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Fundamental Theory, University of Florida, Gaiitsville, FL $2611, USA 

(Received December 25, 1993) 

We summarize recent investigations showing how and why, for systems characterized by a non- 
integrable mean-field potential, collisional effects may be important already on time scales much 
shorter than the standard relaxation time. 

KEY WORDS Stellar dynamics - collisional relaxation 

This talk summarizes recent theoretical work investigating how and why, for systems 
characterized by a strongly nonintegrable mean-field potential U, collisional effects 
may be important already on time scales much shorter than the standard binary 
relaxation time, t R .  In what follows, such collisional effects will be modeled by 
modifying a Hamiltonian flow so as to incorporate noise and dynamical friction, 
related by a fluctuation-dissipation theorem. The basic objective is to compare 
deterministic Hamiltonian trajectories with nondeterministic noisy trajectories, and 
to ascertain the time.scale on which deterministic and nondeterministic trajectories 
with identical initial conditions may be expected to diverge significantly. 

Physically, as first stressed by Pfenniger (1986), one anticipates that a chaotic 
mean field can result in a drastically accelerated collisional relaxation in the configu- 
ration and velocity space. The friction and noise both serve to induce perturbations 
in the unstable deterministic trajectory that will generically be amplified exponen- 
tial on a time scale t A  set by the largest Lyapunov exponent, even if the natural 
time scde for noise/friction, t R ,  is much longer than t A .  

As a simple example, one can incorporate noise and friction into a Langevin 
description by considering a stochastic differential equation of the form d 2 R / d t 2  + 
V U ( R )  = - q d R / d t  + F,, allowing for a constant coefficient of dynamical friction, 
7, and delta-correlated white noise satisfying ( F , ( t ) )  = 0 and (Fd(tl)Fb(tl)) = 
O q 6 ~ ( t z  - t l ) .  Here angular brackets denote an ensemble average and 8 a typical 
“temperature”, i.e., a characteristic mean squared velocity. This is to be viewed as 
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a perturbation of the deterministic equation d2r/dt2+VU(r) = 0, with 6r  R- r.  
Consider in particular a weak noise limit, with t~ q-' >> t ~ .  A perturbative 
calculation then shows that (Kandrup and Mahon, 1993; Kandrup and Willmes, 
1993) ( l 6 ~ 1 ~ ) / ( v ~ )  - q t ~ e x p ( 2 t l t ~ .  If, however, one supposes that t~ - t , ,  with 
t,, a typical crossing time, and uses the standard scaling t ~ / t = ,  - N/(log N ) ,  one 
then infers that (16v12)/(v2) - (log N / N )  exp(2 t / t~) ,  with an analogous formula for 

This calculation provides a simple explanation of numerical simulations by Pfen- 
niger (1986), who investigated how orbits in a smooth galactic potential can be mod- 
ified through the insertion of a point mass pert,urbation of variable mass rn. What 
Pfenniger found was that regular orbits with vanishing Lyapunov exponent experi- 
enced perturbations 6r that grow linearly, but that stochastic orbits with nonzero 
Lyapunov exponent experienced instead perturbations 6r that grow exponentially. 
Moreover, for relatively small masses he discovered (a) that the exponential growth 
rate is independent of the magnitude of the perturbing mass, and (b) that the over- 
all amplitude of the perturbation, i.e., the exponential prefactor, depends on ni in  
a fashion consistent with the preceding perturbative calculation. 

It should be stressed that, even though perturbations in position and velocity 
grow on a very short time scale, perturbations in the particle energy E and other 
collisionless invariants only grow much more slowly. Suppose, for example, that 
the mean-field potential U is strictly time-independent. The Langevin equation 
then implies that dE/dT = -qv2 + vF, which, for IEl - v 2 ,  yields a time scale 
q-' t ~ .  It follows that, even for a strongly stochastic potential, noise and friction 
need not after the form of a self-consistent collisionless equilibrium on time scales 
<< t ~ .  However, one can still envision circumstances under which noise and friction 
cloud alter important orbital characteristics on relatively short time scales. 

Suppose, for example, that one specifies some ensemble of initial conditions 
and then evolves that ensemble into the future, both with and without noise and 
dynamical friction. The obvious question is then: on time scales << t ~ ,  can one infer 
that the time evolution of the noisy and deterministic evolution will be qualitatively 
similar, a t  least in some statistical sense? In a mostly regular phase space region, 
far from any resona.nces, one only expects substantial diffusion in the actions on the 
natural time scale t~ = q- ' .  However, if the phase space has an important. resonant 
structure, even weak noise can induce significant effects on relatively short time 
scales, e.g., by facilitating jumps between nonoverlapping islands (Lieberman and 
Lichtenberg, 1972). This has obvious implications for the numerical construction 
of self-consistent models via Schwarzschild's method (Schwarzschild, 1979), or any 
variant thereof which involves the selection of ensembles of orbits without an explicit 
consideration of the collisionless invariants. A systematic investigation of these 
effects is currently underway using the Los Alamos Connection Machine (Habib et  

It is also possible that, under certain circumstances, friction and noise may 
serve to trigger an instability for collisionless equilibria. Consider a self-consistent 
equilibrium, modeled as a time-independent solution of the collisionless Boltzmanil 
equation, i.e., the gravitational Vlasov-Poisson system. By analogy with plasma 

( b I 7 .  
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physics (Morrison, 1980), one knows that this system can be viewed as a constrained 
Hamiltonian system with respect to an appropriate Lie brackets (Kandrup, 1990), 
constrained because of the restrictions associated with conservation of phase. One 
knows, moreover, that all time-independent equilibria are energy etlrernals with 
respect to  perturbations that preserve the constraints, so that the first variation of 
the Hamiltonian H vanishes identically, i.e., d ' ) H  = 0. It follows that stability is 
connected with the sign of the second variation 6 ( 2 ) H .  If, for example, d 2 ) H  > 0 
for all perturbations preserving the constraints, linear stability is assured. However, 
one anticipates that many/most nontrivial equilibria admit perturbations which 
preserve all the constraints but still have negative energy, so that 6(')H < 0. This 
is, e.g., known to be true for generic axisymmetric equilibria (Kandrup, 1991) and 
is probably true for many triaxial configurations as well. The existence of such 
negative energy perturbations does not necessarily signal a linear instability on a 
time scale - t , , ,  since the negative energy modes may all be decoupled from the 
positive energy modes. However, by analogy with plasma physics and accelerator 
dynamics, bne can envision situations in which the noise and friction couple together 
the positive and negative energy modes, so as to trigger an instability on a time 
scale << t ~ .  

Both these effects, namely diffusion of orbits in phase space and destabilisatioii 
of collisionless equilibria, are known to occur in various other settings, and should 
a lmqt  certainly arise for self-gravitating systems as well. Unfortunately, however, 
it is extremely difficult to estimate the time scales for these phenomena using the- 
oretical arguments alone, so that one cannot conclude immediately when they may 
be important on astronomically relevant time scales: for this one would appear to 
require recourse to numerical simulations. It is, however, clear that, if one chooses 
to consider nonintegrable mean field potentials, in which a substantial fraction of 
the mean field orbits are stochastic, one needs to reexamine the conventional as- 
sumption that collisional effects are completely irrelevant on time scales << t ~ .  

This research was supported in part by the National Science Foundation grant 
PHY92-03333. 
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