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Quantum cosmology was previously considered within the framework of the adiabatic theory only 
for vacuum short-wave fluctuations of the matter field. But the actual Universe is nonsteady, 
general equations of state of the matter field are nonequilibrium, and the matter tensor should 
be determined by averaging over an arbitrary nonequilibrium state. To describe such processes, 
Keldysh's diagram technique [l] extended to the case of curved space should be used instead 
Feynman's one. 

KEY WORDS Keldysh's diagram technique, quantum cosmology, nonequilibrium state 

The covariant description of a coupled quantum scalar field is given by the 
Tomonaga-Schwinger equation [2] : 

W [ t ( ~ ) I ) / ~ W  = W ~ ) l + [ W I ) l  (1) 

where t ( z )  is a spacelike surface, the functional +(z) is a field wave function, X I ( C )  
is a density of the scalar field selfinteraction Hamiltonian. For a derivative-free 
constraint, 3.1 = A(04/4. The field operators p(z) satisfy the known Klein-Fock 
equations. For the gauge conditions goo + det gij = goi = 0 ,  the parameter t = zo 
is a harmonic function [3 ] .  

Based on the Tomonaga-Schwinger equation, one can construct the Liouville 
covariant equation for the density matrix of a coupling scalar field in curved space: 

The solution of this equation is written in the form 

")I = S [ t ,  tOIP[tOlS+[t, t o ] ,  
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S[t,  t o ]  = Texp [-i 7f,(z‘) d4z]. 1 (3) 
t o  

Here S is the evolution operator, T is the chronological ordering operator. 
An arbitrary nonequilibrium state of the field is represented by a sequence of 

distribution functions and the field correlation functions. If the spectrum of a 
system is continious and the correlation functions are integrable in the momentum 
representation, these functions tend to zero for t o  --oo [4]. The condition t o  + 00 

means that the times t - t o  considerably exceed the relaxation time of short-wave 
fluctuations. 

From this theorem on attenuation of initial correlations, the Wick theorem for 
free field operators follows: 

i l  ... i .  i j  

The chronological products of any Heisenberg operators TA(t)B(t’), being func- 
tionals of p(z) averaged over arbitrary nonequilibrium state, may be written in the 
form 

(TA( 1) B( 1 ’ ) )  = (TeAo(t)Bo (2’)Sc [t rn, t o ] ) .  ( 5 )  
Here t, = max(t,t‘), Ao, Bo are the functionals for free field p(z), T, is a chrono- 
logical ordering along Keldysh contour going from the initial surface to(z) in the 
in-region to the surface I,(%) and back, Sc is the evolution operator along Keldysh 
contour. Denote the lower branch going from the past to the future by the “minus”, 
the back one by the sign “plus”. 

Keldysh’s diagram technique is based on introducing the matrix Green functions 

iGSS’(z, 2‘) = (Tcp(+)p(z’)), (6) 

where S,S’ = f, iG--(+,z’) = (Tp(t)p(z’))  is the causal Green function, 
iG++(t, 2’) = (~p(z)p(z’)) is the anticausal Green function, iG++(z ,  t‘) = 
(p(z‘)p(z)), iG+-(z, 2’) = (p(t)p(z’)) are the Whit.eman functions averaged over 
nonequilibrium statistic ensemble. 

Expanding evolution operator into a series and summing the diagram expansion 
of the Green function, we obtain the matrix integral Dyson equation 

GSS’(z, 2’) = GtS’(t, t’) + 1 GfS1(z, Y)C~’ ’~ (Y,  z)GSaS1 ( z ,  2’) d4yd4z, (7) 
Si,Sa 

where C is a mass operator, J is taken over the Keldysh contour. 

We have shown that the divergences in the terms containing a product of the 
mass operator C by the occupation number of the form npCnp for t o  + -ca can 
be summed, and the result is substituting the initial distribution function of quasi- 
particles np(to) by an exact np(tm) a t  the current instant tnl. 

C 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:1
3 

18
 D

ec
em

be
r 2

00
7 

QUANTUM COSMOLOGY 145 

The Green function satisfies the Dyson equation (7) containing an unknown 
function np(t) .  The equation for the function is obtained as an additional condition 
imposed on the solution to the Dyson equation: 

8np(t)/8t = [C, cf=-J'=+ 
As a result of renormalization, C and G are functionals of the exact distribution 

function of quasiparticle np(t) .  Substituting them into ( 8 ) ,  we obtain a closed 
kinetic equation for np(t) .  

The particle entropy is shown to be conserved in the self-consistent field ap- 
proximation. Thus, nonsteadyness of the Universe leads to an adiabatic rotation of 
the quasiparticle eigenfunction base, but does not lead to a change in quasiparti- 
cle nonequilibrium state population, which corresponds to the inverse process. In 
the collisional approximation the kinetic equation becomes irreversible in time. A 
quasiparticle collision integral leads to increasing the entropy. Nonstationarity of 
the gravitational field leads to actual transition from some states to others, which 
implies scattering of quasiparticles. 

The calculation of the energy-momentum tensor following the perturbation the- 
ory indicates proportionality of this tensor and distribution function. 

References 

1. 
2. 

3. 
4. 

Keldysh, L. V. (1964) Zhurn. Eksp. i Teor. Fir. 47, 1512-1527. 
Bogolyubov, N. N., Shirkov, D. V. (1957) Introduction into the Quantum Field Theory, 
Moscow. 
Polishchuk, R. F. (1987) Dokl. Akad. Nauk SSSR 292, 73-77. 
Kukharenko, Yu. A., Tikhodeev, S. G. (1982) Zhurn. Eksp. i Teor. Fiz. 83,  1444-1456. 


