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At present, the Schuster periodogram and the LS-spectra are widely used for evaluating the power 
spectra of irregularly spaced time series. According to many authorities, the LS-spectra are prefer- 
able over the Schuster periodogram since they are based on the least-squares fitting of a sine 
function to the data and since they have the exponential distribution when the time series is pure 
noise. On the other hand, the practice of spectral analysis shows that the Schuster periodogram 
and the LS-spectra often are almost identical. In this paper the theoretical study of all the esti- 
mators is made with the purpose to describe the situations when the Schuster periodogram differs 
from the LS-spestra sufficiently. It is shown that the likeness of the periodograms under consid- 
eration depends on the properties of the spectral window W ( w )  corresponding to the distribution 
of time points. The main results are: a) all the estimators evaluated at frequency w are identical 
if W ( 2 w )  = 0; b) the Schuster periodogram differs from the LS-spectra at the frequency w = 0 / 2 ,  
where ij is the frequency at which the spectral window has a large side peak due to irregular 
distribution of time points. The numerical examples for several situations typical in astronomy 
illustrate these conclusions. 

KEY WORDS Power spectra, time series 

1 INTRODUCTION 

In various branches of astronomy, we face the problem of finding unknown period- 
icities hidden in the observational data. If data are regularly spaced in time, the 
Discrete Fourier Transform (DFT) and the Schuster periodogram associated with 
it (Schuster, 1898) are the basic tools for evaluating the power spectra (Jenkins 
and Watts, 1968; Otnes and Enocson, 1978; Marple, 1987; Terebizh, 1992, etc.). 
Unfortunatly, the astronomical observations are irregular due to  different reasons: 
day-time changes, weather conditions, positions of the object under observations 
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140 V. V. VITYAZEV 

and so on. The present day theory and practice of the spectral analysis of the un- 
equally spaced time series are based on two approaches. The first one employs the 
Schuster periodogram for unequally spaced data (Deeming, 1975a, 1975b; Roberts 
et  al., 1987). The second one uses the procedure of the least-squares fitting of a 
sinusoid to the data (Barning, 1962; Lomb, 1976; Ferraz-Mello, 1981, Scargle, 1982, 
1989). The resulting estimators (the so-called LS-spectra) and the modified discrete 
Fourier transforms associated with them are widely used nowadays. The most valu- 
able feature of the LS-spectra is their well-defined statistical behavior. At the same 
time, the LS-spectra lose several very important properties: they cannot be dis- 
cribed in terms of the spectral window, they cannot be strictly connected with the 
correlation function, etc. On the other hand, the Schuster periodogram of a gapped 
time series satisfies all the fundamental relations of the classical spectral analysis, 
but its statistical properties are complicated as compared to the case of regular data. 
It is worth mentioning that, despite different theoretical foundations, the Schuster 
periodogram and the LS-spectra frequently turn out to  be almost identical. This 
similarity requires an explanation, and this is the main point of the present pa- 
per in which we are trying to find situations when the Schuster periodogram and 
the LS-spectra are very close to  each other or differ greatly. The final goal of this 
study is to clarify the properties of various techniques which are used to derive the 
periodicities in the unequally distributed data. 

2 THE LEAST-SQUARES PROCEDURE AS AN ESTIMATOR OF 
THE POWER SPECTRUM 

We begin by exposing the general least-squares approach that produces various 
kinds of the LS-spectra. Given a set of N observations 

2 k  = z ( t k ) ,  k = 0, 1,. . . , N - 1 

with zero mean obtained at arbitrary times t k ,  we can set up the model 

2 

i= l  

where 
4l ( t )  = cos w t ,  

&(t)  = sin w t .  

Defining the residuals of approximation as 

we can find the coefficients al and 0 2  from the condition 
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SCHUSTER PERIODOGRAM AND LS-SPECTRA 141 

where the following notation is used: 

llP1I2 = (P,P). (2.7) 
In our case the coefficients a1 and a2 are determined as the solution of the corre- 
sponding normal equations: 

(2.8) 

where 
A = 1141112114112 - ( 4 1 9 4 2 ) .  

Now, for the quantity 
~ , , , i ”  = [1e1l2 = min 

(2.9) 

(2.10) 

one has 
2 

Emin = 1 1 ~ 1 1 ~  - C a i ( Z ,  4i).  (2.11) 
i=l  

If the functions 41 and 4 2  are orthogonal, then 

(2.12) 

Consider now the function 

P(w)  = 112112 - Emin 2 0. (2.13) 

Obviously, the function P(w),  when plotted against w ,  will have sharp peaks if a 
trial frequency coincides with the frequency of the model (2.1). For this reason, the 
function P(w) may be used as an estimator of the power spectrum. Following Lomb 
(1976), we call this estimator the LS-spectrum. Its final representation is 

(2.14) 

The factor !j is introduced for convenience of comparison befween the LS-spectrum 
and the Schuster periodogram. 

3 THE TYPES OF THE LS-SPECTRA 

It is a common practice to use the term “periodogram” to designate an estimator of 
the power spectrum. In this sense, the various types of the LS-spectra considered 
in this paper will be called periodograms with the names of their authors. 
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142 V. V. VITYAZEV 

3.1 The Baming Periodogram 

Although the numerical least-squares algorithm was widely used to obtain the values 
of the 01 and a2 in spectral analysis of time series, it was Barning (1962) who first 
introduced the concept of the LS-spectrum and derived its analytical representation. 
In our notation, the expression for the Barning periodogram follows from Eqs. (2.8) 
and (2.14) in the form: 

3.2 The Lomb Periodogram 

To study the statistical properties of the LS-spectrum, it is desirable to have i t  as a 
sum of two squared functions. This can be done by several methods. One of them 
was proposed by Lomb (1976). His approach is based on the introduction of the 
new time points 

f k  = tk - T(W), (3-2) 

where the time shift 
1 & sin 2wtk 

~ ( w )  = -arctan 
2u c k  cos 2wtk 

provides the orthogonality of the functions 

(3.3) 

Under this assumption the Lomb periodogram looks as follows: 

1 
2 

L(w) = - 

Following this idea, Scargle (1982, 
Fourier transform: 

1989) introduced a specific kind of the discrete 

1 
FT(w) = - exp(-iwto) 

4 
in terms of which the Lomb periodogram becomes 

L(w) = IFT(w)12. 

+ i-) 6 2  

114211 ' (3.7) 
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SCHUSTER PERIODOGRAM AND LS-SPECTRA 143 

9.3 The Ferraz-Mello Periodogram 

Another method to express the periodogram as a sum of two squared quantities 
was proposed by Ferraz-Mello (1981). His approach is based on representing the 
data by orthogonal functions $0 , $1, $2 which can be derived from the initial 
functions 1, 41, 4 2  by means of the Gram-Schmidt procedure. Obviously, this 
method corresponds to a “sinusoid plus constant” model. To simplify discussion and 
to make the results comparable to the “sinusoid” model which is the cornerstone 
in the Barning’s and the Lomb’s techniques, we shall apply the orthogonalization 
procedure to our functions 41, 4 2 .  The corresponding orthogonalized functions are: 

$1 = 41, 

(41 9 4 2 )  dl, * a  = 4 2  - - 
114111 

(41,h) ’  

ll4lll2 l1*a1l2 = 1142 - 

The final expression for the Ferraz-Mello periodogram looks as follows: 

or 
1 
2 

F M ( U )  = - I D C D F T ( ~ ) ~ ~ ,  

where 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

is a new type of transform (the Date-Compensated Discrete Fourier Transform). 

4 THE SCHUSTER PERIODOGRAM 

In our notation, this “classical” estimator of the power spectrum can be written in 
the form 

This expression shows that if the signal contains a sine function of frequency W O ,  

then the product xke-iwtk makes a large contribution to S provided that w = W O .  

In other words, the Schuster periodogram, to the limit of normalizing factor, is a 
square of the correlation coefficient between the data and a harmonic function. Thus 
we see that the Schuster periodogram differs from the LS-spectra by definition. It 
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144 V. V. VITYAZEV 

is likely that due to the correlation nature, the Schuster periodogram and the true 
power spectrum G(w) of the function 

~ ( t )  = A cos (wot + 40) (4.2) 

are connected by the next 

S(w) 

where 

relation (Vityazev, 1994): 

= T G ( w ) W ( w  - u') dw' + SO(W), 
--M 

(4.3) 

W(w) = IQ(w)l? 

Henceforth, the functions Q(w)  and W ( w )  will be referred to as t h e  cornplez spectral 
window and the spectral window, respectively. A set of functions given by Eq. (4.2), 
with phases 40, randomly distributed within the interval [0,27r], may be regarded 
as a stationary stochastic process. Averaging Eq. (4.4) over the set of realizations 
yields (SO) = 0, thus reducing Eq. (4.2) to a convolution of the true spectrum G ( w )  
with the spectral window W(w).  This result was obtained by Deeming (1975), 
who studied the Schuster periodogram averaged over the realizations, given at the 
same set of arbitrary time points. It is very important to emphasize that the 
transition from G ( w )  to S(w)  is completely explained by the spectral window W ( w ) .  
In particular, the convolution term in Eq. (4.3) reveals all the artifacts introduced 
into the periodogram by missing points (Deeming, 1975; Vityazev, 1994). Thus we 
see that the spectral windows, depending only on the distribution of time points, 
are very useful tools in spectral analysis, and we shall use them intensively in the 
next sections. 

5 THE SCHUSTER PERIODOGRAM AND THE LS-SPECTRA 

In this section we compare our periodograms. At first, the intercomparison between 
the LS-spectra is made. 

Theorem 1. For any time series given at arbitrary time points, the Ferraz- 
Mello periodograrn and the Barning periodogram are identical. 

To prove this theorem, we write the obvious relations that can be obtained from 
Eqs. (3.9)-( 3.12) : 

(2,111) = (2 ,  Ol), (5.1) 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:4
9 

18
 D

ec
em

be
r 2

00
7 

SCHUSTER PERIODOGRAM AND LS-SPECTRA 145 

11~111211~2112 = 11411121142112 - (41 1 4d2. (5.3) 
Now, the identity FM(w) = B(w) follows from Eq. (3.13), if Eqs, (5.1)-(5.3) are 
taken into consideration. 

Theorem 2. For any time series given at  arbitrary time points, the Lomb 
periodogram and the Barning periodogram are identical. 

To prove this theorem, we shall use the relations: 

(z,&) = Cr(z, 41) + ST(z, 4 2 ) ,  

( 2 1  6 2 )  = Cr(z, $2) - sT(z, 411, 
(5-4) 

(5.5) 
where 

C, = cos w r ,  S, = sin w r .  
It is not difficult to show that 

(5.7) 

ReR(2w) cos 2wr = d m l  
ImR(2w) 

d W '  sin 2wr = 

(5.9) 

(5.10) 

Substitution of Eqs. (5.5)-(5.10) into Eq. (3.6) gives the identity L(w) = B(w) if 
the relation 

11~111211i2112 = 11411121142112 - (41,42)2 = 1 - W(2w) (5.11) 

is taken into account. 
Now we see that different expressions which define the Barning, the Lomb, and 

the Ferraz-Mello periodograms give one and the same result, and thus the general 
name for them - the LS-spectrum - is justified. 

In order to  compare the Schuster periodogram with the LS-spectrum, we rewrite 
Eq. (3.1) in the form: 

where 
(5.13) 

(5.14) 

(5.15) 
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(5.16) 

ReQ(2w) = 0, (5.17) 

and, consequently, 
W(2w) = 0. (5.18) 

In this case, the right-hand sides of Eqs. (4.1) and (5.12) coincide, and we come to 
the main conclusion of the present paper: 

A t  the set of frequencies that satisfy Eq. (5.18), the Schuster 
periodogram and the LS-spectra are identical, otherwise they difler, and the closer 
to  zero i s  the valve 1 - W(2w), the stronger i s  their diflerence. 

Thus we see that the degree of likeness between the Schuster periodogram and 
the LS-spectra depends on the structure of the spectral window. In the next section 
we shall demonstrate several important distributions of time points for which the 
frequencies that satisfy Eq. (5.18) do exist. 

Theorem 3. 

6 THE SPECTRAL WINDOWS FOR TYPICAL DISTRIBUTIONS OF TIME 
POINTS 

As we have seen, the key problem in the intercomparison between the spectra es- 
timators is the study of the spectral windows. For any set of time points, the 
numerical calculation of the spectral windows can be done without problems. In 
this section we consider some typical distributions of points for which the spectral 
windows have analytical representations. 

6.1 The Regular T i m e  Series  

In this case the sequence of time points is 

t k = A t k ,  k = O , 1 ,  ..., N - 1 ,  (6-1) 

where At is a constant interval. For simplicity we consider N as an even number. 
The analytical forms of the spectral windows are known to be 

sin2 ( N w  At /2) 
N 2  sin2(wAt/2) ’ W ( W )  WO(W, N ,  At) = 

sin (NwAt/2) 
N sin (wAt/2) 

R e O ( w )  = COS((N - l ) ~ A t / 2 ) ,  

sin( NwAtl2) 
N sin(wAt/2) ImQ(w) = sin((N - l)wAt/2). 
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SCHUSTER PERIODOGRAM AND LS-SPECTRA 147 

Usually, the Schuster periodogram is evaluated a t  the set of natural frequencies 

27r . . N 
NAt 2 

Wj=-J , J=O, l ,  . . . ,  --1. 

It is easy to verify that 
W(2Wj) = 0. 

This gives us the first real example of a time points distribution, when the frequen- 
cies that satisfy Eq. (5.18) do exist. Now, we can conclude: in the case of regular 
observations the Schuster periodogram and the LS-spectra are identical provided 
their values are calculated at the natural frequencies (6.5). 

6.2 

The astronomical observations are often performed with periodic or quasi-periodic 
gaps. Ground-based observations are interrupted by day-night alteration giving 
gaps with the 24-hour period; the meteorological changes for a given site are re- 
peated annually; the observations from a space vehicle are usually stopped when 
the satellite enters the radiation belts. To make a model of time points distributed 
with periodical gaps, we suppose that,  in the set of regular observations with a 
constant sampling interval At, one has n succesive observations and p succesive 
missing points, and the group of n + p points is repeated m times. In this case the 
period of gaps is AT = (n+p)At .  In the previous papers (Vityazev, 1994; Vityazev 
and Prudnikiva, 1994) we have shown that in this case the spectral window looks 
as follows: 

Time Series with Periodic Gaps 

W(W) = WO(TW, At)Wo(m,w, AT),  (6.7) 

where Wo is given by Eq. (6.2). Due to gaps in observations, the spectral window 
W(w) has well-pronounced side peaks at the proper frequencies 

- 2 s  
W I  = 1, 1 = 1 , 2 , .  . . , ( n  + p)/2. 

m(n + p)At 

If in our set of m(n + p )  points all the missing points all are filled in, then we can 
introduce the set of natural frequencies 

27r 
j, j = 1,2, .  . . , m(n + p)/2. W '  - - m(n + p)At 

Excluding from w, the values w,/2, we'form a new set of frequencies: 

27r 
m(n+p)At  

wf = j, j = 1,2 , .  . . ,m/2-1, m/2+1,. . , m - l , m + l , .  . . , m(n+p)/2-1, 

(6.10) 
which satisfy Eq. (5.18). This gives us reason to state that when the frequency of 
gaps is 6 1  = 27r/T, the Schuster periodogram and the LS-spectra calculated at  the 
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frequencies w; are the same, provided that the frequencies of the harmonics in the 
data do not coincide with the values wl/2. Figure 1 shows the time series 

~ ( t )  = A1 C O S ( ~ T V ~ ~ )  + A2 C O S ( ~ T V ~ ~ ) ,  (6.11) 

generated a t  the time points with periodical gaps ( n  = 3, p = 7, rn = 15, At = O.ls), 
and the functions W(w),  ReR(w), and ImR(w), corresponding to this distribution 
of time points. We see that the side peaks are located a t  the proper frequencies 
vl = 1, v2,. . . , v5 = 5. In Figure 2 we show the Schuster periodogram and the LS- 
spectrum, calculated for the parameters A1 = 1, A2 = 1, v1 = 1.1 Hz, v2 = 3.3 Hz. 
We see, that all the periodograms are identical, since no one of the values 214 and 
2 ~ 2  coincides with the proper frequencies fi,, a t  which W(.j) # 0. The opposite 
case is shown in Figure 3, where our periodograms were calculated for A1 = 1, 
A2 = 1, v1 = 0.5 Hz, v2 = 3.3 Hz. Now we have 2vl = fil = 1 Hz, that is why the 
Schuster periodogram drastically differs from the LS-spectrum. 

6.3 

Considered here is a situation when two sets of observations (each one consisting of 
n successive points) are separated by p missing points forming the gap. As earlier, 
all the points are supposed to be regularly spaced over the time interval At = const. 
Now, for the spectral window we have (Vityazev, 1994): 

Observations with a Long Gap 

W ( W )  W O ( ~ , W ,  At)[cOs((n + p)wAt)]/2. 

It is not difficult to show that the frequencies 

T 1 
w t  = ( j + T ) ,  j = O , l , . . . ,  n + p - 1 ,  ( n + p ) A t  

(6.12) 

(6.13) 

satisfy the condition (6.6). It is important to note that the proper frequencies of 
the spectral window (6.12) defined as 

- 2 s  
W k  = k, k = 1 , 2  ,..., 

(n + P l a t  
(6.14) 

do not coinside with the values 2w* In Figure 4 the functions W(w) ,  ReQ(w) 
and I m n ( w )  are shown for the distribution of time points with a gap (n = 40, 
p = 40, At = 0.1s). We see that all strong side peaks are concentrated in the low 
frequency region of the spectrum. Figure 5 demonstrates our periodograms for the 
function (6.11) with parameters A1 = 1, A2 = 1, v1 = 1.1 Hz, vz = 3.3 Hz.  All 
the periodograms turned out to be identical since the doubled frequenvies 2nu1 and 
2 7 ~ 2  have been taken not equal to the proper frequencies GI. On the contrary, the 
values v1 = 0.0625 Hz and v2 = 3.3 Hz yield quite different periodograms (Figure S), 
since in this case we have 4TU1 = G1. 

J :  
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Schuster periodogram 
0.292 

0.234 - 
0.175 - 
0.117- 

0.058 - 
0.000 

r 

8 - v  A 
I I I 1 

0.00 1.00 2.00 3.00 4.00 5.00 
Frequency, f l / d  

LS-spect r um 

0.174 

0.116 

0.00 1.00 2.00 3.00 4.00 5.00 
Frequency, I: l/sl 

Figure 8 
time points. 

The Schuster periodogam and the LS-spectra for the set of 50 irregularly distributed 

6.4 Tame Series with Random Distribution of Points 

It is likely that no analytical expression for the spectral window exists in this situ- 
ation. The numerical experiments give evidence that the spectral windows, despite 
the central peak at  w = 0, have a number of side peaks irreqularly distributed in 
the frequency domain. These peaks have no tendency to be concentrated at some 
specific frequencies and, as a rule, the intencities of the side peaks are small if 
compared to the central peak. 

Figure 7 shows the functions W ( w ) ,  ReQ(w)  and IrnQ(w) for the set of 50 time 
points which randomly deviate from the even grid of points. We see the irregularities 
specific to the case, but since there are no frequencies at which the values of the 
spectral window are large, we can hope that the Schuster periodogram and the 
LS-spectrum will not differ considerably. This is confirmed by Figure 8, where our 
periodograms calculated for the function (6.11) with parameters A1 = 1, A2 = 1, 
v1 = 1.1 Hz, v2 = 3.3 Hz are shown. 
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7 MIXTURE OF PERIODICITIES 

As we have seen, at  the frequencies defined by Eq. (5.18) all the periodograms under 
consideration are identical. In this section the opposite case is studied, that is, we 
try to answer the question: what happens when we have the condition 

1 - W(2w) << 1. (7.1) 

First of all, let us write the expressions which show the intensity of the peak 
centered a t  W O ,  where w o  is the frequency of a sine function given by Eq. (4.2). For 
the Schuster periodogram, from Eqs. (4.3) and (4.4) we have: 

A2 A2 A2 

4 2 ~ ( w o )  = -[1+ W ( ~ W O ) ] +  -ReR(2wo)cos 240 - -ImR(2wo)sin 2 240, (7.2) 

where 40 is the phase of the sine fuction. The analogous equation valid for the 
LS-spectrum looks as follows: 

(7.3) 
A2 
4 B(wo) = -[1+ ReR(2wo) cos 240 - ImR(2wo) sin 2401. 

In Table 1 we show the intensities of the peak centered at  frequency vo = 0.5 Hz 
in the Schuster periodogram and in the LS-spectra for the sine function (4.2) with 
parameters A = 1, w o  = 2 ~ ~ 0  with different values of the phase. The sine function 
(4.2) was calculated at  the set of time points with periodical gaps ( n  = 3, p = 7 ,  
m = 20, At = 0.1s). In this case, W(2wo) = 0.762; ReR(2wo) = 0.706; ImR(2wo) = 
0.513, so the condition (7.1) is satisfied. Two striking conclusions follows from 
Table 1: a) the dependence on phase is strong for all the periodograms; b) no one 
of them gives the expected value A2/4 = 0.25. Thus we see that in the specific case 
defined by (7.1) all our periodograms are bad. This gives reason to suspect that in 
this situation something happens wiih the time series itself. 

To study this, let us represent the observed time series as follows: 

Y O )  = w(t>z(t>, (7.4) 

where z ( t )  denotes the polyharmonical function given for It I < 00, and w(t) is the 
time window defined as unity for t = tk and as zero elsewhere. For the time series 

Table 1. 

do S LS 
~~~~~~~ ~ 

0 0.793 0.426 
45 0.184 0.122 
90 0.087 0.074 
135 0.697 0.378 
180 0.793 0.426 
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with periodic gaps, considered in Subsection 6.2, the time window can be replaced 
by its Fourier series: 

52 

w(t) = a 0  + c YI cos(G1t + 4r), (7.5) 
1=1 

where wl are the proper frequencies defined by (6.8). If the function z( t )  is given 
by Eq. (4.2), then we have: 

y(t) = aoA cos(wot + 40) 

The power spectrum of this function consists of lines (of peaks, when the peri- 
odogram analysis is used) a t  the frequencies f w o  that correspond to  the signal and 
lines at IWI f w0I which are usually called “the ghosts”, i.e. false lines due to gaps 
in observations. In the case of periodic gaps, the ghosts follow each other with the 
unterval Aw = = 27r/AT. If 2w0 # w l ,  then the ghosts of the true lines located 
at f w o  do not interfere. Otherwise, they coincide and change the intensities of the 
lines. This is clearly seen in the time domain too, for if we put wo = W1/2, then 
Eq. (7.6) yields 

where 

A ”  
2 + - c y1 COS[(Wl - wo)t + 41 - 401, 

1=2 
(7.7) 

P1 = y1/2ao. (7.9) 

Comparison between Eqs. (4.2) and (7.7) shows that the observations with periodic 
gaps change the amplitude and the phase of the initial signal. It is true that,  due 
to the rectangular form of the function w(t), the Fourier series (7.5) converges to  3 (not to  1) at the first and the nth points in each segment of n + p  points. For 
this reason, Eqs. 7.4 and 7.6 coincide everywhere except these points. Nevertheless, 
this defect of convergence does not play a crucial role in our analysis, and our main 
conclusion is: if a harmonic process of frequency wo i s  observed with periodic gaps of 
frequency 2w0, then the observed lime series becomes a mixture of these two periodic 
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processes. We would obtain the same results each time when the condi€ion (7.1) is 
satisfied. In such pathological situations, the estimation of the power spectrum will 
be wrong, no m a t t e r  what es t imator (from those considered in this paper) is used. 

8 CONCLUSIONS 

The results of this study may be summarized as follows: 
a) all the LS-spectra considered in this paper - the Barning, the Lomb, and the 
Ferraz-Mello periodograms (based on the pure sinusoid model) - are identical; 
b) the likeness between the Schuster periodogram and the LS-spectra is governed 
by the behavior of the spectral window; 
c) a t  those frequencies where W ( 2 w )  = 0, all the periodograms under consideration 
are identical. 
d )  if the maxima of the spectral window (except the central peak) are small, then 
all the periodograms are nearly identical; 
e) the Schuster periodogram differs from the LS-spectra only at  the frequencies that 
satisfy the condition 1 - W ( 2 w )  << 1. It means that the discrepancies between the 
Schuster periodogram and the LS-spectra are large when the time series contain a 
harmonic of the frequency, the double value of which coincides with the frequency 
at  which the spectral window has a large side peak. In the case of periodical gaps, 
it happens when the period of a signal hidden in the data is one half the period 
of the gaps. In this pathological situation, the spectral estimation faces unrealistic 
intensities of the spectral peaks and the strong dependence of the hights of peaks 
on the phase of the signal. It is very important to emphasize that these problems 
come not from the choise of the periodogram-the problems are hard for all the 
periodgrams that we have studied-but they originate from mixing two sources of 
the periodicities: one is the physical process that we observe and another one is a 
periodical interruption of observations. In astronomy, the rotation and revolution 
of the Earth impose diurnal and annual cycles on the Earth-based observations. 
The periods hidden in observations of the Sun, stars, quasars, etc., are hardly 
connected physically with the periods specific to the Earth. For these observations, 
the probability to come across the mixing of the periodicities is negligible. On 
the contrary, if we study the Earth from the Earth (such is the case with the 
astrometric observations of the Earth's rotation parameters), then the semi-annual 
period known in the Earth rotation interferes with the annual gaps in observations. 

Nevertheless, exept for pathological situations, the Schuster periodogram is prac- 
tically identical to  the LS-spectra. This forces us to  to make a closer examination of 
the statistical properties of the Schuster periodogram for uneven time series. And 
this is a topic for the next article. 
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