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GRAVITATING SYSTEMS+ 
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Institute of Astronomy, Russian Academy of Sciences, Pyatndskaya st. 48, 

109017 Moscow Russia 

(Received December 25, 1993) 

The paper presents a short summary of basic instabilities in stellar systems, namely: the Jeans, 
bar-mode and fire-hose (bending) instabilities. Particularly, a variety of Jeans-like instabilities in 
collisionless systems is emphasized as well as a great number of functions which Jeans instability 
carries out here. Both these circumstances make the properties of stability in stellar and gaseous 
systems very different from each other. Then the classification of bar-mode instabilities according 
to a ratio of the bar pattern angular velocity and the maximal precession speed of nearly-circular 
stellar orbits is proposed. Some agruments in favor of slow or moderate bars in comparison with 
fast bars are given. Certain difficulties concerning the current work on the problem of the bending 
instability are noted. 

KEY WORDS Dynamics of stellar systems, Instabilities in gravitating systems. 

1 INTRODUCTION 

The choice of three instabilities above as principal for stellar systems is quite natural, 
all the more that the full list of instabilities in gravitating systems is poor enough 
(e.g., compared with plasma). The bending (fire-hose) instability appears in rather 
hot and flattened systems; the simplest mechanical analogy of this instability is 
the behavior of a metallic ruler compressed on its edges. Turning to the remaining 
instabilities, one must note that the classification itself of a given instability as the 
Jeans or bar-mode is based on absolutely different principles, so it may lead to 
some confusion. Indeed, it is natural to classify as the Jeans ones those instabilities 
which develop due to gravitational clustering (merging) of the matter if the velocity 
dispersion of attracting objects cannot suppress such a process. As the objects 
of merging, there can be not only individual stars but also their certain groups. 
Thus, we include into the Jeans class the instabilities appearing due to a certain 
physical mechanism (first described by Jeans). On the other hand, the bar-mode 

~~ ~ ~~~~ 
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class includes all instabilities leading to bar formation. In other words, only the 
geometric structure of the pattern finally arising is important (independent of the 
physical mechanism of the instability). 

But there are at  least three different ways for bar formation, one of them being 
Jeans instability: slow bars (Lynden-Bell, 1979) form as a result of gravitational 
merging of rather slowly precessing stellar orbits. Different bars form due to fast 
rotation of galactic discs. Moreover , detailed physical mechanisms for uniform (i) 
and differential (ii) rotations are quite different in turn; Toomre (1981) described 
them as the edge instability (i) and swing amplification (ii), respectively. 

So, generally speaking, the Jeans class of instabilities intersects the bar-mode 
class if we define these classes as above. However, there exists a different way for 
the definition: to consider as the Jeans only those instabilities which lead to the 
decay of the system into more small-scaled (and more or less rounded) parts. It 
occurs under the Jeans clustering of a uniform distribution of the matter (as in 
the original work by Jeans) or, for example, in the case of a cold gravitating disk 
(Toomre 1964). 

Before starting the exposition of the stability theory, one can try to formulate 
the general purpose of t.he pure stability theory in application to stellar systems. 
One of possible formulae (which was pleased to me all last year) is: to determine 
the way in which the various instabilities depend on the relative populations of the 
different orbit families: circular, radial, box, tube and so on (de Zeeuw, Franx, 
1991). 

2 KINDS OF THE JEANS INSTABILITY 

The Jeans instability is, of course, the most well-known and important ast.rophysica1 
instability. For instance, it leads to star formation in a gaseous medium. However, 
the ways of its manifestation in gas (and, generally, collisional) systems are rather 
monotonous: as a result of the instability, the initial system breaks into a set of 
quasi-spherical, collapsing objects. Such a monotony is apparently connected with 
the isotropy of pressure quickly restored due to  often collisions of particles. In 
anisotropic systems, one should expect a wider variety of the Jeans instability’s 
manifestations. Indeed, here the Jeans instability may play a role even opposite in 
comparison with its usual “rounding” function - as in Figure l,e which demonstrates 
the action of the radial orbit instability converting an initially spherical system 
into an ellipsoidal one. This instability, like most others which tend to equalize 
temperatures in a gravitating medium (i.e., which tend to make the medium more 
nearly isotopic), is basically of a Jeans nature (Polyachenko and Fridman, 1988). 

We defined above the deans instability as  sonie kind of “merging” of gravitating 
matter. Figure 1 shows that the phenomenon of merging may proceed not only 
among individual particles (as in Figures l,a, b ) ,  but also among orbits of particles 
(Figure l,e), planes of orbits (Figures 1,c,  d) and so on. It depends on concrete 
geometry of the system under consideration and on a kind of prevailing orbits. 
Note that the description of the large-scale Jeans instability as it occurs in the set of 
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Figure 1 Different kinds of the Jeans instability 

(a)  uniform medium 

( b )  rotating disk 
(c) flat layer 

( d )  cylinder 

(e)  the radial orbit instability for a spherical system. 
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planes of orbits was first used by Antonov and Nezhinskii (1973). They investigated 
the stability problem of a circular cylinder with infinite generatrix (along the Z- 
axis; see Figure 1,d) within the framework of the following model. The particles 
with identical values of the coordinate Z and velocity vz , should conventionally be 
grouped into discs. Let us assume these discs to be “rigid”, i.e., assume that also 
in the perturbed state they move as a whole. The thermal velocities of particles in 
the (2, y) plane in this model are taken into account indirectly by the fact that the 
distribution of the surface density in the initial stationary model is ascribed to  the 
disc. Assume the discs to  remain always oriented parallel to the (x, y) plane and to 
pass freely through each other. Then the problem of perturbed motions becomes 
mainly one-dimensional; it can easily be solved and leads to  a simple dispersion 
equation. Exact stability study for the particular cylindrical model (with circular 
orbits on the (z,y) plane; Mikhailovskii and Fridman, 1971) performed a little 
earlier showed that the model described gives qualitatively correct results up to  the 
margin of stability. 

Perhaps, the most interesting kind of Jeans-like instabilities is the radial orbit 
instability (Figure 1 ,e ) .  At present, this instability is studied in detail but mainly 
by nuinerical methods (see Fridinan and Polyachenko, 1984). An analytic theory 
was recently developed by the author (Polyachenko, 1991 , 1992a) within the franie- 
work of a more general theory for low-frequency modes of gravitating systems when 
a characteristic frequency w - SZ,, << R1, where np,. is the orbital precession an- 
gular speed and i-21 is the frequency of radial oscillations of stars. For such modes, 
the integral equations can by easily derived; for an initially spherical system, the 
equation is: 

x ( r )  = - 47rG 1 r” dr’F,(r, r’)B(r’), 
2 1 + 1  

where X ( T )  is the radial part of the perturbed potential @1 = x(r)e-iutY,,,,(C3, p), 
&(O, p) is the spherical harmonics; G is the gravitational constant, F/(r, 1.’) = 
r,/r\+’, 1 r< = min(r, r’) ,  r> = max(r*, T I ) ;  

2n 

I = (ZI, I?, 1 3 )  and w = (ull, to?, 7113) are the action-angle variables; Fo is the 
equilibrium distribution function; v is the particle’s velocity, E ,  L is the energy 
and the angular momentum, respectively; 6(I, u11) = p - w2 + w1/2 is the known 
function, .I, = ( I  + s)!([ - s ) ! / [ ( y ) !  (?)!PI .. Similar equations occur  for a 
disc and cylinder systems; they can be simplified if we turn to  the systenis with 
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nearly-radial orbits. For the simplest case of the cylinder with radial orbits, the 
following integral equation can be obtained (Polyachenko, 1991): 

(4) 

rrnadE) 

(4’) 
r dr I 0 d E 7 q q d r n ’  

where Fo = S(L)po(E) and (Po(F) is the equilibrium potential. This equation has 
the eigenvalue ( - w 2 )  - 4?rG~R2(dSl,,/dL)~,,o where R is the size of the system, 
for a mode with no nodes in E. An instability (w2  < 0) occurs if the orbits precess in 
the forward sense, and the relation (aR,,/dL)~,o > 0 holds (the opposite relation 
may be fulfilled only in quite exotic cases). 

The stability problem for rotating spherical systems was also studied recently. 
Polyachenko (1992a) derived an analytic dispersion relation for the simplest model. 
This dispersion relation was studied in detail (Polyachenko, 1992b; Fridman and 
Polyachenko, 1992). I t  turns out that the marginal value of the precession speed 
dispersion increases due to rotation, i.e. the latter plays the role of a destabilizing 
factor. (The opposite conclusion by Polyachenko, 1992a was made from an incorrect 
limited form of the dispersion relation.) 

3 BAR-MODES AND BARS 

Figure 2 shows the location for the angular speeds of all three different kinds of 
bars or bar-modes. Analyzing the associated structures (rings, spirals) appearing 
as the response of the disc surface density to a bar forcing, we demonstrate (Pasha 
aiid Polyachenko 1993a,b) that Lynden-Bell’s slow bars and inoderate bars provide 
a consistent understanding of some typical features in barred galaxies. 

Bar-enveloping inner rings get linked to the inner Linblad resonance (ILR) wit,h 
the m = 2, dominant bar mode, and the outer rings, to the rn = 4 ILR, next in 
both importance and location. Remarkably, the resonance radius ratio is r4 /vz  x 2.2 
which falls in the observed peak of the outer to inner ring axis ratio R/r.  Fast bar 
theories give worse values: the currently recognized one, 2.G, probably means that 
the fast bars are a minority in the barred galaxies. 

There are some additional supports in favor of slow or moderate bars. (i) Using 
the bar ending near ILR enables one to lessen or to remove the well-known difficulty 
with the disk response to the potential of a bar ending near corotation which appears 
to be too weak (e.g., see Sellwood and Wilkinson, 1992). (In its turn, avoiding 
this difficulty requires some artificial speculations implying two different values of 
the pattern speed). This follows from an evident estimate for the ratio of density 
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Figure 2 Rcm) r )  = R - s/m (m = 1 , 2 ,  ...), where R(r)  is the angular velocity, K = (40’ + 
galaxy disc. All frequencies are in units of Vo/a. The curve Rpr(r) peaks a t  the turnover radius 
r,,, and is crossed by a straight line of the slow bar angular speed f i b  twice, at r2, and r2e ,  giving 
rise to a couple of inner Lindblad resonances with the m = 2 bar mode. No intersection of f i b  
and Q,, occurs in the case of fast. bars. The moderate bar’s dashed line corresponds t.o the “near- 
resonance” case. Rb = R(’)(T) determines the location of m = 4 ILR at r = r4.  For slow bars 
(region I) nb is considerably less than (f2pr)mar. Moderate bars (region II)  have fib N (Rpr)max.  

For fast bars (region I I I )  Rb is considerably larger. 

rdS2’/dr)’/2; R(’ I ( r )  = f ipr(r) .  V ( r )  = Vo tanh(r/a) fits a typical “flat” rotation curve of the 

responses (corotation to ILR at the same radius, with the same potential), which 
is less or about Q,, /Q(r)  << 1 (Q(r) is the angular velocity of rotation). (i i)  The 
simplest analytical support to  the correct orbital alignment with the slow bar follows 
from the same relations (Equation (10) in Sellwood and Wilkinson, 1992) with which 
the alignment of orbits relative to fast bars was earlier demonstrated. It is easily to 
show that, for the power-law form of the perturbed potential, - r-”,  the orbits 
inside the bar (between ZLRs)  align along the bar for 

n > 2Q/(R - Q,).  (5) 

Near corotation, this inequality cannot be satisfied for realistic values of n, so that 
the orbits are orthogonal to a fast bar ending at about corotation radius ( R ) .  A slow 
bar ends near the outer ZLR, well inside R, and ( 5 )  shows now the orbits aligned 
along it already for moderate values of n (slightly above 2). These are suitable for 
centrally peaked bar mass distributions in late type SBs. (In early SBs ,  with a 
nearly constant density along the bar, this slow bar is rather made of nearly radial 
orbits.) We therefore observe that the slow bar concept can be compatible with the 
evidence concerning the point of the bar-orbit alignment. 
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4 THE FIRE-HOSE INSTABILITY 

This important instability has been studied less extensively compared with the two 
others, Perhaps, this instability can help to solve the problem of maximal flattening 
of ellipticals (Polyachenko and Shukhman, 1979). Some progress in this problem 
(Merritt el al., 1991) was connected with the study of a number of new distribution 
functions for collisionless ellipsoid recently derived. However, there is a principal 
difficulty for all this work: sufficiently “good” (realistic) distribution functions for E- 
galaxies are so for unavailable. An unexpected possibility to explain the peanut form 
of many galaxies with the help of the fire-hose instability has attracted attention 
since recently (Sellwood and Wilkinson, 1992). 

Acknowledgement 

This woik was supported by a grant of the Soros International Fund through the 
American Physical Society. 

References 

Antonov, V. A. and Nezhinskii, E. M. (1973) Uch. Zap. Leningr. Univ. 363, 122 (in Russian). 
De Zeeuw, T. and Franx, M. (1991) Ann. Rev. Astron. and Astrophys. 29, 239. 
Fridman, A. M. and Polyachenko, V. L. (1992) PTOC. IAU Symp.  #153, Gent, Belgium. 
Fridman, A. M. and Polyachenko, V. L. (1984) Physics of Gravitating Systems.  Springer - Verlag. 

Lynden-Bell, D. (1979) Mon.  Not .  R .  Astron.  SOC. 187, 101. 
Merrit, D. and Hernquist, L. (1991) Astrophys. J. 376, 439. 
Mikhailovskii, A.  B. and Fridman, A.  M. (1971) Zh. Eksp. Teor. Fiz. 61, 457. (Sov. Phys. - 

Pasha, I. I. and Polyachenko, V. L. (1993a) Pis’ma v Astronomicheskii Journal. 19, #1, 3. 
Polyachenko, V. L. and Shulanan, I. G. (1979) Astron. Zh. 56, 724. 
Pasha, I. I and Polyachenko, V. L. (199313) Mon.  No t .  R. Astron. SOC. 266, 92. 
Polyachenko, V. L. and Fridman, A. M. (1988) Zh.  Eksp. Teor. Fir. 94, 1 (Sov. Phys. - JETP 

Polyachenko, V. L. (1991) Pis’ma Zh. Eksp. Tepr. Fir. 54, 553 (JETP lett. 54, 555 (1991)). 
Polyachenko, V. L. (19928) Zh. Eksp. Teor. Fiz. 101, 1409. 
Polyachenko, V. L. (1992b) Astron. Tsirk. #1553, 3. 
Sellwood, J .  and Wilkinson, A .  (1992) Dynamics of Barred Galazies. 

Toomre, A.  (1964) Atrophys. J. 139, 1217. 
Toomre, A.  (1981) Structure and Evolution of Normal Galazies, by ed. S. M. Fall and D. Lynden- 

New York. 

JETP 34, 243 (1972)). 

67, 867 (1988)). 

Preprint # 707. Space 
Telescope Science Ins t . 

Bell. Cambridge Univ. Press, p. 111. 


