -6.838 

logp,,= 2.845 

Figure 9 Steamlines and U isolines. Full computational region, S = 25. 

Figure 10 Logarithm pressure and density isolines. Inner subregion, S = 25. 
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Wmax= 1.342 

Wmi n= -1.342 

F 

Vmax= 1.796 < 
V m  i n= 0.004 

Figure 11 Isolines of u and W .  Inner subregion, S = 25. 

Urnax= -0.507 1-1 
Umin=-6.838 

Figure 12 Streamlines and U isolines. Inner subregion, S = 25. 
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log pmvt = 2.960 

Figure 13 Logarithm pressure and density isolines. Full computational region, S = 1.5 .  

I Wmax=0.889 

Figure 14 Isolines of 21 and W .  Full computational region, S = 1 . 5 .  
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Urnax= -0.123 I 
U m i  n= -1.693 

Figure 15 Streamlines and U isolines. Full computational region, S = 1.5. 

Figure 16 

277 
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Wmax= 0.889 

Wm i n= -0.889 

Vmax= 1.007 

V m  i n= 0.002 

Figure 17 Isolines of z) and W .  Inner subregion, 5 = 1.5. 

Urn i n =  -1.693 

Figure 18 Streamlines and U isolines. Inner subregion, S = 1.5.  
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The steady-state results for this case are presented in Figures 2-6 (the axis 
of rotation is aligned with the z-axis (see Figure 1). In Figure 2, the isolines of 
the pressure and the density decimal logarithm are presented above and below the 
rotational axis, respectively, in the whole computational region. The isolines of the 
velocity components and W (@-direction) are not shown in the full computational 
region since their main variation is located in the vicinity of the inner boundary. 
The isolines of the velocity component U (radial direction) and the streamlines are 
given in Figure 3. 

In Figures 4-6 the same lines are shown in the magnified subregion close to the 
accreting centre (50 computational zones). I t  is clearly seen in these figures that for 
long distances from the accreting centre and well away from the rotational axis a 
slow rotation does not affect the flow significantly and it is, in fact, a superposition 
of a spherically symmetric accretion and an axially symmetric constant angular 
momentum rotation. Closer to the z-axis and to the accreting centre, however, the 
pressure and the density are greater a t  the equator than near the poles. Deviation 
from a purely constant angular momentum rotation appears only in the vicinity of 
the rotational axis and near the accreting object. The streamlines and the radial 
velocity U isolines behave just as they do in the spherically symmetric case. 

Similar pictures of the flow are presented for S = 25, with the rest of dimension- 
less parameters unchanged, in Figures 7-12. The effect of rotation in this case is 
quite definite in the whole region surrounding the rotational axis. The gas displace- 
ment from the poles is much more pronounced as compared with the case of S = 250 
even a t  large distances from the accretion centre (see Figure 7). The streamlines 
defect from the poles to  the region of the equator (Figure 12), and the size of the 
domain with substantial values of W is larger (Figures 8 and 11). 

The picture of the flow for the rotational velocity close to  the Keplerian velocity 
( S  = 1.5) is shown in Figures 13-18. Almost all gas is removed in this case from the 
pole regions. The density near the equator is - lo4 times greater than that near 
the poles and almost all accreting matter is involved in the motion towards 0 = 7r/2. 
The structure of the flow is very close to the picture of accretion disk formation, 
Figure 18 showing the streamline distribution. The regions with a dense distribution 
of pressure and density isolines (Figure 16) represent the oblique transverse shock 
where the supersonic flow of the gas in the @-direction, declined by the centrifugal 
force from the poles to the equator, decelerates to become zero at 0 = x/2. Behind 
these shocks a fast rotation region is observed (Figures 14 and 17). This region of 
highly rotating dense matter will form an accretion disk if S < 1.  

6 DISCUSSION 

Numerical simulation has been performed for axially symmetric rotating gas ac- 
cretion on to a star. The second order space high-resolution Lax-Friedrichs-type 
scheme gave a good performance for the calculation of flows with very great vari- 
ation of pressure and density values throughout the computational region. Flow 
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restructuring is investigated as the rotation velocity approaches the Keplerian ve- 
locity. The variants are presented for different cases starting from a slow rotation 
and up to  the case for which the steady-state centrifugal and gravitational forces 
near the steller equator are rather close. The values of angular momentum, how- 
ever, were sufficiently small, so that at the inner boundary the centrifugal force was 
smaller than the gravitational, force and the stationary accetion picture could be 
attained. If the angular momentum of the falling matter reaches the value for which 
the centrifugal force balances the gravitation at force before the matter falls on to 
the star (the inner boundary in our calculations) the matter stops near the equato- 
rial plane and forms a disk. In the absence of viscosity the mass of the disk increases 
in time. In the presence of viscosity, which is especially efficient in the turbulent 
case, the matter in the disk loses its angular momentum and moves slowly towards 
the centre forming a stationary accretion disk (Lynden-Bell, 1969; Shakura, 1972). 
We are interested here in the problem of long-period pulsar formation for which the 
angular momentum is insufficient for accretion disk origin near the AlfvCnic surface, 
where the dynamic pressure of the flow is balanced by the magnetic surface at the 
magnetosphere of the neutron star. To find the angular momentum of the matter 
falling on to the star during accretion from the stellar wind penetrating through 
the Alfvknic surface, we need to take into account the magnetic field. This work is 
now in progress. 
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