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FRIEDMANN COSMOLOGY IN 
ALTERNATIVE SPATIAL DIMENSIONS. 

SOLUTIONS AND TESTS 

A. D. POPOVA 

Sternberg Astronomical Institute 

(Received May 15, 1994) 

Perhaps, spatial dimensionality decreases from 3 to 2 with growth of relative distance between 
bodies. This seems to be in accordance with observations of rotation curves of galaxies and 
pecular velocities in clusters of galaxies. This is also suggested by the discrepancy between the age 
of the Universe and that of globular clusters and galaxies. We obtain cosmological solutions for 
isotropic and homogeneous universes with spatial dimensionalities between 3 and 2, calculate the 
ages of the universes for the above dimensionalities and derive the three traditional cosmological 
tests for determining dimensionality and some other parameters of our Universe. 

KEY WORDS Cosmology, spatial dimensionality; cosmological tests. 

1 INTRODUCTION 

Modern physics is still based on the paradigms of (1) 3-dimensional space and 
(2) constancy of this dimensioidity. This is indeed so, although other values of 
dimensionalities appear in some recent physical theories like supergravity (West, 
1986), strings a.nd superstrings (Green et al . ,  1988) and the Kaluza-Klein type 
models with compactified additional dimensions (Duff et al . ,  1986). However, the 
a.ppearance (Mandelbrot, 1982) and the rapid development (Fractals in Physics, 
1985) of the theory of fractals as objects with non-integer dimensionality, as well as 
a tendency to describe the physical world as chaotic (Schuster, 1984) stimulate one 
to revise the above two paradigms. 

The notion of dimensionality is always of current interest. The historical and 
methodological discussion of this notion from antique times up to now by Gorelik 
(1983) certainly concerns only integer dimensionalities. Connection between dimen- 
sionality and fundamental physical laws was also considered, and it was  suggested 
that the number of dimensions in the early Universe could differ from 3 (Gorelik, 
1983). Later on, an attempt to  underst,and spacetime in classical a.nd quantum 
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166 A. D. POPOVA 

physics was done based on some extension of the principle of relativity and on the 
geometrical concept of fractals (Nottale, 1989). A more mathematically rigorous 
approach seems to be that of stochastic metrization of spacetime (Koloskov, 1990), 
it is also suitable for introducing non-integer number of dimensions: All the geomet- 
rical characteristics of Riemannian spaces were reformulated in terms of stochastic 
metrization and i t  was shown that any gauge theory of physical interaction may 
be constructed on the basis of a stochastically metrizied space (Koloskov, 1990). 
Interesting ideas come from information theory (Harmuth 1989): the finiteness of 
any information precludes the verification of whether our spacetime represents con- 
tinuum or not, but in a discrete space packaged in the 3-dimensional continuum 
space, an arbitrary number of dimensions is possible. 

As for the notion of dimensionality, the latter has a relative meaning because 
if there is only one material point in the world, it cannot know the number of 
dimensions of a surrounding space - several material points are required for that .  
The above notion is also relative in the sense that we should match it together 
with the conception of the absence of the absolute space. Thus, the dimensionality 
may be only a function of relative distance between two material points: at the 
point of observation, an observer fixes that any physical phenomenon at the other 
(observing) point is the same as if there were a space of n dimensions between the 
two points. If we have determined that there are 3 dimensions on laboratory scales, 
although a real number may be only very close to 3, i t  does not follow that the 
number of dimensions is the same on larger or smaller relative scales. 

The first part of the conception that we propose in this paper is that  the number 
of dimensions of physical space varies from the laboratory value 3 to  other values 
(n) when passing to larger relative scales. The change of dimensionality should be 
very small and possibly undetectable at scales of the Solar system. We should also 
clarify that since this change occurs when relative distance increases, for all the 
bodies, laws of microphysics (atomic structure, light emission, spectra, etc.) and 
those of intermadiate-scale physics (electromagnetic and gravitational interactions) 
remain the same. Thus they are the same for matter in our locality or for matter 
in, e.g., other galaxies. We only state that a large scale behavior of cosmic objects 
may differ from that prescribed by the concept of 3 dimensions. 

The question arises of how it  is understandable physically? The notion of simple 
fractals is hardly suitable for this purpose. A fractals is a self-similar object having 
the same (non-integer) dimensionality at all scales. Perhaps, we should invoke a 
more general geometrical object with some features of a fractals but with varying 
dimensionality. It may make sense to give a dynamic definition of dimensionality 
originating from laws of a spatial variation of forces and laws of light propagation. 
At any rate, clear image is unnecessary until there is a possibility of calculations. 
We should admit only that in a space with any (non-integer) number of dimensions, 
one can always draw a line (for n 2 1) and can construct a 2-dimensional surface 
(for n 2 2) and so on, that is necessary because, e.g., the physical image of a 
line is a light ray We should also think of which physical quantities depend on 
dimensionality and which ones do not. We assume that mass, energy and luminosity 
are independent quantities, whereas mass and energy densities and visual intensity 
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COSMOLOGY IN ALTERNATIVE DIMENSIONS 167 

are dependent quantities in the above sense, because "volume" and "surface area" 
have the physical dimensionalities (length)" and (length)"-', respectively. 

The most attractive scheme seems to be that the change of dimensionality occurs 
continuously with a relative distance between bodies. However, it would make a 
mathematical description too complete. It is simpler to suppose that dimensionality 
varies spasmodically on some characteristic relative distances Ro, R1, ..., Rj.  We 
give some preliminary classical (in the sense of Newtonian physics) considerations 
on this subject in Section 2. 

As of now, one usually describes gravitational interaction by Einstein equations 
at scales from the Solar system to cosmological ones. The description at each scale 
presumes some smoothing at a smaller scales and the definition given of a material 
point, or, in other words, of a negligible size. However, it may turn out that a choice 
of a different number of dimensions at each scale would lead to better description 
of the Universe. 

We recall that the ordinary Einstein equation 

has formally the same form in arbitrary (at least, integer) number of dimensions. 
This is also true concerning the Riemann and Ricci tensors, the Bianchi identities 
leading to the conservation law 

T;;u = 0, (1.2) 

and the hydrodynamic stress-energy tensor 

T p u  = EUpUu - P(Spu - u p u u ) .  (1.3) 

The only difference is that the constant d"), energy density E and pressure p have 
other physical dimensionalities. Note that another version of Eq. (l . l) ,  

shows an explicit dependence on n.  
Searching for solutions to (1.1) for arbitrary non-integer n meets with not only 

technical but rather conceptual difficulties. However, if our physical situation pos- 
sesses a high degree of symmetry, e.g., like that of homogeneous and isotropic Uni- 
verse, we may follow a simple way: We obtain cosmologital equations for integer 
n and after that we allow n to acquire arbitrary values when finding solutions to 
these equations. This is done in Section 3 where we represent solutions for both 
dust-filled and radiation-filled universes and for all the signs of the Gauss curvature. 

Up to this point, we discussed only variable dimensionality, but the next question 
arising is as how it changes, towards larger or smaller values? The second part of 
our conception is that the dimensionality changes from 3 at laboratory scales to 2 
at a limit of cosmological scales; there are two cosmological indications for this. 
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168 A. D. POPOVA 

The first indication is the discrepancy between the observed dynamics of galax- 
ies themselves and of groups and clusters of galaxies, on the one hand, and the 
deficiency of luminous matter, on the other hand. This problem is usually formu- 
lated as that  of hidden mass or dark matter. On needs a dark halo to explain 
the observed rotation curves of spiral galaxies (Burstein, 1985; Kent, 1986, 1987), 
high relative velocities in close pairs of galaxies (Turner, 1976) and so on, up to  
the explanation of high peculiar velocities, e.g., in the Virgo supercluster (Davies 
el d ,  1980). During a long time, people discuss different candidates to  the role of 
dark matter, see, e.g., (Turner, 1989). Note that the standard model for large-scale 
structure formation where the main mass density is in the form of cold dark matter 
(Davies el  d., 1992a) has a difficulty in matching velocity field of galaxies and the 
observed structure on very large scales. Actually the most satisfactory model seems 
to be that of a mixture of cold and hot dark matter, in the framework of which one 
can overcome the above difficulties (Davies ei! al . ,  1992b). 

However, any conception of dark matter adopted in order to improve dynamics 
causes some dissatisfaction by its artificiality, that  is why there were attempts to 
modify Newtonian laws in order to  recalculate dynamics in itself. A term inversely 
proportional to  distance (r-’) added to the gravitational force was analyzed (Kuhn 
and Kruglyak, 1987). An interesting attempt was to modify the first Newton’s law 
at small accelerations (Milgrom, 1983, 1987). However, such non-relativistic con- 
siderations can be hardly matched with general relativity. Some other relativistic 
theories were proposed for example, consequences of the Branch-Dicke theory were 
considered (Visser, 1988). We think that the required slower law of decay of the 
gravitational force can be explained if the space dimensionality is less than 3. As 
mentioned above, this is in agreement with (a somewhat modified) relativity. More- 
over, a smoothly decreasing dimensionality a t  larger scales can explain the fact that 
dynamics of matter varies when passing to larger scales in such a way that one 
should introduce larger effective density of dark matter (Davis et ~ l . ,  1980). By 
the way, the problem of the origin of the structure of interacting galaxies is better 
resolved when the law of gravitational force lies somewhere between r-2 and r-l  

(Wright e t  al . ,  1992), or in our terms, the dimensionality lies between 3 and 2. 
The second indication concerns the discrepancy between the age of galaxies and 

globular clusters and the age of the Universe coming from the Big Bang theory. 
This fact follows from dating the age of galaxies by color measurements (Bruzual, 
1983), the age of Galaxy from its chemical composition (Lawler e t  al., 1990) and the 
age of Galaxy’s globular clusters (van Albada e2 al.,  1981). We show in Section 4 
that the age of the Universe increases when n decreases. We show in Section 5 that 
for linearly expanding solution in the case n = 2 for the dust-filled Universe with 
positive curvature the age of the Universe is one and a half of that for n = 3 and 
that there is, for n = 2, a closed dust-filled stationary solution without cosmological 
constant, which formally implies an infinite age. The latter solution can be t,reated 
as asymptotical for large times. 

Certainly, we realize that the acceptance of the presented conception wculd lead 
to a major revision of all ideas about our Universe. To be convinced that the case of 
the above discrepancies is just the dimensionality, one should bring in correIation all 
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COSMOLOGY IN ALTERNATIVE DIMENSIONS 169 

independent observations: photometrical measurements, counts of sources, velocity 
measurements and so on. 

I n  this paper we present the derivation of the three traditional cosmological tests, 
namely visual magnitude, angular size and the number of sources versus redshift. 
We obtain them in Section 4 for arbitrary values of n. In Section 5 ,  we consider a 
special case n = 2, obtain solutions to Einstein equations and rewrite explicity the 
above tests for this case. Concluding remarks are given in Section 6. 

2 CLASSICAL PRELIMINARIES 

Following theory of potential, one usually writes the Poisson equation for gravita- 
tional attraction of an isolated mass M ,  embedded in 2- and 3-dimensional spaces, 
in the forms 

L ~ ( ~ ) @ ( T )  = 2 7 d 2 ) M d 2 ) ( r ) ,  

A(3)@(~)  = ~ T G ( ~ ) M ~ ( ~ ) ( T ) ,  

where A(2) and A(3) are the Laplace operators in the 2- and 3-dimensional space, 
@ ( T )  is the gravitational potential, G(') and G(3) are the gravitational constants 
which we supply with the relevant indices, d2) and d3) are the 2- and 3-dimensional 
&functions. This suggests to generalize the similar Poisson equation in an n- 
dimensional space as 

A ( ~ ) @ ( ~ )  = s ( " ) G ( ~ ) M s ( ~ ) ( T ) ,  (2.1) 

where A(n) is the n-dimensional Laplace operator. The quantity 

is the (n - 1)-surface area of a unit n-sphere. We call an n-sphere the set of points 
of the n-dimensional space which are equidistant from some center. The sense of 
G(") and S ( " )  is similar to above. Note that the surface and volume of the n-sphere 
are 

s(n) s(") = s(n)rn--l, v ( n )  = -r". 
n 

For the &function, we always have 

1 dV(")6(")(T) = 1. 

Let us note that the solution to  (2.1) depends only on the radial coordinate r .  
The pure radial part of the Laplace operator in spaces with integer n is 
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170 A. D. POPOVA 

however, we generalize this formula to  arbitrary n. The radial-dependent solution 
to (2.1) decreasing at  spatial infinity is 0: r - (n -2 )  for n # 2.  Using the generalized 
Gauss theorem, we can relate the constant in (2 .1)  to  a constant required for the 
above solution. Thus, for n # 2,  the potential is 

with C(") an arbitrary constant, whereas the force acting on unit mass is 

In the case n = 3 ,  (2 .3 )  and (2 .4)  reduce to their ordinary forms: 

where we have imposed C(3)  = 0. In a special case n = 2 ,  

G ( ~ ) M  ~ ( 2 )  = G ( ~ ) M  In p + ~ ( 2 1 ,  ~ ( 2 )  = - -. 
r 

Thus, we can see from (2 .2 )  and (2 .3 )  that lesser values of dimensionality (from 
3 to 2 + E )  provide a slower decrease of potentials and forces. 

Unfortunately, we have no evident way to describe a smooth change of dimen- 
sionality with distance: first of all, we have no law of this change. Thus, we assume 
that the dimensionality changes abruptly from n = 3 to an arbitrary n. From phys- 
ical arguments, if the leap of dimensionality occurs at a distance Ro from a material 
point, at the first step, we should match together not potentials but forces at Ro. 
Then we obtain the following expression for the gravitational constant ( n  # 2) :  

G(") = G(3)Ri-3. 

At the second step, matching dn) for n # 2 and d3) at & gives 

3 - n G ( 3 ) ~  
n - 2  RQ 

We stress once more that we consider Ro a relative distance between any two 
material points. Or, in other words, every material point possesses its own Ro- 
sphere. If we decided to consider a Ro-sphere which had a rigid location in space, 
then matching two forces for points located at  different distances from the center of 
the sphere would lead to different "constants", the latter would diverge for points 
located at the radius Ro itself. 

If the changes of dimensionality occur by leaps several times from 3 to nl at Ro, 
from nl to  n2 at R1 and so on, and from n, to n,+l a t  R,, then we have a chain of 
relations between the gravitational constants 

C(") = - -. 
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COSMOLOGY IN ALTERNATIVE DIMENSIONS 171 

Evidently, the same considerations might be made for the electromagnetic in- 

The gravitational constant G(") can be connected with the constant K(")  in the 
teract ion. 

Einstein equations (1.1). Let us write as usual, 

then, in the main order in c - ~ ,  

Taking the " 8 " equation from the set (1.4), and assuming 

Ti = Mc26(")(r), rr;" = 0 

for the isolated mass, we obtain 

Whence, one immediately sees that in order d2) be finite for n = 2 it is necessary 
that 

G(") o( (n - 2) Const, (2.5) 
that is G(2) vanishes. 

Consider now light propagation. First of all, we consider the situation when an 
observer is located a t  a distance r from a light source, outside the Ro-sphere of the 
source ( r  > Ro). Let, at instance, the observer does not posses his own Ro-sphere, 
thus he is located in n dimensions (see Figure 1). The postulate that energy is not 
dissipated when passing from n = 3 to an arbitrary n guarantees that the observer 
can fix the visual intensity 
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172 A. D. POPOVA 

t 
Figure 1 If an observer does not have his own &-sphere, he fixes visual light intensity in the 
n-dimensional space and cannot make the conclusion of whether or not the light source has its 
&-sphere. 

in the n-dimensional space. Thus, there are no possibilities to determine the di- 
mensionality near the light source, only the dimensionality near the observer can 
be determined. 

Now, let the observer also possess an Ro-sphere. We construct the segment 
AB of the radius r going through the observer (the center of the Ro-sphere) up to 
its intersection with a cone tangent to the Ro-sphere, see Figure 2 .  Since energy 
passing through the cone is constant, we write 

(We neglect the small parts a t  the edges of the segment AB lying outside the Ro- 
sphere). Here, E(3)  is the real visual intensity in the 3-dimensional space, E(") is 

and 
S$m are the surfaces of the n-dimensional and 3-dimensional segments AB: 
the visual intensity which could take place in the n-dimensional space, Ssegm (") 

$&,, = 21rrH, 

where H is the height of the segment AB: 

H = r - d r 2  - R:, (2.10) 

and F is the Gauss hypergedmetric function. 

definition for the distance modulus should be replaced by the following one: 
We suppose that the quantity Ro exceeds 10 Kpc, then using (2.7) the standard 
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I I 
I 

. / 
/ 

Figure 2 The presence of an &sphere at the observer's location changes visual intensity at the 
point of observation. The hypotheses is that the luminosity passed through the segment AB in 
the n-dimensional space and the same segment in the 3-dimensional space does not dissipate. 

where m is a visual magnitude, M is an absolute magnitude and 

(2.12) 

Combining expressions (2.8)-(2.11) and (2.12), we can write 

m - M = 2.5(n - 1) lg r  - 2.51gp(") - 5 - - 5(n - 3) 1 g r ( r -  Jq) 
4 

(2.13) 

where 

is the number which is equal to unity for n = 3: j3(3) = 1. 

reduces to 
Under the assumption that Ro is substantially less than r ,  Ro << r, (2.14) 

r n - M  = 2.5(n- l ) lgr-2 .51gP(")-5+2.5(3-n) lg-  RO 
Jz 

(n - 1)(3 - n) lge (+)2. 
16(n + 1) 

- 5  (2.15) 

Obviously, independently of the magnitude of Ro, (2.13) and (2.15) are converted 
into the standard formula in n = 3: 

m -  M = 5 l g r - 5 .  
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3 EINSTEIN EQUATION AND SOLUTIONS 

Consider the Rienannian space which is the topological product of the time axis and 
isotropic n-dimensional space. A derivation similar to that in Landau and Lifshitz 
(1988) shows that the metric interval can be represented as 

ds2 = c2 dt2 - a2( t )  [dr' + $ ( r )  d d " ) ' ] ,  ( 3 4  

where ddn)  is the angular distance element at the surface of an n-sphere in the 
Euclidean n-dimensional space. This quantity is not further required in its explicit 
form. The function @(r)  with r the coordinate radius is independent of the number 
of dimensions, 

sinr, 0 5 r 5 T ,  k = +l; 
@(r) = r, r 3 0, A = 0; (3.2) { sh r ,  r 2 0 ,  k = -1. 

The parameter k = +1,0, -1 determines, as usual, positive, zero and negative Gauss 
curvature, respectively. 

The Christoffel symbols are formally the same as for the 3-dimensional space 
(dot denotes differentiation with respect to  1 ) :  

(here and below, i,j, A: = 1,2 ,  ..., n and ~ , @ , y  = 0, 1,2, ..A). The components r i k  
correspond to the n-dimensional space of constant curvature. Components of the 
Ricci tensor are 

Ri o - o ,  - Rf=- -  [aii + (n - 1>(iz2 + c2k)la;. 
a R; = -nZ, 

C2Q2 

Let our spacetime be filled with homogeneous and isotropic matter with energy 
density E ( t ) ,  pressure p ( t )  and (n + 1)-velocity uQ = (1,0,. . . , 0). Components of 
the hydrodynamic stress-energy tensor (1.3) are 

q = 6 ,  = 0, q k  = -pa:. 

Note that the trace of this tensor is 

T = E - np. 

The set of the Einstein equations (1.1) now reduces to two equations: 

(3.3) 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:1
3 

20
 D

ec
em

be
r 2

00
7 

COSMOLOGY IN ALTERNATIVE DIMENSIONS 175 

which are not independent. The constant K(")  is given by (2.4). Conservation law 
for the stress-energy tensor (1.2) now is 

& + 12-(E a + p )  = 0. 
a 

We shall also need an equation with the curvature sign k eliminated by combining 
Eqs. (3.4) and (3.5): 

a 

a 
n(n - 1)- = -.'""(n - 2)E + np].  (3.7) 

In order to make the set of Eqs. (3.4)-(3.6) fully determined, equation of state 
f ( ~ , p )  = 0 is required. We consider two interesting and traditional cases, namely, 
that of dust matter: 

P = 0, (3.8) 
and that of radiation-filled Universe. The second case corresponds to the situation 
when the trace of the stress-energy tensor (3.3) vanishes: 

E 
p =  -. 

n (3.9) 

Now, having these equations, we can forget that n is an integer number and 
assume that it can be an arbitrary number. The analysis below is done separately 
for all the values of k. 

(i) k = +l .  In this case, the Universe is close and it is easy to calculate its total 
volume, 

(3.10) 

where 

Thus, the volume of the n-dimensional space of the close Universe is equal to 
the surface area of an (n+ 1)-sphere embedded to the Euclidean (n+ 1)-dimensional 
space. For n = 3, (3.10) gives the well-known result, V ( 3 )  = 27r2a3. 

The substitution of the equations of state (3.8) or (3.9) into Eq. (3.6) leads to 
evolutionary equations for the energy density 

(3.11) 

(3.12) 

where Cl and C2 are some constants. We write Eq. (3.4) in a unified form for the 
above two cases 

1 
-n(n - 1)(ci2 + c2) = n(n)Ca-Q, (3.13) 2 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:1
3 

20
 D

ec
em

be
r 2

00
7 

176 

where 

A. D. POPOVA 

p = O :  C=C1, cr=n-22;  

p = ; :  & C=C2, c r = n - l .  

(3.14) 

(3.15) 

It is clear from (3.13) that the scale factor a passes through a maximum vaIue 
amax when Q = 0, so that expansion of the Universe gives way to its contraction, 

amax = n(n - 1) 

Eq. (3.13) can now be rewritten in a more convenient form: 

(3.16) 

Solutions to  (3.16) give a as implicit functions of time 

(3.18) 

where F is, as before, Gauss’ hypergeometric function, 

n 
2(n - 2 )  ’ Y1 = 

n + l  
2(n - 1) ’ 72 = 

(3.19) 

(3.20) 

It is worth noting that in the case of dust matter, (3.8),  the constant a?& can be 
related to the total m a s  M of the Universe. Indeed, Eq. (3.11) can be rewritten 
in terms of the total volume (3.10) and the mass M :  

Then 

a$i, = 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:1
3 

20
 D

ec
em

be
r 2

00
7 

COSMOLOGY IN ALTERNATIVE DIMENSIONS 177 

Table 1. The values of t:ix, i.e., the time intervals required to reach the 
maximum values of the scale factor in units aCix/c = 1 and for va- 
rious values of n between 3 and 2. These values are in accordance with solu- 
tions presented at Figures 3 and 4 which correspond to the closed Universe 

n Dust ( p  = 0) Radiation (Q = &In) 

3.0 
2.8 
2.6 
2.4 
2.2 
2.0 

~ 

1.571 
1.797 
2.125 
2.667 
3.866 
00 

1 
1.075 
1.164 
1.271 
1.403 
1.571 

With  the  use of (3.17) and (3.18), i t  is easy to calculate t ime interval &‘Jx after 
which uk& is reached: 

p = o :  tcix= 

see numerical values of tkix in Table 1. 
(ii) k = 0. In the case of flat n-dimensional spacer we obtain explicit solutions: 

(3.21) 

(3.22) 

henceforth, index “0” is used for the modern values of corresponding quantities. 
(iii) k = -1. After substituting (3.11) and (3.12), Eq. (3.4) acquires the form 

(3.23) -n(n - 1)( i2  - c2) = Jn)Ca-’l 

in terms of the notations (3.14) and (3.15). In this case, there exists no  amax, and 
expansion of the  Universe continues forever. However, Eq. (3.23) can be written in 
a more compact form similar to (3.16): 

1 
2 

a = c [(a)” + 

where the constant A is connected in some way with the constant C. T h e  solutions 
are 

(3.24) 
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with the same expressions (3.19) and (3.20) for y1 and y2. 
Note that for arbitrary n the hypergeometric function cannot be expressed via 

elementary functions, although, due to  its special form, i t  can be reduced to the 
generalized Legendre functions with non-integer indices (Handbook of Mathematical 
Functions, 1964). I t  is also interesting to note the formal mathematical fact that,, 
for every k, the solution with p = c/n in the n-dimensional space corresponds to 
the solution with p = 0 in the (n  + 1)-dimensional space. 

The physical property of the solutions (3.17), (3.18) and (3.24), (3.25) is that 
for small t 

p = o :  a d f n ,  

p =  - .  . a o( t2I(n+'). 
n 

These asymptotic forms correspond to solutions (3.21) and (3.22) in the case 
of flat space. Thus, the fact that curvature does not affect the origin of expansion 
applies for all n. 

Clearly, solutions (3.17) and (3.24) are not fit directly for n = 2 (see the case 
n = 2 in Section 5 and captions to Figures 3 and 7). 

In the case n = 3, we can derive from the solutions (3.17), (3.18), (3.21), (3.22), 
(3.24) and (3.25) the well-known OIICS: 

(i) k = +I .  

p = o :  
amax amax amax 

& a = c (2*t - t 2 )  , 
C 

(3.26) 
p = ?  

with 
4GM a(3) = - 
3nc2 max 

in the case p = 0 (cf. Landau and Lifshitz, 1988). The times of reaching are: 

(ii) k = 0. 

p = o :  

3 '  
p = -  € .  

p = o :  

E p z - 0  
3 '  

(3.27) 

(3.28) 
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1 .  

1 .  

0. 

0. 

0. 

0. 

0. 

20 

00 

80 

60 

40 

20 

,00 , . . . . . . . . . I - . - . - - - - '  3.. ,Os . . . . . . . 

0.88 1 .OO 2.00 - .  - - - 4.00 

Figure 3 The family of solutions (3.17) for the dust-filled Universe (p = 0) with positive curva- 
ture (k = +1) is presented for n = 3.0, 2.8, 2.6,. 2.4, 2.2 and 2.0; units are such that c = 1 and 
a c i x  = 1. Solutions (3.17) determine in fact the only branches which increase up to a = = 1. 
Each full solution should be obtained by adding a decreasing branch which is symmetric to the 
above branch under the reflection with respect to the vertical line t = t o x  where &iX is the time 
for reaching a',=?. Decreasing branches are shown dashed. The straight line for n = 2 is drawn 
with arbitrary inclination. The real inclination is connected with fundamental constants and the 
mass of the Universe (see Section 5). There is no finite limit of the solution (3.17) for n tending 
to 2 because tkJx tends to infinity, thus such a straight line would have zero inclination. 

(iii) k = -1. 

p = O :  A [ ( : ) ' I2  

E r /  
(1 + %) ' I 2  - arsinh (:) = ct ,  

(3.29) 

All the above solutions are presented in Figures 3-8 for the two equations of 
state (3.8) and (3.9) and for all the values of k when n acquires various values from 
3 to 2. 

For the derivation of the cosmological tests, it is convenient to introduce the 
parameter ~ ( " ) ( t ) :  
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1.201 

1.004 

0.804 

0.60 1 

% . \  . 

t 

Figure 4 The family of solutions (3.18) for the radiation-filled Universe ( p  = e / n )  with positive 
curvature ( k  = +1) is presented for n = 3.0, 2.8, 2.6, 2.4. 2.2 and 2.0; units are s u c h  that c = 1 
and = 1.  As in the case p = 0 (see Figure 3) each full solution can be obtained by adding 
a decreasing branch shown dashed. Solution for n = 2 coincides here with the dust solution for 
k = +1 and n = 3. 

(3.30) 

where the (time-dependent) critical density is determined from Eq. (3.4) when k = 0 

(3.31) 

H ( 1 )  = h / u  is the IIuhble parameter. As usual, 0 < Q(") < 1 for h = -1, R(") = 1 
for h = 0,  and O(") > 1 for k = + l .  As a rule, index "(n)" at s1 will be omitted 
below. The  deceleration parameter is defined as always 

(3.32) 
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1.203 

-I 
/ / I  1.004 

0.40d 

Figure 5 The family of solutions (3.21) for a dust-filled Universe ( p  = 0) with zero curvature 
(k = 0) is presented for n = 3.0, 2.8, 2.6, 2.4, 2.2 and 2.0; we put to  = 1 and a0 = 1. The solutions 
are calculated up to a = 1 and continued by dashes. A solution for n = 2 is a straight line with 
the inclinations equal to unity. 

Using (3.30), (3.31) and (3.32), we obtain from (3.7): 

n - 2  
p = 0 : q y t )  = -n(t), 

E n - 1  
n 

p = - :  q'"'(t) = ,-Q(t). 

4 THE AGE OF THE UNIVERSE AND COSMOLOGICAL TESTS 

(3.33) 

In order to obtain the age and cosmological tests, we should make some preliminary 
work and express all necessary quantities via the redshift z .  We now deal only with 
the case p = 0. 

Clearly, the relation determining z (Zeldovich and Novikov, 1975; Weinberg, 
1972), 
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1.201 

1.001 

0. 

0.604 

0. 

0.00 0.20 0.40 0.60 0.80 

Figure 6 The family of solutions (3.22) for a radiation-fded Universe ( p  = e / n )  with zero 
curvature (k = 0) is presented for n = 3.0, 2.8, 2.6, 2.4, 2.2 and 2.0; we put to  = 1 and a0 = 1. 
Solutions are calculated up to a = 1 and continued by dashes. A solution for n = 2 coincides here 
with a dust solution for k = 0 and n = 3. 

XO - X e  

X e  
z=- 

is independent of spatial dimensionality. Here X denotes the wavelength of emitted 
radiation, index “0” corresponds to the moment of observation and index “e” cor- 
responds to that of emission (Ae G X is the proper wavelength). Since X(t )  oc a(t) 
independently of n, we can write as usually 

a(t,) E a, = ao(l+ . ) - I .  (4.1) 

The quantity a0 can be expressed (Zeldovich and Novikov, 1975) via the modern val- 
ues of the Hubble parameter, Ho,  and the density parameter, Ro. Taking Eq. (3.4) 
a t  the moment t o  and expressing its right-hand via Ro (see (3.30) and (3.31)), we 
obtain 

a0 = C H , ’ [ ~ ( R ~  - I>]-’/* = C H ~ ~ ( I R ~  - II)-’/’. (4.2) 
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1.20 

/ 1 .OO 

0;80 

0.60 

0.40 

0.20 

t 
0.00 ; 1 1 1 1 1 1 1 1 l ( 1 1 1 l 1 1 1 1 1 1 1 1 ~ 1 ~ ~ ~ ~ 1 1 1 ~ ~ ~ ~ ~ ~ ~ ~ 1  

0.00 0.20 0.40 0.60 0.80 

Figure 7 The family of solutions (3.24) for a dust-filled Universe (p = 0) with negative curvature 
(k = -1) is presented for n = 3.0, 2.8, 2.6, 2.4, 2.2 and 2.0; we put c = 1 and A = 1. Solutions are 
calculated up to a = 1 and continued by dashes. There exists a finite limit of the solution (3.24) 
for n tending to 2. This is a straight line with the inclination 1/& and this solution is shown on 
the graph. The real inclination depends on arbitrary constants, see Section 5 .  

In the case Ro = 1, a0 remains an arbitmry parameter and it does not enter final 
formulae. 

Using (4.1), Eq. (3.11) for energy density can be rewritten in terms of matter 
density: 

P = pcoRo(l+ z)",  (4.3) 

where pco is the modern value of the critical density, it is expressed via Ho similarly 
to (3.31). 

Now we obtain equation for the dimensionless Hubble parameter h = H/Ho.  To 
do this, Eqs. (3.7) and (3.6) should be represented in the form 

(4.4) 

(4.5) - d p  = -nHp. 
dt 
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/ / /  / / / 
/// / / / 

t 
0.00 0.10 0.20 0.30 0.40 0.50 0.60 

Figure 8 The family of solutions (3.25) for a radiation-filled Universe (p = a / n )  with negative 
curvature (k = -1) is presented for n = 3.0, 2.8, 2.6, 2.4, 2.2 and 2.0; we put c = 1 and A = 1. 
Solutions are calculated up to a = 1 and continued by dashes. A solution for n = 2 coincides here 
with a dust solution for k = -1 and n = 3. 

We need d p  in the form following from (4.3): 

d p  = npcORo(l + z)"-l  d r .  (4.6) 

Eliminating dt from the set of equations (4.4) and (4.5) and substituting (4.6) there, 
we obtain 

d h  n - 2 Ro h 
dz 2 h  l + Z  

- -(1 + z y - 1  + -. (4.7) 

The solution to (4.7) with the initial condition h = 1 at z = 0 is 

(4.8) 
112 . h = (1 + z ) [  1 - no + % ( I +  ,)"-'I 

After substituting (4.8) and (4.2) into (4.5), the differential dt can be expressed via 
dz :  

(4.9) 
dz - - dz 

Ho(l+ z ) h ( z )  - Ho(1 + z)"l - Ro + Q o ( l +  z)"-211'2' 
dt = - 
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Table 2. 
values of n and O r ' ,  see (4.10) 

The values of the dimensionless age hn) for various 

n 

0 0.1 0.3 1 3 10 

3.0 1 0.898 0.809 0.667 0.513 0.351 
2.8 1 0.925 0.848 0.714 0.560 0.390 
2.6 1 0.950 0.888 0.769 0.619 0.442 
2.4 1 0.971 0.929 0.833 0.696 0.515 
2.2 1 0.988 0.967 0.909 0.806 0.638 
2.0 1 1 1 1 1 1 

Equation (4.9) is very convenient for the calculation of the age of the Universe. 
It can be obtained by performing integration of (4.9) over t from z = 00 up to 
z = 0: 

This integral can be expressed via elementary functions for the cases n = 3 and 
n = 2 with arbitrary Ro or for the case Ro = 0 and Ro = 1 with arbitrary n.  For 
n = 3 the resulting expression is in agreement with that given by Zeldovich and 
Novikov (1975). For the case n = 2: see Section 5. We give a table of the values 
of dn) for various n and Ro (see Table 2); t(") = 1 for Ro = 0 and t(") = 2/71 for 
Ro = 1.  

The metric radius at  the moment of light emission, re,  should be also expressed 
via t .  For the light ray propagating from a light source to us, using (4.9), 

(4.11) 
The metric radius is given by the integral of (4.11) over z from z = 0 up to  a current 
z :  

1 
n - 2  

2 

2 
n - 2  

Ro = 1; 

520 > 1; 

(4.12) 

arctan - arctan 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:1
3 

20
 D

ec
em

be
r 2

00
7 

186 A. D. POPOVA 

where we denote 
( ( 2 ,  no) = [ Q o ( l  + 2) ( " -2 )  + 1 - Q o ]  1/2. 

Equations (4.12) are valid for n # 2 only (see Section 5 for n = 2). 
Distance along the n-dimensional sphere is determined by the functions (3.2): 

- arctan I}, Qo > 1.(4.15) 
2 

(520 - 1)1/2 

Expanding (4.13) and (4.15) in series in z ,  the results are the same in the first and 
second approximations 

P(2) = (I1 - Qol)l/2z (4.16) 

while (4.14) leads to 

+ ( z )  = - 2 1 - - 2  , Q o = 1 .  (4.17) 
ao Ho ( I >  

We need also the quantity a$ which is the same for all the values of Ro: 

(4.18) 

Now we are in the position to derive the cosmological tests. 
(i) Visual magnitude - redshift. Following Zeldovich and Novikov (1975), we 

should write expression for bolometric visual intensity in our curved n-dimensional 
space in two equivalent forms: 

(4.19) 

where k is the distance determined from the angular size of a source (see below). 
It is evidently independent of n: 

- 
R = a(le)P(re). (4.20) 

This formula admits two interpretations. The first equality states that the luminos- 
ity L is distributed over the surface area s(")(ao+)"-' at the moment of observation; 
one factor (1 + z )  describes decreasing the frequency of an individual quantum, and 
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the other factor (1 + z )  describes decreasing the frequency of the appearance of 
subsequent quanta. The second interpretation is suggested by the second equality 
in (4.19). The quantity s(")ji"-' describes the surface area on which the radiation 
would flow unless the scale factor increases, the factor (1 + z)"+l describes decreas- 
ing the brightness which is proportional to energy decreasing. The latter statement 
is valid because the law (3.6) is the most general conservatidn law, it is also suitable 
for quanta propagating in the Universe filled by dust: squanta CK (1 + z)"+'. By the 
way, due to  the Boltzmann law, it follows that 

T 0: (1 + z)* 

for the brightness temperature. 
The substitution of (4.19) into (2.11) gives 

mbol - MboI = 2.5 {lg[s(")(~O@)"-'(l + z )2 ]  - l g 4 ~  + lg$:&, - lgsi:,"} - 5. 

Evidently, the distance r in the expressions (2.8) and (2.9) for the surface area of 
the segments should be replaced by the quantity a@. We suppose that Ro is much 
less than a09 : Ro << ao@. Then, in accordance with (2.15), 

RO 
fi mbol - Mbol = 5 lg(1 + .%) - 5 + 2.5 (3 - T I )  lg - + (7t - 1) lg(ao@) 

For small z under the assumption that RoHo/cz << 1 ,  using (4.18) 

QO l g e - 5  1 [5,, ( n - l ) ( n - 2 )  
8 mbol - Mbo] = 52 - - 

cz Ro 
( n  - 1) lg - HO + (3 - T I )  lg - Jz - lgp(")] 

- -  5 (n - 1)(3- T I )  lge (F)2. 
16 n + l  

(4.21) 

In the case n = 3, (4.21) can be reduced to that given by Zeldovich and Novikov 
(1975): 

mbol = 5 lg z + 1.086( 1 - qf ')Z + Const. 

(iiJ Angular size - redshift. Following Zeldovich and Novikov (1975), the quan- 
tity R in (4.19) is just determined as the size 1 of an object divided by its angular 
size 8:  

Exact formulae for R can be obtained by the substitution of (4.1), (4.2), (4.13), 
(4.14) and (4.15) into (4.21). Considering the first and second approximations in I 
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and using (4.1), (4.2), (4.16) and (4.17), we obtain for all the values of Ro: 

For n = 3, (4.22) reduces to  the known expression 

Recalling (3.32), (4.22) may be equivalently rewritten in the form 

(4.22) 

(4.23) 

without explicit dependence on the dimensionality of space. 
(iii) Number of sources - redshzfl. The differential of the number of sources 

at a moment t ,  is equal to the product of the density of sources N ,  area of the 
n-dimensional sphere at the distance re and the differential of the radial distance: 

d N  = N(te)s(")[a( te)g(re)I"-la( t , )  dr,. (4.24) 

Let us assume that the density of sources is proportional to  a total matter density, 
which is natural for p = 0: 

N = No(1 + 2)". (4.25) 

Then, substituting (4.25) into (4.24) and using (4.1), (4.2), (4.16), and (4.17) 
for remaining quantities, the resulting expression is suitable for all the Ro: 

or, in terms of the deceleration parameter, 

d N  =Nos(")  (&)" 

5 THE CASE OF TWO-DIMENSIONAL SPACE 

We have been convinced that the case n = 2 is quite special because many of 
expressions obtained are not suitable for it: they contain the factor ( n  - 2) in 
undesired combinations. That  is why this case is treated separately. 

The metric interval (3.1) now becomes 

ds2 = c2 dt2 - a 2 ( t ) ( d r 2  + g 2 ( r )  d p 2 )  

with 0 5 'p 5 27r. 
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For n = 2, the set of equations (3.4)-(3.6) acquires the form 

4 2  -+ -=-  
c 2 a 2  a2 c2 &, 

(5.2) 

Certainly, we assume that &) is finite, or, in other words, (2.5) is fulfilled. 
As in Section 3,  we analyze separately the cases k = +1,0,-I and the two 

equations of state, (3.8) and (3.9). 
(i) k = +l.  In this case, $(r) = sin r so that the coordinate r is equivalent to the 

angle of latitude on the 2-dimensional sphere embedded in the flat 3-dimensional 
space (0 5 T 5 T ) .  

I t  is seen at glance that there exists a stationary solution for dust matter ( p  = 0). 
Let is = 0, then it follows from (5.2) that i = 0 and Eq. (5.1) gives the connection 
between the scale factor and the energy density: 

I t  is a remarkable fact that this situation is impossible for n # 2: there are no 
stationary solution without the cosmological constant. Some preliminary investiga- 
tions assure us that small fluctuations on the background of this solution do not 
grow in time. Thus, this solution seems to be stable. 

Although solution (5.3) is distinct, it is not the only solution for dust matter. 
For p = 0, the general solution to (5.2) is 

p = 0 : & = c1a-2. (5.4) 

Recalling that,  from (3.10), the volume of the 2-dimensional closed Universe is 
47ra2, so that (5.4) can be written as follows 

M c2 
€ 0 2  = -, 

4lr 

The substitution of (5.5) into (5.1) gives the general solution: 

For the initial condition a = 0 at  t = 0, 

(5.5) 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:1
3 

20
 D

ec
em

be
r 2

00
7 

190 A. D. POPOVA 

The solution (5.4) can be derived from (5.6) if we impose 

tC(’)M -- - 1, 47r 

which is equivalent to (5.4). In this case 

In summary, the 2-dimensional closed Universe filled with dust matter expandes 
forever with a linear law of expansion or it is stationary. 

In the case of a radiation filled-Universe, as before, 

p = : 6 = ~ ~ a - 3 ,  

and Eq. (5.1) has the equivalent form 

(5.7) 

The solution 

= d  & 1-- 
amax amax 

coincides with the solution (3.26) in the c k e  n = 3 for dust matter as mentioned 
(2) above. The time for reaching amax is also the same as in (3.27). 

(ii) k = 0. On substituting Eq. (5.4) into (5.1), we obtain 

p = 0 : a = Constl t + Constz, 

that is the linear law of expansion with a non-vanishing constant coefficient at t (it 
might vanish only together with energy density). In terms of uo and to, 

L 
a = a()-. 

t 0  

Further, from (5.1) and (5.6), 

(cf. (3.21)-(3.22)). The solution (5.9) coincides with (3.28). 
(iii) k = -1. For dust matter, the solution is the same (5.8). For pure radiation, 

(5.10) 
& A ( A  + - al/’ 

u’/’(A + + 2 In ( A  + + = ct 
p =  2 :  

(cf. (3.29) which is merely another form of (5.10)). 
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Expressions of Section 3 for the critical density and and q ( 2 )  remain valid 
after imposing n = 2 in (3.31) and (3.33) and under the assumption (2.5): 

p!2) = (c2d2))-l  H2(t) ,  

p = o :  p = o ,  (5.11) 

Thus, for all the values of k, the Universe with dust matter in n = 2 is described 
the linear law of expansion. This can be also seen from (5.11). 
The age of the Universe is given by (4.10) after putting n = 2 

M 

It is clear that the age of the 2-dimensional Universe is independent of 520. Its 
value is one and a half of the age of the flat 3-dimensional dust-filled Universe (see 
Table 1). 

Now we return to  the above cosmological tests which have been also derived in 
the case n = 2. For n = 2, Eq. (4.7) is independent of 520: 

dh h 
d t  l + t ’  

- -- - (5.12) 

Solution to  (5.12) is 

For all the values of Ro (see (4.11) and (4.1) which are valid in arbitrary n for the 
differential dr,) 

re = - l n ( l +  z) .  

(Recall that  a0 is expressed by (4.2) in the case Ro # 1 and is arbitrary in the case 
Ro = 1). The functions (3.2) now are: 

h = (1 + %). 

C 

aoHo 

I = 

sh[(l - R O ) ” ~  ln(1 + t)], 0 < Ro < 1; (5.13) 
C 
- h ( l +  z ) ,  
aoHo 

Ro = 1; (5.14) 

The t-expansions of the functions (5.13)-(5.15) have the forms 

(5.16) 

Ro = 1. (5.17) 
@(z) = 
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In any case, 
C 

ao@ = -2 (1 - f )  ; 
HO 

as before, the two first orders in t of the expressions (5.13)-(5.15) give the same 
result independently of 00. 

(i) Visual magnitude - redshift. Imposing n = 2 in (4.21) gives the immediate 
result 

However, this equality is hardly justified physically because following our scheme the 
dimensionality 2 is reached far away as a limit case. Perhaps, one should improve 
the formula (5.18) by taking into account several characteristic radii Ro, ..., Rj with 
several suitable dimensionalities. 

(ii) Angular size - redshif-t. In accordance with (4.20),  it follows from (5.13)- 
(5.15) that 

In the same orders as before, 

R = C Z  (1 - it) , 
HO 

which is in surprising agreement with (4.22) and (4.23). It is interesting that in the 
given test the case 0(“) = 0 is indistinguishable from the case n = 2 (see (4.22)). 

(iii) Number of sources - redshif-t. The differential of the number of sources 
(4.24) now is 

d N  = 2 ~ ~ a ~ ( t , ) @ ( r , )  dr,, (5.19) 

with 

N = No( 1 + 2) .  (5.20) 

Substituting (5.10), (5.1G) or (5.17), (4.1) and (4.2) into (5.19),  we obtain for all 
the values of f20 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:1
3 

20
 D

ec
em

be
r 2

00
7 

COSMOLOGY IN ALTERNATIVE DIMENSIONS 193 

6 CONCLUDING REMARKS 

(1) From the viewpoint of observations, we should note that we hardly make 
easier the tasks of observers because the derived cosmological tests involve one or 
more additional parameters. The main test, namely that of visual magnitude seems 
to be too complicated because, apart from the number of dimensions, it involves 
explicitly the characteristic radius Ro (or radii Rj,  j = 0, 1, ...) which should be 
adjusted. The test of angular size contains a product of two parameters, ( n  - 2) 
and Q(n), and thus, taken alone, it does not allow to distinguish between them, 
although it  could give information on the change of the deceleration parameter in 
time. The most powerful test would be that of the number of sources but this test 
is most vulnerable to selection and evolution effects. In principle, this test could 
indicate dimensionality decreasing if the number of sources were described by a 
non-polynomial law. 

(2) All of the solutions to the Einstein equations have been obtained for constant 
(although non-integer) values of n. Recall that n is the dimensionality of space- 
like hypersurfaces which are orthogonal to time-coordinate lines in the given case. 
However, following our conception, the spatial dimensionality can change in the 
process of expansion: if it decreases with the growth of relative distance between 
bodies, then the mean spatial dimensionality of the Universe should decrease in 
time. If the fall of dimensionality is sufficiently slow, then the solutions obtained 
are valid locally. 

(3) In the context of the above note light propagating along null geodesics from 
a point of emission to a point of observation, would intersect different space-like 
hypersurfaces with different values of n. That is why it would be correct to improve 
our tests in order to take into account the change of n because they have been also 
derived under the assumption of constant values of n. 

We consider this 
case as a limiting one: First, some of the solutions and tests which are suitable 
for the general case are undefined for n = 2 and required a limiting procedure to 
come to n = 2. Second, the remarkable fact is that the case n = 2 is the only 
case where a stationary solution exists for a closed dust-filled Universe without a 
cosmological constant. We think that just this solution provides the stationary 
asymptotic regime for our Universe which seems to be more attractive for us to  
imagine as closed. 

(5) We cannot immediately take into account the chaxge of dimensionality be- 
cause of the following two reasons. First, we do not know a law of this change. 
Second, even if one knows this law, this account is very difficult to realize tech- 
nically. Probably, this law could follow from a future theory extending general 
relativity. We suggest that in such a theory the dimensionality would be found 
from equations just as the metric is. Note that effects of curvature can be distin- 
guished from those of dimensionality. One can imagine a flat space with changing 
dimensionality but with zero curvature. 

(4) The most interesting case is certainly that of n = 2. 
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