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We discuss a modern &ate of the three-body problem when an infinitesimal mass is effected 
not oiily by gravitation but also by light pressure from one (or both) of the primaries. This 
problem, called the photogravitational one, attracted much attention during the last ten years. 
Many aspects of the libration point locations and their stability for all values of radiation pressure 
and mass ratios are shown and discussed. A retrospective chronological review of the results is 
given. 

KEY WORDS Restricted three-body problem, radiation pressure, libration points, stability 

Investigations on photogravitational problems (in particular, the restricted pho- 
togravitational three-body problem which may be considered as a generalization 
of the classical one) take an important place in modern celestial mechanics. Be- 
cause of this it is of interest to make clear the modern state of the problem and its 
generalizations. 

The photogra.vitationa1 three-body problem is known in the following main ver- 
sions: 1) a particle of infinitesimal mass is affected by radiation pressure from only 
one of the main gravitating mass-points providing its mass to  be reduced by this 
repulsion pressure, 2) a particle is affected by radiation pressure from each of the 
primaries, both having the reduced masses, 3) only one or both of the gravitating 
and radiating primaries have a spherical or ellipsoidal form. 

It is quite natural t o  try to  develop the formulated problem in the same direction 
as for the classical restricted three-body problem, and it was  done (analyses of tlie 
surfaces of zero velocity, the libration points and their stability and so on). Then 
tlie results obtained for the classical problem will follow as particular cases from the 
photogravitational problem when radiation is assumed to be absent. On the other 
hand, the radiation effects give rise to  some new aspects of the problem. 
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284 A. L. KUNITSYN A N D  E. N. POLYAKHOVA 

1 THE BASIC FORMULATION OF THE PROBLEM WITH ONE AND TWO 
RADIATING BODIES 

1.1 Basic Equations 

Consider the problem in the first formulation when the mass-reduction factor Q 
of the body with mass M is determined by the value of a resultant force Fx of 
two collinear forces: the gravitational force Fgr and the radiation pressure force Fpr 
acting on a pavticle P of infinitesimal mass m: 

Fc = Fgr(1 + Fpr/Fgr)ro = &Fgrro. 

Here the value of each force (their projections on the unit radius-vector r o )  is 

where G is the universal gravity constant, A is the transverse section area of the 
particle P ,  E is the intensity of radiation. 

Then Q may be written in the form 

showing its dependence on the sailness A/m of a particle, which in general may be 
variable. 

For describing the mot,ion of the particle P introduce, as in the classica.1 problem, 
the rotating Cartesian system Oxyz with the origin 0 at the barycenter of the 
primaries M and m (Szebehely, 1967). Let R1, Rz and Ro be the distances of the 
particle P from the primaries and the origin 0, respectively, so that 

Then the system of the equations of motion is 

au ?-22y= - ax 
au 

y + 2 x =  --, aY 
.. au z = -  az 

where the potential U is 
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THREEBODY PROBLEM 285 

These equations are not integrable, of course, but they have nine families of 
particular solutions - the relative equilibrium states - five of which are analogous 
to  the libration points of the classical restricted three-body problem. 

1.2 

The first study on the libration points of the photogravitational problem in the 
above formulation was carried out by Radzievsky (1950) who found out that their 
location strongly depends on the mass reduction factor Q. First, he considered a 
planar case (1950) and later, a nonplanar one (1953a). 

One of the peculiarities of the libration points of the photogravitational problem 
is that their appearance is related to  the distinct evolution patterns of the cavities 
of the zero-velocity surface. For example, the points L1 and Lz can exist simul- 
taneously or L2 can appear before L1. Besides, if the points L4 and Ls form, in 
classical case, an equilateral triangle with the primaries then, in the photogravita- 
tional problem, with one radiating body they form an isosceles triangle. 

Radzievsky has also generalized the photogravitational problem to the case of 
two radiating bodies (primaries) with the mass reduction factors Q1 and Q2. Then 
the force function, instea.d of (3), will be 

The Libration Points Analogous to  the Classical Ones 

a.nd for the tria.ngu1a.r libration points we shall have 

from which it is clear that  the triangular libration points can exist only for positive 
Q1 and Q2 when gravitation prevails. Since all physically possible values of Q1 and 
Q2 are subject to  the inequality Q1,2 5 1, then the whole set of these points entirely 
fills a domain bounded by two circles of unit radius centered a t  each primary with 
masses p and 1 - p.  In this case, triangular points already do not form an isosceles 
triangle (besides the case Q1 = Q2), so that 

Hence, the conditions of existence of these points may be represented by the 
inequalities 

Qi 2 0,  Qz 2 0, Q:I3 + Oil3 L 1. (6) 

1.3 The Coplanar Libration Points (Not Having Analogies in the Classical Case) 

I t  was shown (Radzievsliy, 1953a) that these points ( L s  and L7) are located in the 
XZ plane syininetrically with respect to the X-axis along the curve which sta.rts at  
one of the primaries and asymptotically approaches the Z-axis. 
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286 A. L. KUNITSYN AND E. N. POLYAKHOVA 

1.4 Zero- Velocity Surfaces 

Radzievsky (1950, 1953a) has carried out a comparative analysis of zero-velocity 
surfaces with the classical case yet schematically, whereas Colombo (1966) gave a 
first real geometrical picture of the surface section for the point L2 in the “Sun- 
Earth-Dust Particle” system thereby proving the appearance of LZ before L I .  

A three-dimensional picture of the topological features of the zero-velocity sur- 
face for a photogravitational problem with one radiating center was given by Ragos 
and Zagouras (1988) by means of computer calculations. 

A detailed analysis of the zero-velocity surfaces for two radiating centers and for 
all real values of the parameters p, Q1 and QZ was carried out by Lukyanov (1988 
b). 

1.5 

A possible astronomical application of the photogravitational problem was first 
pointed out by Radzievsky (1953a, b; 1966): a capture of a particle by a planet 
(basing on the Jacobi integral), the origin of comets in the framework of the re- 
stricted three-body problem, and the theory of the origin, structure and evolution 
of zodiacal clouds. The zodiacal luminescence phenomena are interesting in coii- 
nection with the “Sun-Jupiter-Particle” libration point. A possible correlation of 
possible fly-by’s with aperiodic increase in the luminescence of cloud particles was 
also noted. 

Only space-born measurements have revealed weak fluctuations of the brightness 
of the zodiacal light thereby indicating the existence of dust arcs a t  the circle axis of 
the librations (L4,  155): if a dust-arc passing through the Sun exists, then each half 
a year it will result in an asymmetry of the brightness of an opposition observed 
from the Earth. Later on, these arcs were also predicted by Schuerman (1980) and 
a program of their observations was proposed by Giovane et al. (1985). 

Astronomical Applications of the Photogravitational Problem 

2 A PROBLEM WITH A SINGLE RADIATING CENTER (NONCONSERYA- 
TIVE PERTURBATIONS, LINEAR STABILITY) 

Further progress in the investigation of the problem is associated with including, 
into equations of motion, some perturbation factors, i.e., adopting more complicated 
models with allowance for radiation pressure and considering the stability of the 
libration points with or without these perturbations. 

2.1 A Model of a Light Pressure Taking into Account the Dynamical Eflect of 
Radiation 

The equations of motion of the restricted three-body problem in a rotating barycen- 
ter system with the potential (3) were derived first by Coloinbo et al. (1933) i n  



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
08

:1
1 

20
 D

ec
em

be
r 2

00
7 

THREEBODY PROBLEM 287 

order to investigate some features of a hypothetic near-earth dust cloud (the “Sun- 
Planet-Particle” system). Similar equations were derived by Chernikov (1970) for 
a rotating heliocentric system. Later on, these equations, using the potential (4), 
were derived and investigated by Schuerman (1980a, b). 

The first estimations of the errors in determining the positions of the libration 
points because of the neglect of the dynamical effect were made by Colombo et al. 
(1966). I t  was shown that all the points, though in different degree, have some 
displacement because of this. For example, the triangles it4 L 4 n  and M L5m are 
not only isosceles but fail to be similar ones. The locus of the positions of the 
libration points L1, . . . , L5 was considered by Chernikov (1970) taking into account 
the dynamical effect. 

2.2 L i n e a r  S tab i l i t y  

The first study of the linear stability of the five libration points in the case considered 
was carried out by Colombo e t  al. (1966). In this work, the libration points in the 
planar case were found independently of Radzievsky (1950, 1953). Stability was 
investigated both with taking into account the dynamical effect and without it 
(as a particular case) from the point of view of destruction of the stability under 
the action of the dynamical effect which is treated as an external nonconservative 
perturbation. 

The first investigation of the linear stability of the libration points L1, . . . , L7, 
was carried out by Chernikov (1970). It was as well made both including the 
dynainical effect and without it. Instability of the collinear libration points was 
established from general physical relations taking into account an analogy with the 
classical case. A more detailed analytic investigation of the collinear libration points 
L1, Lz ,  LB for the “Sun-Earth-Particle” system when Q E [1/2; 11 was carried 
out by Filyanskaya (1972). In all these works, the stability analysis was fulfilled 
on the basis of the linearized equations by considering roots of the characteristic 
equation. Another and more simple method for proving instability of the collinear 
1ibra.tion points was used by Perezhogin (1976) who showed the impossibility of 
their gyroscopic stabilization from which instability follows according to Kelvin- 
Chetaev’s theorem. 

The first investigation of the stability of the coplanar libration points L s ,  L7 
in the linear approximation was carried out by Perezhogin (1976): with the help 
of computer calculation of the roots of the characteristic equation it was sliown 
that for all possible values of the Sun’s system parameters these libration points 
are unstable according to Lyapunov (later Lukyanov (1987) showed that, for some 
other parameter values, the libration points Ls, L7 may be stable). 

Astronomical applications of the stability problem of the libration points were 
indicated by Matas (1975), Mignard (1982, 1984) and Perezhogin (1985). Some 
methods of keeping a spacecraft at the libration points of the photogravitational 
problem were considered by Polyakhova (1986) and Jumanaliev and IGselev (1986). 

The results on the stability mentioned above were generalized by Bhatnagar 
(1979a, b) and Sharma (1.982, 1987) to the case when one or both primaries are 
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oblate spheroids and one of them is a source of radiation. Stability was investigated 
in two cases: 1) the bigger body radiates being an oblate spheroid and having the 
equatorial plane coinsiding with a plane of motion, and 2) the nonradiating smaller 
body is a spheroid under the same assumptions. 

Further studies of the stability of the libration points developed in the following 
directions: 1) investigations of the linear stability in the case of two radiating centers 
and further generalization of the problem, including a theory of periodic orbits 
in the neighborhood of the libration points; 2) extending the range of the mass- 
reduction factor Q beyond the bounds of the photogravitational problem; 3) a 
nonlinear analysis of the stability in the case of one or two radiating centers including 
a resonant situation. Shaboury (1990a, b; 1991, 1992) had investigated the cases of 
triaxial satellites. 

3 THE PHOTOGRAVITATIONAL PROBLEM WITH TWO RADIATING 
CENTERS 

3.1 

After Radzievsky’s basic works (1950, 1953) the case of two radiating centers was 
investigated again by Schuerman (1980a, b) who considered the triangle libra tion 
points and derived the conditions of their stability to the first approximation in small 
parameters Q1 and Q 2  belonging to the interval [O; 1].The positions of these points 
(L4,  L5) were found as intersections of the two circles (5) under the condition (6). 
Besides this, the orbits near L4 and L5 were considered and it was shown, basing 
on the linearized system, that they can be unstable untwisting around the libration 
point. It must be noted that the restriction (6) used by Schuerman does not admit 
coplaliar libration points. This drawback was  overcome in further investigations. 

The Case of Two Positive Reduction Factors 

3.2 

A )  Coalinear librataon points. Investigation of all collinear libration points with 
two radiating centers for all possible values of &I and Qz was carried out practi- 
cally simultaneously by Lukyanov (1984) (the paper was accepted for publication 
on 30.09.1982) and by Kunitsyn and Tureshbaev (1983) (the paper was accepted €or 
publication on 21.12.1982). In both works, the number and positions of these points 
depending on the values of the parameters p ,  Q1 and Q z  were determined using 
different methods. In the latter paper, it was also shown that in  the case of equal 
masses ( p  = 0.5) the interval libration points can be stable to the first approsimn- 
tion. This result disproved a mistaken assertion of instability of collinear libration 
points (Schuerman, 1980; Giovane et al., 1985). In their later papers, Kunitsyn and 
Tureshbaev (1985a, 1985b) considered the linear stability of the collinear libration 
points for all physically possible values of the parameters p ,  Q1 and Q2. It was 
shown that the external points are always unstable as well as the interior ones when 
Q1 < 0 and Q2 < 0. But for the interior points, there is some region of stability 
though it is inaccessible if only one of the primaries radiates. 

The Photogravitational Problem for All  Possible Values of Q1 and Q2 
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THREEBODY PROBLEM 289 

A similar investigation of the collinear libration points was carried out by Sim- 
mons el al. (1985) almost at the same time, who considered the whole admissible 
interval for the mass-reduction factor. The main attention was paid to the trans- 
formation of one type of the libration points to another. With the help of the 
linearized equations of the perturbed motion, the stability of all libration points 
was investigated and the conclusion about their possible stability mentioned above 
was confirmed. 

The stability of the triangular libration points, 
using the linearized equations of motion, was determined practically simultaneously 
by Simmons ed al. (1985) and Kunitsyn and Tureshbaev (1985~).  The region of 
stability in the Q1 , Qz plane obtained in the first paper was determined providing 
its bounds are represented by two conjugate ellipses. Another simple geometrical 
interpretation of this region was given in the second work by means of the intro- 
duction of radius-vectors of the libration points and the angles between them and 
the Ox-axis. Such coordinates give a very simple picture of the stability region 
since its bounds are presented by arcs of two circles having the segment Mm as 
their mutual chord. The radii of these circles are functions of p. By means of such 
interpretation one may see, that for some values of p, the stability .region breaks up 
into two subregions separated from each other by an instability gap. All the above 
results on the stability of the triangular libration points can be treated using this 
interpretation. 

Radzievsky (1950, 1953) was  the first to point 
out on the existence of two coplanar libration points L6 and L7 providing Q1 and 
Q2 have opposite signs. A more detailed investigation of these points including their 
stability in the linear approximation was performed by Kunitsyn and Tureshbaev 
(1985d, 198G) and by Ragos and Zagouras (1988). If one of the sets of inequalities, 
either Q1 > 0, Q2 < 0 , p  < 1/2 or Q1 < 0, Qz > 0, p > 1/2, is satisfied, i.e., the 
mass of the body with positive Q exceeds that of the body with negative Q,  then 
two more points LB and Lg arise (Lukyanov, 1984b). 

Investigation of the stability of all coplanar points with the help of the roots of 
the six-order characteristic equation showed (Simmons et al . ,  1985) that the points 
L8 and Lg are unstable and the points L6 and L7 can be stable for all values of p. 

A discussion of the results obtained by Simmons et al. (1985) on the stability 
of the coplanar points for p # 0.5 was initiated by Tureshbaev (1986) and Ragos 
and Zagouras (1988) as aimed a t  the following two questions: 1) Is it true that the 
points LG and L7 are stable only if both the primaries radiate or one of them may be 
unluniinous? and 2) Is it true that the stability region exists only if a smaller body 
radiates more intensively? This discussion started because of a discrepancy between 
the text and the figures in the paper of Simmons e2 al. (1985). Ragos and Zagouras 
(l988,1990,1991a, b) made things clear showing by means of computer calculations 
that: 1) the points L6 and L7 can be stable also when only one of the primaries radi- 
ates and 2) if p # 0.5 these points can be stable and it does not matter which of the 
primaries (the smaller or larger one) radiates more intensely. I t  is of interest to com- 
pare the above works with the results of Perezhogin (1976) who proved the stability 
of the points for the system “Sun-Jupiter-Particle” (p w Q1 < 0, &z = l ) ,  

B)  Triangular libration points. 

C) Coplanar libration poinls. 
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i.e., for the case when the more massive body radiates. Apparently, this result, 
which seemed to confirm the conclusions of Simmons et al. (1985), allowed these 
authors to  use Perezhogin’s (1976) results as an example of application of their the- 
ory. But in fact this agrees with the conclusions of Tureshbaev (1986) and Ragos 
and Zagouras (1988) because of the nature of evolution of the stability region of the 
points Ls and L7 when p decreases. This evolution was investigated by Tureshbaev 
(1986). 

Radzievsky (1953) was 
the first to  point out the existence of a periodic orbit about the collinear point Lz in 
the XOZ plane when only one of the primaries radiates. Later, Filyanskaya (1972) 
showed that the periodic orbits described using exponents with purely imaginary 
arguments exist around all collinear libration points, Then Sharma (1982, 1987) 
considered the periodic orbits in the problem with one luminous body taking into 
account the effect of nonsphericity of the luminous body. These orbits may be used 
as holo-orbits for parking large orbital stations (Perezhogin, 1985). The construc- 
tion of the holo-orbits around the points L4 and Ls was fulfilled by Freitas and 
Valds (1980). For the case when both primaries radiate, Tureshbaev (1986) proved 
the existence of periodic orbits around the coplanar points L6 and L7 taking into 
account a small eccentrisity of the primaries providing the period of these orbits 
is the same as that of the primaries. A more detailed investigation of these orbits 
around the stable points Ls and L7 was carried out by Ragos and Zagouras (1988). 
These periodic orbits are symmetric with respect to  the XOZ plane and have t h e e  
angular frequencies. 

Resonance effects in the motion of interplanetary dust were studied by Kogan 
(1987) basing on the restricted photogravitational three-body problem and corre- 
sponding periodic solutions with allowance for the Pointing-Fbberson effect. I t  
occurs that dissipation due to  a dynamical effect of radiation forms a resonance 
structure in a planar model of the system “Sun-Jupiter-Dust Particle”. 

Fur- 
ther investigations of the libration points of the photogravitational problem with 
both bodies luminous were carried out by Lukyanov (1984a, b; 1986b) who allowed 
for a wider range of variation of the mass-reduction factor considering all possible 
real values of Q1 and Q 2 .  Of course, for Q1,2 > 1 this brings one beyond the 
framework of the photogravitational problem but it may be possibly useful if other 
perturbation factors are considered (for example, Coulomb forces). 

It was shown, in particular, that some more collinear libration points may arise 
in this case. Investigations of stability on the base of the linearized equations weie 
carried out as well. 

Further, Lukyanov (1987, 1988a) in the same generalized formulation carried out 
investigations of the existence and stability of the coplanar (1987) and triangular 
(1988a) libration points which, on one hand, have verified the above results and, 
on the other hand, have provided a new interpretation of the stability region in the 
Q1, Q2 variables. 

Then (Lukyanov, 198Ga, c) an attempt was made to  consider variable values 
of the mass-reduction factor. It was  shown, for example, that for existence of the 

0) A periodic orbit of the photogravitational problem. 

E)  A wader range for the mass-reduction fac tor  and other generalzzntions. 
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collinear points i t  is necessary that a linear dependence between &I and Q2 takes 
place. From this case i t  is easy to go on to  the photogravitational problem with 
variable masses of the primaries (Lukyanov, 1989a, b). 

4 NONLINEAR ANALYSIS OF THE STABILITY OF THE LIBRATION 
POINTS 

Since the equations of motion of the photogravitational problem can be written in 
the Hamiltonian form, the stability conditions of the libration points derived from 
the linearized equations can be considered as necessary ones, because, as i t  is known, 
stability of a Hamiltonian system is possible only in the critical case when all the 
roots of the characteristic equation are purely imaginary or zerevalued. It was  
established by Lyapunov that then a nonlinear analysis of the perturbated motion 
equations is necessary. On the other hand, instability determined by means of 
considering the roots of the characteristic equation is preserved, in accordance with 
Lyapunov’s results, in spite of the presence of any nonlinear terms small enough. It 
is this situation which takes place in all the above cases of instability of the libration 
points of the photogravitational three-body problem. 

It should be noted that in the case of the linear stability of the libration points 
we have not such a simple situation (as well as in the classical problem) when the 
quadratic part. of the perturbed Hamiltonian is a positive definite function and 
the stability of the nonlinear system can be established basing on the Lagrange- 
Dirichlet’s theorem. In accordance with Birkhoff’s results, the stability can be 
proved for a model system in which all terms of any order exceeding or equal some 
n are omitted. Such kind of stability is called Birkhoff’s full stability and it occurs 
if internal resonances (i.e., integer-valued linear relations between the characteristic 
exponents) are absent. Along with this, results of the KAM theory (Kolmogorov, 
1954; Arnold, 1963a, b; Moser, 1968) may be used from which one can assess the 
stability of the whole system but for almost all possible initial perturbations in the 
sense of Lebesgue‘s measure. In order to determine such a stability, it is necessary to 
transform the initial Hamiltonian to  a normal form and then to check the conditions 
of nonsingularity according to the KAM theory theorem. A strong instability, if it 
occurs, may take place only in the presence of internal resonances, provided the 
resonances of the third and the forth order are the most important ones. 

A nonlinear analysis of the stability of the triangular libration points with a 
single luminous body was first carried out by Kunitsyn and Perezhogin (1978, 1980). 
For the points L4 and Lg, the Hamiltonian for a planar perturbed motion was 
normalized provided the forth order terms are included and then the conditions of 
the ICAM theory theorems were checked up. This normalization was carried out as 
well in the cases of the resonances of the third and the forth order. The results of 
these investigations can be formulated as follows: the points L4 and Ls are stable 
in  the planar case according to Lyapunov except for some values of Q and p which 
correspond to  internal resonances of the third and the forth order and maybe to a 
degenerate case when 
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czow; + cllwlwz + cozw; = 0 

(here w1 and wz are the frequencies of the main oscillations). It was pointed out 
that stability of these points takes place for all planets of the Solar system. A 
similar analysis for the points L4,. .  . , L7 was carried out in three dimensions also 
by Perezhogin (1982). The stability in the sense of the KAM theory and the formal 
stability have been proved in the whole region of the linear stability except the 
values of Q and +Y mentioned above. An estimation of the Arnold diffusion rate was 
made which allows to establish the stability of the points Lq and L5 for a large time 
interval . 

Later, Perezhogin and Tureshbaev (1987) considered nonlinear stability of the 
triangular points L4 and L5 for the case of two luminous bodies. Again, the con- 
ditions of stability in the sense of KAM theory and a formal stability were corrob- 
orated in the whole region of parameters Q1, Q2 and p where the linear stability 
takes place and on the part of the resonance curves of the third and the forth order. 

Similar results were obtained for the points L6 and L7 (Perezhogin and Turesh- 
baev, 1989). Nonlinear stability of L4, L5 was investigated also by Kuiiiar and 
Choudry (1986, 1987, 1987-1988, 1990) and by Gozdziewski and others (1991). 
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