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COSMOLOGY 

ON THE DESCRIPTION OF SPATIAL 
TOPOLOGIES IN QUANTUM GRAVITY 

A. A. KIRILLOV 
Institute for  Applied Mathematics and Cybernetics, 10 Ubanova str., Nizhny 

Novgorod, 609005, Russia 

(Received October 31, 1994) 

A new approach which allows to describe phenomenologically arbitrary topologies of the Universe 
is suggested. It consists in a generalization of the third quantization. This quantization is carried 
out for the case of asymptotic closeness to a cosmological singularity. It is also pointed out that 
this approach leads to a modification of the ordinary quantum field theory. In order to show this 
modification we consider example of a free massless scalar field. 

1 INTRODUCTION 

It is widely accepted that quantum fluctuations of metric at small-scale distances 
can change spatial topology of the Universe [l], [2]. Effects connected with topology 
changes were considered in Refs. [3-61. Nevertheless, an adequate mathematical 
scheme for the description of such processes is still absent. Here we suggest an 
approach which, as we hope, give a possibility for at least a phenomenological 
description of arbitrary spatial topologies. To this end we use a generalization of 
the third quantization. 

Third quantization has been already used in quantum cosmology for description 
of “wormholes” and “baby universes” [3-61 (which was shown to lead to the loss of 
quantum coherence) as well as for description of “spontaneous quantum creation of a 
universe from nothing” [7], [8] proposed earlier in Ref.[9]. Note however that in all of 
the considered cases a number of small closed universes (which branch off our large 
Universe) is a variable quantity but the topology of each closed universe turns ou t  
to be fixed. In order to describe different possible spatial topologies, it is necessary 
to modify the procedure of the third quantization. The simplest way to do this is 
to make it local. Such a possibility follows from the fact that the Wheeler-DeWitt 
equation which governs the evolution of a wave function of the Universe consists of 
an infinite set of Klein-Gordon type equations (one local Wheeler-DeWitt equation 
at each point x of the three-space S). We note that this is in accordance with the 
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fact that time in General Relativity has only a local meaning. Therefore, one may 
attempt to quantize every local Wheeler-DeWitt equation independently. We call 
such a procedure the local third quantization (LTQ). 

There is one problem with the LTQ procedure in the general case. The fact is 
that all local Wheeler-DeWitt equations are strongly coupled to each other and so 
it is very difficult to carry out such a procedure. Nevertheless, there is a situation 
when the connection between the local Wheeler-DeWitt equations disappears, at 
least in the leading order. It is just the case when one considers gravitational field 
near the cosmological singularity. 

As was shown in Refs. [ lo,  111 that the general inhomogeneous gravitational 
field at  the singularity can be considered as a continuum of uncoupled homogeneous 
fields (of IX type). Indeed, near the singularity it is always possible to choose an 
“elementary” volume AV in which the gravitational field is, homogeneous in the 
leading order (for the sake of simplicity, we do not take into account the presence 
of matter; furthermore, it does not affect the properties of the gravitational field). 
In the vicinity of the singularity, the horizon size tends to zero (Ih + 0) and dif- 
ferent ”elementary” domains AV(z) of the three-space S do not affect each other 
and can be considered independently (for validity of that, it is necessary to  fulfill 
the following condition: (AV)’I3 << I h ) .  The LTQ procedure consists then of the 
assumption that third quantization is carried out independently for each elemen- 
tary spatial domain AV(z). Furthermore, one may assume that all these domains 
are indistinguishable. Localization of third quantization is achieved in -the limit 
AV + 0 only. We note that, in this limit, every such “elementary” domain con- 
tains only one “physical point” of space and, therefore, the “elementary” domain 
will be understood as an isolate point of the physical continuum. 

The local third quantization leads to a modification of the ordinary quantum 
field theory. Indeed, in the limit AV + 0 an “elementary” domain AV(z) contains 
a finite number of physical degrees of freedom which coincides with the number of 
physically arbitrary functions determining distributions of matter and gravitational 
field. At each point of S, these degrees of freedom form a set. Thus, the local third 
quantization can be understood as an independent third quantization of all such 
sets. In ordinary field theory, it is more convenient to use Fourier transformation 
for physical degrees of freedom, that is expansion in modes. So in the case of free 
fields local third quantization consists in third quantization of the field modes. 

2 GRAVITATIONAL FIELD IN THE VICINITY OF THE COSMOLOGICAL 
SINGULARITY 

As pointed out above, the problem of the local third quantization of the gravitational 
field at the singularity can be reduced to the third quantization of homogeneous field. 
In the vicinity of the singularity states of the homogeneous mixmaster field (or, in 
our case, of an “elementary” spatial domain AV(z)) was shown to be classified 
by some quantum number n(n = 0 , l  . . .) [8, 11, 121. When third quantization is 
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QUANTUM GRAVITY 97 

imposed, the wave function becomes a field operator and can be expanded in the 
form (here we assume for simplicity that Q is ib. real scalar function) 

where { Un, U;} is an arbitrary complete orthonormal set of solutions of the Wheeler- 
DeWitt equation: 

(A + V)Un = 0; (2.2) 

here V is the potential, A = a A a G A B a B  and GAB is the metric on a 
minisuperspace W (for more detail see Ref. [ll]). The operators Cn and C$ satisfy 
the standard (anti) commutation relations 

\/-75 

[Cn, C$]* = 6n,m, (2.3) 

where f is related to the two possible statistics of the wave function. 
In the case of an inhomogencous ficld, the Wheeler-DeWitt equation splits into 

a set of uncoupled equation of the (2.2) type, each containing variables describing 
a gravitational field at  a particular point z of the three-manifold S: 

(A(z) + V,)Q = 0. (2.4) 

The space H of solutions of this Wheeler-DeWitt equation has the form of a tensor 
product of “homogeneous” spaces H ,  (written as H = nzES H , ) ,  where H ,  is the 
space of solutions to  Eq. (2.2). Then one can introduce a set of wave function Q, 
describing quantum states of the field at the point 1: and apply second quantization 
to  every local Wheeler-DeWitt equation (2.4) independently. In this manner the 
operators (2.3) acquire additional dependence of spatial coordinates. The LTQ 
procedure generalizes relations (2.3) t o  the following: 

Using the operator algebra (2.5), one can construct a set of states with an 
arbitrary number of domains (with an arbitrary density of points for the physical 
continuum). In particular, the vacuum state is determined by C(z,n)10) = 0 (for 
arbitrary z E S) and, therefore, this state corresponds to  the absence of all points 
of physical space and consequently to the absence of all field observables. In other 
words, this state describes the situation when the physical continuum is absent. 
The operator N ( z ,  n) = C+(z, n)C(z, n) has the ordinary meaning of the number 
of elementary domains AV(z) given in the quantum state Un and located at the 
point t E S. Summation over n yields the total number operator for domains 
having the coordinate t : N ( z )  = C N ( t , n )  which has also the meaning of an 
density operator for physical points. The operator B(z) = 1 ,,N(z) may be used 
then as an indicator of difference in topology of the Universe fiom that of S. 

This theory includes conventional quantum gravity as a particular case. Indeed, 
let us consider the set of states { IA)} which have the form 
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I4 = c A[.(z)lln(z)), I[.(z)I) = n C+(ZI  .(.))lo). (2.6) 
tn(=)l ZES 

These states describe the case when there is just one elementary domain at each 
point z E S and, therefore, the following conditions are fulfilled: 

O(z)IA) = 0, as z E S (2.7) 
(i.e., the number of point of the physical continuum having the coordinate z coin- 
cides with that of s). Obviously, topology of physical space for these states is the 
same as that of S. 

In order to illustrate the nontrivial topology of the Universe, one may construct 
a handle on S. In our approach, the existence of the handle is indicated by the fact 
that quantum states of the gravitational field Vn(,) are triple-valued functions of 
spatial coordinates (in some region I< E S). Therefore, the states describing the 
handle can be taken in the form 

It is obviously that,  due to the indistinguishability of domains, one may speak 
about topology of physical space in a usual sense in the quasi-classical limit only. 
Indeed, in this limit one can introduce a set of maps such that metric functions 
become single-valued. 

Evidently, one of possible applications of LTQ is a description of effects con- 
nected with the “space-time foam” [l], [2]. In particular, it should display itself in 
the existence of the so-called vacuum fluctuations connected with the creation and 
annihilation of virtual points of physical space. I t  should be also noted that the 
numbers N ( z )  vary during the evolution [7], [8]. This means that the structure of 
the foam is not fixed and must be determined dynamically. Furthermore, there is an 
interesting possibility that the spatial continuum has “hollows” at small distances 
(i.e. N(k) --+ 0 if k --+ 00, where (N(k) = ( 2 ~ ) - ~ / ~ J N ( z ) e z p ( - i k t ) d ~ z ) .  Thus, 
in this way, one may attempt to  overcome the divergence problem in conventional 
quantum gravity. 

3 ON A MODIFICATION OF THE ORDINARY FIELD THEORY 

The foamy structure of the space-time must be reflected in a universal way in the 
structure of the conventional field theory. As an example, we consider now a free 
massless scalar field cp 

In terms of Fourier expansion for cp 
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QUANTUM GRAVITY 99 

(here C = lkl), the field Hamiltonian takes the form of a sum of independent non- 
interacting oscillators 

H = / :{ A(k)A+(k) + A+(k)A(k)} d3k. 

Since, as mentioned in the Section 2, the number of spatial domains N(k) can be 
a variable quantity so does the number of the field oscillators. This fact can be ac- 
counted for in a phenomenological manner by introducing creation and annihilation 
operators of the field oscillators which obey the same (anti) commutation relations 
as in (2.5): 

where dependence of the operators on the quantities k and 11 is connected with the 
classification of the states of an individual oscillator (the spectrum of the oscillator 
has the form c(k, n) = Cn + co(k), where the quantity co(k) gives the contribution 
of vacuum fluctuations of the field). In the vacuum state IO)(which is determined 
now by C(k, .)lo) = 0) field oscillators (and all field observables ) are absent. The 
operator of total energy of the field can be generalized in a natural way as 

[C(k, n),C+(k', m]* = 6n,,b3(k - k'), (3.3) 

E = C€(k ,n)C+(k ,n )C(k ,n ) .  (3.4) 

The connection with the standard field variables can be determined with the help 
of operators which increase (decrease) the energy of system on %( [E, A(+)(k)]- = 
fCA(+)(k)) 

00 

A+@) = c ( n +  1) II2C+(k, n + l)C(k, n), (3.5) 

A(k) = c ( n  + l ) 'k '+(k ,  n)C(k, n + 1). (3.6) 

n=O 
00 

n=O 

It can be seen from (3.4)-(3.6) that the operators A and A+ satisfy the commu- 
tation relations 

where N(k) = C,"=o C+(k, n)C(k, n) is the complete number of spatial domains 
related to  the wave number k. If one restricts oneself to  the states (2.6) with N(k) = 
1, the operator A+(k) and A(k) certainly coincide with the standard creation and 
annihilation operators of scalar particles. 

As mentioned in Section 2, the quantities N(k, n) = C+(k, n)C(k, n) must be 
determined by dynamics. However, they can be estimated from simple consider- 
ations. It is clear that in the absence of gravitational interaction the quantities 
N(k,n)  remain constant. Then, for instance, under the assumption of bounded 
density N < 00 of oscillators satisfying the Fermi statistics it is easy to find that 
the occupation numbers corresponding to the ground state are 

[A(k), At(k')]- = N(k)63(k - k'), (3.7) 

N(k,  = q/J - f(k, n)), (3.8) 
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where e(z) = { 0 for t < 0 and 1 for t > 0}, and p is determined via the total 
number of oscillators N = C N(k, n). Using (3.8), one can found the number of 
oscillators corresponding to  a wave vector k as 

00 

N(k) = c e ( p  - d k ,  n)) = [I+ ( p  - 6o(k))/RI, (3.9) 
n=O 

where [t] denotes the entire part of I. In particular, one can see from (3.9) that  
N(k) = 0 for p < Eo(k). 

4 CONCLUDING REMARKS 

For the excited states formed by the action of the operators A+(k) on the ground 
state (3.8), the operator N(k) is the usual function (3.9). Let us consider exci- 
tations of the field (scalar particles) described by t.he thermal equilibrium state 
corresponding to  temperature T (one could expect that the spatial domains created 
near the singularity have a thermal spectrum [8]) .  Then the correlation function 
for the potentials of the field (3.1) takes form 

where @(k) = k2N(k)$cotanh($). In the wave number range k << (T ,p)  the 
spectrum of the field fluctuations IS scale-independent: ( s 2 ( k )  x TkN(k)  = Tp. 

We also note that he ground state determined by the occupation numbers (3.8) 
has a bounded energy density of the field which can be considered as a "dark 
matter". In addition, we note that the above property of the spectrum to  be scale- 
invariant at large scales for the thermal equilibriumstate, actually, does not depend 
on the statistics of the oscillators (i.e., upon the sign f in (3.3) and (2.5)). 
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