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Boundary layers in a nonlinear disk dynamo are considered. The qualitative behavior of the 
solution and the results of numerical calculations are described. 

The steady states of the large-scale magnetic field in a thin-disk galactic dynamo are studied 
using asymptotic methods. The field is decomposed into a s u m  of solutions of the degenerate 
problem plus a boundary layer. The conditions of applicability of this approach are obtained. 
The solution of the degenerate problem is obtained explicitly, and the boundary layer function is 
calculated numerically as a solution of a boundary value problem over an infinite interval. This 
infinity is the main difficulty in the solution of the problem. Therefom, we transform it to an 
initial value problem depending on a parameter (the shooting method). We searched for the value 
of the parameter for which the solution fulfils the boundary conditions. 

KEY WORDS Boundary layer, nonlinear dynamo, boundary value problem 

1 INTRODUCTION 

Mean-field dynamo theory describes the appearance of large-scale magnetic fields 
of galaxies, the Sun, stars and other celestial bodies. Up to now a linear or the so- 
called kinematic description of the initial stages of the field generation has been well 
developed. For the subsequent stages, the magnetic field is strong, and, therefore, 
one has to consider a nonlinear model of the disk dynamo. The use of asymptotic 
methods is a fruitful way for investigating this. As discussed by Kvasz el al. (1992), 
asymptotic solution of the nonlinear disk dynamo problem is the sum of the slowly 
changing solution and the boundary layer solution, which is concentrated at  the 
boundary of the disk. 

Boundary layers may appear if the intensity of the field generation is sufficiently 
large. In this case, magnetic field changes strongly in rather small domains of space 
and large parameters appear in the equations governing the magnetic field. From 
the mathematical point of view, boundary layers appear due to the necessity to fulfill 
some boundary conditions which cannot be satisfied only by the slowly changing 

11 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
09

:5
7 

20
 D

ec
em

be
r 2

00
7 

12 K. M.  KUZANYAN A N D  L. KVASZ 

term of the solution. Equations for boundary layers often cannot be investigated 
analytically and should be solved only numerically. In this paper we consider these 
types of problems on the example of the simplest nonlinear dynamo in a thin disk. 

The boundary layers have a small characteristic width, which can be hardly 
observed in detail by modern astronomical equipment. The model approximations 
used below like vacuum boundary conditions and a simple one-dimensional dynamo 
model are rather crude. Therefore, the result obtained in the present paper can be 
hardly directly compared with observational data. 

Note, that the main purpose of the present paper is to analyze in detail the 
asymptotical representation given by Kvasz e l  al. (1992). Indeed, it is supposed in 
that paper that the solution of the boundary layer equations always exists. However, 
as we argue in Section 5 ,  this solution exists only under a certain, rather natural 
condition. Otherwise, one should modify the representation given by Kvasz el 
al. (1992). The technique used can be further applied to other astrophysical and 
geophysical problems where boundary layers also exist. 

2 NONLINEAR DYNAMO IN A THIN DISK 

The problem of a steady-state distribution of the large-scale magnetic field in a thin 
disk can be reduced to the solution of the following differential equation over the 
interval z E [0,1], see Vainstein and Ruzmaikin (1972): 

d3 
dz3 
-B + D a ( z ,  B ) B  = 0, 

where B = B ( z )  is the azimuthal component of the magnetic field. The so-called 
dynamo number D is introduced to characterize the intensity of the source of the 
generation of the large-scale magnetic field (helicity and differential rotation), see 
e.g. Zeldovich et al. (1983). We assume here that the back reaction of the magnetic 
field on fluid motions can be described in terms of a-quenching. Thus, the helicity 
becomes a function of B. Following Kvasz ef a/. (1992) we adopt the helicity 
function as 

( 0  
(2) ao(z)[l - g(z)B2]  a(2, B )  = if g(z)B2 <I ,  

if g(z) B2 2 1 
where g(z) is a slowly changing function which characterizes the steady state dis- 
tribution of the magnetic field & ( z )  within most of the disk. Function a g ( z )  is the 
helicity distribution of the kinematic model. 

The z-axis (-1 5 z _< 1) is directed perpendicularly to the disk plane. Further 
we shall restrict ourselves to considering the quadruple mode, i.e. even solutions 
of B(z) .  Therefore, we shall’consider only the upper half of the disk L 2 0. I t  is 
essential to note here that ao(z) and a ( z )  are odd functions, while g(z) and Bo(z)  
are even ones. 

The boundary conditions for Eq. (1) in the case of a disk of the half-thickness 
h = 1 surrounded by a vacuum are (see Zeldovich el al.,  1983): 

B(1) = 0, (3) 
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Figure 1 
the problem in the interval z E [O, 11. 

A qualitative behavior of the degenerate (dashed) and asymptotic (solid) solutions of 

To pose the boundary value problem completely we need to add one more boundary 
condition. Since B(r)  is an even function, we have 

(5) 
d 

dr 
--B(O) = 0. 

An asymptotic theory for Eq. (1) was developed by Kvasz et  01. (1992). 
In asymptotic study of the equation for ID1 >> 1 the third-derivative term can 

be neglected in the main part of the disk in comparison with the nonlinear term. 
Thus, we obtain the so-called degenerate solution for the magnetic field: 

B(r)  = [g(r)]-1/2.  (6) 

This is shown in Figure 1 as a dashed line. The greater is ID/, the better this 
solution satisfies Eq. (1). However, the degenerate solution (6) does not satisfy 
the boundary conditions (3) and (4). Therefore, a boundary layer appears in the 
neighborhood of z = 1. Here the value of the third-derivative term is comparable 
with the nonlinear term and the former cannot be neglected, i.e., the magnetic 
field changes abruptly within the layer. The boundary conditions (5) at z = 0 is 
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14 K.  M.  KUZANYAN AND L. KVASZ 

satisfied since g(z) is an even function and &g(O) = 0. Thus, we seek the solution 
of Eqs. (l), (3), (4) and ( 5 )  in the form: 

B = [ g ( z ) p 2  + aro(x) + 101-"1(z) + . . . , (7) 

where x = ( z  - 1)1D1" is the so-called fast variable, and 9 and K are constants. 
The characteristic thickness of the boundary layers is ID[-". Here, the first term is 
the degenerate solution, and the other terms correspond to a boundary layer at the 
disk's surface. The latter are power series in 101. We shall search for constants 9 
and K and functions +o, +I, .  . . assuming that they depend only on the fast variable 
x but not on D.  

, .. .. Substituting (7) 
into (3) and taking into account that the large parameter ID1 should be eliminated 
in equations which determine Oo and that z = 1 corresponds to x = 0, we obtain 

Let us derive boundary conditions for the functions 00, 

Oo(0) = -[g(1)]-1'2. (8) 

Then, taking d x  = IDI" d z ,  we obtain from Eq. (4) 

(9) 
d2 - [ g ( ~ ) ] - ~ / ~ I ~ = 1  + lD12"O:(0) + lD12"-qOY(0) + . . . = 0 .  

dz2 

Here prime denotes derivative with respect to 2. Consecutive terms in Eq. (9) 
have the orders O(1), O(lDl"), O(lDl"-q)), etc., respectively. Since none of the 
remaining terms can be equal to the second one for K > 0 and 9 > 0, we have 

o;(o) = 0. (10) 

The following is necessary to balance the two remaining terms in Eq. (9): 

9 = 2 K  

and 
1 / 2  d2 

d z  Ol,(O) = -+g(z)]- l a = l .  

The third boundary condition ( 5 )  should be rewritten as 

O ~ ( - o o )  = 0, (11) 

because z = 0 corresponds to z + 00 for 101 -+ 00. Let us substitute (7) into (1). 
We require the function at'(,) to  enter the equation of the lowest order in IDJ. 
It is necessary to fulfill all the boundary conditions (8), (10) and (11). Equation 
for Oo(z) and a constant K ,  which determines the thickness of the boundary layer, 
depends on cro(1). It is possible to consider two different cases: ao(1) = 0 and 
ao(1) # 0. Further we shall assume that ao(1) # 0. The other case will be also 
briefly considered below. 
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NONLINEAR DYNAMO 15 

3 A NUMERICAL STUDY OF THE BOUNDARY LAYER 

When cwo(1) # 0, since @r(z) should appear in the equation of the lowest power in 
IDI, we find that K = 5 and = $, and the following equation for @o emerges: 

where u = [ g ( ~ ) ] ~ / ~ 1 ~ = 1 .  Let us introduce a new function 

Q(z) = -[9(1)]’/2@0(2) = -uOo(z) 

t = -[.0(1)]1/3~. 
and a new variable 

Then we obtain from Eqs. (12), (8), (10) and (11) the following boundary value 
problem for an ordinary nonlinear differential equation: 

d3 
-9 dt3 = Q 3 - 3 Q 2 + 2 Q ,  

Q(0) = 1, 
d2 
dt2 
-Q(O) = 0, 

Q(m) = 0. 

This problem cannot be solved analyltically, so we have to solve it numerically. We 
describe here qualitatively the behavior of the solution observed in our numerical 
investigation. The main difficulty here is a numerical implementation of the bound- 
ary condition (16) posed at infinity. Using the shooting method (see, e.g., Tikhonov 
e l  a/., 1985; Ortega and Poole, 1981), we replace it by 

d 
;iiQ(O) = P, 

and we solve further the initial value problem (13), (14), (15) and (17) for several 
values p .  Thus, the problem is reduced to a search for that value of p which allows 
the condition (16) to be satisfied. As we shall show now, an unsuccessful choice of 
the parameter causes the integral curve of the solution to tend not to zero but to 
infinity for t 4 co. 

We consider this phenomenon in detail. Let us represent Eq. (13) as 

d3 
dt3 
--\li = Q(Q - l)(Q - 2), 

and consider in the phase space of (Q, t )  (Figure 2) the interval in which the right- 
hand side of Eq. (18) is sign-constant. The right-hand side is positive in the intervals 
A (Q > 2) and C (0 < Q < l), and negative in the intervals B (1 < Q < 2) and D 
(Q < 0). Hence, the second derivative of Q increases in the intervals A and C, and 
decreases in B and D. 
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16 K .  M. KUZANYAN AND L. KVASZ 

Figure 2 
of the boundary layer solution on the fast variable t is shown. 1 ,  p 2 4 x 
3. p = 0; 4 ,  PO < p < 0; 5, p = Po;  6, P < PO. 

A qualitative behavior of the solution of the boundary layer problem. The dependence 
2,O < p 5 4 x lo-*; 

Depending on the values of p ,  we obtain six qualitatively different cases of be- 
havior of the solution (see Figure 2): 
1. The solution increases and tends to  +oo. 
2. The solution oscillates near the point \E = 1, then grows to  +oo or -m. 
3. The solution is identical unity. 
4. The solution decreases, becomes negative, then increases and tends to  +m. 
5. The solution decays with oscillations near the t-axis (Q = 0). 
6. The solution tends to -m after possible oscillations near point Q = 0. 

Q(t )  = 1 + ( ( t ) .  Thus, we obtain the following Cauchy problem for <: 
To study the first three cases, let us introduce a new function in Eq. (18): 

-<(O) d = P .  
dt 

The term t3 on the right-hand side of Eq. (19) can be neglected for small ((I</ >> 1) 
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NONLINEAR DYNAMO 17 

as compared with the remaining term. Thus, we consider an approximate equation 

This equation has three linearly independent solutions k-t , erIz sin qt, and e t I z  

cos qt . The general solution is their linear combination 

where C1, CZ, and C3 are constants. The first term decays with t .  The second and 
third terms cause the growth of the solution and lead it out of the applicability 
domain of the approximation I[ << 1. 

Case 3 ( p  = 0) corresponds to C1 = CZ = C3 = 0 and [ ( t )  is identically equal to 
zero (dashed line in Figure 2). If p # 0, substituting Eq. (23) into initial conditions 
(20), (21)) and (22) yields a system of linear equations for C1, C2 and C3. I t  has 
a unique solution Cl = - i p ,  C2 = &p and C3 = i p .  This explains why the 
solution grows for any value of p > 0 and leaves the frames of the approximation 

<< 1. Only for very small values of p the solution has a few oscillations in the 
domain << 1 and continues either upwards plusinfinity or downwards to minus- 
infinity, depending on the number of the oscillations. The smaller is p ,  the more 
oscillations the solution will have. Hence, the behavior of the solution in the cases 
1-3 can be completely explained by considering linearized Eq. (13) near the point 
Q = 1. They never fulfill condition (16) and are, thus, of no interest. 

Let us consider cases 4, 5 and 6 in detail. Since p is negative, \k first decreases 
although the right-hand side of Eq. (18) is positive. For not too small absolute 
values of p it can reach values Q N 0. Using approximation 141 << 0, the terms Q3 
and -3Q2 can be neglected in Eq. (13) and we obtain the following linear differential 
equation: 

A 3  u 
-Q = 2Q. 
dt3 

This equation also has three linearly independent solutions, of which the linear 
combination is the general solution of the equation: 

* ( t )  = CleXIt + e'z'(~2sin wt + C ~ C O S  w t ) ,  (24) 

where XI = 2lI3, XZ = -2-2/3, w = 2-2/331/2, and C1,C2, and C3 are constants. 
The values of the constants C1, C2 and C3 depend on how the solution enters the 

domain of approximation 181 << 1, i.e. on the parameter p .  If we take a critical value 
of p which provides C1 = 0 then we obtain only decaying oscillations near Q = 0. 
This corresponds to case 5 and is the unique case when condition (16) is fulfilled. 
However, this value cannot be reached exactly in any real numerical calculations, 
and with a growth of t  the exponentially growing term CleXlt leads the solution out 
from the domain of approximation 141 << 1 and then towards infinity in the upper 
or lower half-plane. 
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18 K. M. KUZANYAN AND L. KVASZ 

4 NUMERICAL RESULTS 

The critical value of p yielding C1 = 0 can be estimated by varying p in the numerical 
solution of the problem (13), (14), (15) and (17). For strongly negative values of p 
(e.g., p < -0.7) the behavior of the solution corresponds to case 6, and for greater 
values of p (e.g., p > -0.6), to  case 4. Hence, we conclude that the desired critical 
value of p belongs to the interval [-0.7, -0.61. 

Seeking the critical value of p we try to  hold the solution within the limits 
lf&l << 1. Any real numerical solution leaves these limits towards infinity in the 
upper or lower half-plane. Let us introduce a function which is either positive 
or negative depending on the direction towards which the solution grows after it 
leaves the domain lql << 1. To determine the critical value of p we can use the 
bisection method (see, e.g., Forsythe et al., 1977) applying i t  in the above interval 
p E [-0.7, -0.61. Let us consider solutions of the boundary layer problem for values 
of p at the ends of the interval. One of them should grow in the upper and the other 
in the lower half-plane, i.e., our function has different signs a t  these points. Then 
we solve the problem for p at the middle position within the interval. Depending on 
the direction towards which the solution grows, or on which sign our function has, 
we bisect the interval in such a way that our function has different signs at different 
ends of the new interval. Since the critical value of p belongs to this interval, we 
can interpret the length of the interval to  be accuracy of the determination of p. 
Hence, we can bisect the interval until we reach the required accuracy. 

We have to reach here a very high accuracy of the determination of p due to 
the exponential terms in Eq. (24). If a low precision of, say, five digits is used, only 
one oscillation of the solution can be recovered, and it is not possible to study the 
oscillations. For a higher accuracy, the interval of the oscillations near the point 
\E = 0 becomes wider, the numerical solution approximates 8 better and can be 
quantitatively compared, in this interval, with the approximate solution (24) for 
C1 = 0. Nevertheless, this numerical solution ultimately tends to infinity. 

For a 16-digit accuracy, we obtain six oscillations. The first five of them are 
rather stable and do not change significantly if the accuracy increases. The quali- 
tative behavior of the solution over this interval is found with a sufficient accuracy. 
The zeros and extreme of the oscillations of the solution are shown in Table 1. 

The solution is shown in Figure 2 as a thick line. We obtain the critical value 
po = -0.685 139987740998 f 1 x It  is easy to see, that the numerical 
half-period of oscillations corresponds to T/2 = m/w = 2.879227 and the decay rate 
corresponds to  d = -2rXz/w = 3.627599, which are derived explicitly (see Eq. (24)) 
from the analysis of the linearized problem. This confirms that our qualitative and 
numerical analyses are correct. 

Thus, we can calculate the boundary layer solution of the nonlinear dynamo 
problem as accurately and for as long interval as necessary. The first few oscillations 
of the solution can be calculated numerically, for the subsequent oscillations the 
solution can be obtained as an approximate solution (24) for C1 = 0. 
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NONLINEAR DYNAMO 19 

Table 1. 
the solution, An is the maximum of the oscillation amplitude, T/2 is the half-period of the 
oscillation and d is the decay rate. The latter has been calculated as d = 2 In * 
N z n  An TI2 d 

Numerical results: N is the ordinal number of the oscillation, Z, is the zero of 

A m  

1.73663 
4.48213 
7.38638 

10.26188 
13.14188 
16.02088 
18.97938 
20.27663 

1.30666 x lo-' - 
2.27303 x 2.7455 
3.66336 x 10-~ 2.9043 
5.98227 x lo-' 2.8755 
9.74825 X 2.8800 
1.59269 x 2.8790 
1.45735 x lo-' 2.9585 

- 1.2973 

- 
3.497889 
3.650639 
3.624329 
3.628596 
3.623321 
4.782784 

5 DISCUSSION AND CONCLUSION 

We have obtained the solution of the problem in the case crO(1)  # 0. We constructed 
the asymptotic solution as a sum of a degenerate one and a boundary layer. The 
latter is shown in Figure 1 as a solid line, dashed line shows the degenerate solution. 

Let us discuss the case of the mean helicity being equal to zero at the surface of 
the disk: cro(1) = 0. Then we can approximate (YO(C)  near z = 1 as 

with accuracy up to first-order terms. Substituting this into Eq. (1) and using 
much the same argument as in Section 2, we obtain that K = $, and the following 
differential equation for the boundary layer function Q(t)  emerges: 

d3 
-Q dt3 = -w3 - 3Q2 + 2Q), 

with boundary conditions 

Q(0) = 1, 

\11(00) = 0. 

A qualitative study and numerical investigation of this problem, in a manner similar 
to that of Section 3 show, that there is no solution decaying at infinity and, thus, 
fulfilling condition (26). The reason for the lack of decay is the factor t on the 
right-hand side of Eq. (25).. This causes the solution to oscillate with the amplitude 
growing more rapidly with t .  This means that in this case the boundary layer 
solution does not exist near z = 1. 

It is necessary to discuss here the accuracy of the result obtained. In the present 
paper we considered the simple one-dimensional dynamo model given by Vainstein 
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and Ruzmaikin (1972). When deriving Eq. ( l ) ,  one neglected the terms which 
correspond to the radial dependence of the magnetic field. These terms are of order 
A l l 2  (see, e.g., Ruzmaikin et al . ,  1988), where A = h / R  is the ratio of the half- 
thickness of the galactic disk h to its characteristic radius R, or the so-called aspcct 
ratio of the galactic disk. Thus, for real galaxies, where X is of order 0.04, the 
influence of these terms is about 20%. Therefore, our investigation may add some 
qualitative information on the structure of the boundary layer in galaxies. However, 
that  this accuracy has no relation to the very high accuracy of the dctermination of 
the -called “shooting” parameter p in Section 4,  caused by the necessity to study 
the qualitative behavior of the boundary layer solution. Note that this parameter 
was used only to solve the problem of the existence of the boundary layer solution. 
Its accuracy cannot be interpreted as the accuracy of the model. 

In the present paper, we used the assumption of a sharp boundary of the galactic 
disk. However, this is rather crude idealization for many real galaxies where such 
boundaries are not well defined. Nevertheless, this approach may be reasonable 
for some physical and astrophysical objects. The algorithm constructed and the 
basic results can be applied to other models. The structure of the boundary layer 
solution obtained characterizes a qualitative behavior of the magnetic field near the 
boundary of the galactic disk. 
We have shown that the asymptotic representation given by Kvasz et  al. (1992) 

is valid only if cro(1) # 0. If cro(1) = 0, it is not possible to  construct a solution of 
Eq. (1)  for ID1 + 00 as a sum of a slowly changing solution and a boundary layer 
solution. A similar asymptotic behavior near the point where the field smoothly 
tends to zero is studied in detail by Belyanin el al. (1993) for a nonlinear fluctua- 
tion dynamo problem. Then one should either consider the problem by the use of 
differential inequalities, or, since the boundaries are not well defined, modify the 
helicity function a(.) by an addition of order 1D1-’/2 as it was done by Belyanin 
et al. (1994) and further assume that cro(1) # 0 and solve the problem using the 
representation of Iivasz et al. (1992) in much the same way as above. 
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