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ON THE SYNCHROTRON EMISSION OF 
A RELATIVISTIC ELECTRON SPIRALING 

IN RAREFIED PLASMA. 
I. THE CRITERIA OF THE PLASMA 

INFLUENCE 

A. G. GOUNDYREV and V. A. RAZIN 

Russia, Nizhni Novgorod 

(Received February 1 ,  1993) 

The spectrum of synchrotron emission power is investigated in detail for a relativistic elecbron in 
plasma with the refractive index n2 = 1 - w; /wz .  It is shown that a familiar criterion [l-31 of the 
plasma influence on synchrotron emission, w 5 w* = w ; / ( w ~ ~  sine), is valid for 0 2 m c z / E .  If 
0 < mcZ/E ,  then it  is necessary to take int.0 consideration the plasma influence when w p  2 wl-1. 

1 INTRODUCTION 

In applications of the theory of the synchrotron radiation from relativistic elec- 
trons, there is sometimes a necessity to  take into consideration the influence of a 
surrounding “cold plasma” on the spectrum, polarization, directivity, reabsorption 
and propagation of the emission [l-31. For the electron pitch angles 0 >> m c 2 / E ,  
(m is the electron mass, c is the velocity of light and E is the electron energy) in  the 
case of a rarefied plasma and .weak magnetic field, this effect may be investiga.ted 
by introducing the factor [l-31: 

q = 1 + (1 - n2)(E/mc2)2  (1) 

in the equations that are true in vacuum. Setting 

n2 = 1 - (u ; /w2)  (2) 

(W is the cyclic frequency of emission, w p  = ( 4 ~ N e ~ / m ) ’ / ~  is the plasma frequency, 
N is the electron concentration in plasma and e is the electron charge), one finds: 

q = 1 + (w;/w”(E/mc2)2 = 1 + ( W ; / U 2 ) 7 2 .  (3) 
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230 A. G.  GOUNDYREV AND V. A. RAZIN 

Here 7 = E/mc2 is the relativistic Lorenz factor. When w p  = 0 (emission in 
vacuum), we have n = 1 and q = 1. If w p  # 0, then q > 1 and the plasma influence 
is essential. Supposing for definitiveness that q = 2, one has: 

w* = w p y .  (4) 
If the electron radiates mainly at frequencies w 5 w * ,  the plasma influence will 

be essential. Synchrotron radiation from relativistic electrons in vacuum is known 
to  have a wide spectrum with emission power maximum W, a t  the frequency [4]: 

w,,, - W H  sin By , 
where W H  = eH/mc is the electron gyrofrequency and H is the magnetic field 
strength. For w 5 wmax, the power radiated is W, o( w1I3. At frequencies w 2 w,,,, 
the power decreases quasi-exponentially, W, rx w1I2 exp(-2w/3wma,),. Setting w = 
w,,, = w e ,  one finds: 

( 5 )  2 

(6) 
2 - -  W m a x  

- w H s i n d ’  
and using (4): 

N [ c ~ - ~ ]  
H sin B[Gs] 

W f  = - w’ ~ 2 i r - 3 0  
W H  sin 0 ( 7 )  

Thus a t  frequences 

the surrounding plasma influence on the synchrotron emission is essential. In pnr- 
ticular, a quasi-exponential cutoff occurs at these frequences [ 1-31. 

A question arises about the limits of the criterion (8) applicability when the 
pitch angle is decreasing, because in the case when B 5 mc2/E the characteristics 
of synchrotron emission are radically changing. To examine this question, i t  is nec- 
essary to  solve the problem of synchrotron emission of a relativistic electron gyrating 
in plasma with arbitrary pitch angle. This problem was considered repeatedly a n d  
general results were derived (see, for example [5-91). However, the simplest way to 
derive the limits of the criterion applicability is to  suppose, as in [l-31, that  the 
plasma is rarefied and the magnetic field is weak; this will be done in the present 
paper. 

The energy radiated will be derived by calculating the work done by the radiation 
friction force against the electron: f . v = e . (v . E) = j . E, where E is the electric 
field strength at the electron location, v is the electron velocity and j is the current 
density produced by the electron [6, 7, 9, lo]. Thus, one has to  calculate the electric 
field E, when the electron spirals in a rarefied plasma, and to  obtain j . E. 

w 5 W f  (8) 

2 THE SYNCHROTRON RADIATION OF A RELATIVISTIC ELECTlXON I N  
A RAREFIED PLASMA IN THE CASE OF A WEAIC RIAGIVETIC FIELD 

Let us assume the following conditions [l-31: for the plasma refractive index, 
n ( w )  < 1, 1 - n(w)  << 1, and ( w ~ / w )  << 1. The latter inequality means that the 
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SYNCHROTRON EMISSION 33 1 

plasma is isotropic. Under these conditions, the plasma refractive index is given by 
equation (2). Furthemore, we assume that 1) n ( w )  does not depend on position and 
time; 2) the external magnetic field Ho is homogeneous and its value is constant; 
3) the relativistic electron energy decreases very slowly with the electromagnetic 
wave emission and it is possible to suppose that it is constant during the period 
of the electron gyration in the magnetic field. Taking into account the frequency 
dispersion of the plasma and the superposition principle, we have the following form 
of Maxwell’s equations for the harmonic time dependent exp(-iwt) electric (E) and 
magnetic (H) radiation fields (the plasma’s magnetic permeability is set equal to 
unity): 

In equations (9) - 

is the charge density, and 

47~ .  n2 
rot H = -J - i-wE, 

C C 

W 

C 
rot E = i-H , 

4 V  
n2 

div E = - , 

p = e . b(r - re) 

j = ev .b (r  - re) 

is the current density. 
Here S is Dirac’s delta-function, re is the vector of the electron position, v = 

&,/at is the electron velocity. When the electron spirals in a homogeneous magnetic 
field Ho, it is reasonable to set: 

r = (ro cos w t  , ro sin w t ,  q t ) ,  

v = (-211 sinwt, v l  coswt, q), 

(15) 

(16) 
where T O  = 2r l /wg is the radius of the spiral; wg = w ~ / 7 ,  211 is the electron velocity 
component perpendicular to Ho, and gl is the electron velocity component parallel 
to Ho. Obviously, v l  = vsind and vll = vcos6 (v = IvI, 6 is the angle between v 
and Ho, the pitch angle). 

To solve the system of linear equations (9)-(12), we shall present E(r, t ) ,  H(r,t) ,  
j(r,t) and p(r,t) as a superposition of plane waves (Fourier integrals) IS, 7, 9-12]. 
For example: 

-m --oo 

E(k,  w )  = dt ./ dr E(r, t )  exp[-i(kr - w t ) ]  (18) 
-m --oo 

a.nd so on. 
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232 A. G. GOUNDYREV AND V. A. RAZIN 

Here k is the wave vector, dk = dk,dk,dk, and dr = d i d y d z .  Because E(r , t )  
is real, one has: E(-k,-w) = E*(k,w). From Maxwell’s equations for the Fourier 
components of E(r,t), H(r,t), j(r,i) and p ( r , t )  one finds a system of algebraic 
equations: 

k x H(k,w) = --j(k,w) - n2zE(k, w), (19) 

(20) 

47ri 
C C 

W 

C 
k x E(k,w) = -H(k,w), 

47rip(k, w) k.E(k,w) = - 
n2 ’ 

k . H(k, W) = 0. (22) 
Inserting H(k,w) from (20) into (19) and opening the double vector product, we 
obtain the following equation: 

W 2  4TiW 
C2 

k . (k . E(k, w)) - k2 + E(k, w)  + -n2 - E(k, w) = -Tj(k,u). (23) 

A scalar product of this equation and the wave vector k yields 

(24) 
47ri 
wn2 

k. E(k,w) = --(k .j(k,w)). 

Relations (23) and (24) imply: 

where j l (k ,w) is the current density component perpendicular to k and jll is the 
current density component parallel to k. As follows from (as), the electric field E 
has two independent components. One is perpendicular to the wave vector k: 

-1 47ri c2k2 
El(k,w) = -jl(k,w) W (x - n 2 )  

(transverse waves) and another is parallel to k: 

(longitudinal waves) (see also eq. (24)). 
The frequency of the longitudial waves w = w p  can be found from the dispersion 

relation n2 = 0;t the plasma wave energy can be neglected in the case considered 

‘More precisely, one may refer to plasma oscillations only in the case of a “cold” plasma because 
the frequency does not depend on the wave vector k and the group velocity vanishes, &/ak = 0. 
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SYNCHROTRON EMISSION 233 

[6]. For this reason in the following we shall describe transverse electromagnetic 
waves E l ( k , w )  only, the dispersion relation for which is c2kZ = w2n2(w) (see (26 ) ) .  

The average power of radiation generated by the electron is: 

W = lim - 1 7’ dt J d r ( j l ( r , t )  . E i ( r , t ) )  (28 )  T - w  T 
-TI2 

-OJ 

Using (26), W can be written in the form: 

To perform integration in (30), we use the following standard way: one intro- 
duces a small imaginary part of the refractive index. In this case the following 
equations are true [6]: 

Thus, one has 

+0J 

W = -  4a2T 1 / $ / d k l j l ( k , w ) I 2 6  (F - n’) 

But then (see, e.g., 1131) 

9 (33) 

(34) 

b(?$-n2)=- w S[k - (w /c )n]  + 6[k + ( w / c ) n ]  . 
C 2 n  

and 
d k  = dk,dk,dk, = k2 sincrdadpdk = k2dQdk, 

where a is the angle between the z-axis (directed along the external magnetic field) 
and k ;  p is the angle between the projection of k on the (XY) plane and the 3c- 
axis; and dQ = sin adcrdp is the solid angle element. Besides, because positive and 
negative frequencies are equivalent physically and j ( - k ,  -w)  = j * ( k , w ) ,  the integral 
( 3 2 )  can be replaced by the following integral: 
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234 A. G. GOUNDYREV AND V. A. RAZIN 

Here the subscript k = (w/c)n  a t  the current modulus squared means that it is 
necessary to  set lkl equal to  (w /c )n .  

Let us now clarify the character of a current j(r,t), producing the e1ectroma.g- 
netic emission. Using (14) one finds: 

j ( k , w )  = e dt v ( t )  exp[--i(kr, - w t ) ] .  (36) 
-03 im 

Taking into account the cylindrical symmetry of the emission angular distribu- 
tion, we shall choose a coordinate system in which k is parallel to the (YZ) plane. 
Under this assumption: k., = 0, k, = k s i n a  and k, = k coscy. Using (36), (15) and 
(16) we can define the projections of j (k ,  w )  on the axes: 

j , ( k , w )  = - e v l  dtsinwgtexp[--i(zsinwgt + kvlltcosa - w t ) ] ,  (37) 
J 

-03 

+m 

j,(k,w) = e v l  / dtcoswgtexp[-i(zsinwgt + kvlltcosa - w t ) ] ,  

j , (k ,w)  = e q  / dtexp[--i(zsinw,t+ Bvlltcosa - & ) I ,  

-03 

+W 

-m 

where 3: = kro sin a. 
The following calculations will be made by using the relations [13] :  

+W 

exp(-it sin ‘p) = C ~ ~ ( z )  exp(-isp), 
s=-CO 

where Js(z) and J:(z) are the Bessel function and its deriva.tive with respect to 3:, 

respectively. After a simple reduction one finds: 

+W 

j , (k ,w)  = -27rievi J:(z)d(y), 
S = - W  

(44) 
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SYNCHROTRON EMISSION 235 

3: = kro sin a, y = w - swg - k q  cos a. 
The electric vector E l  (k, u) can be written as a sum of two orthogonal linearly 

polarized components: the parallel and perpendicular to the (YZ) plane, i.e., as 
e,El,(k,w)+epElp(k,w),  where e, and ep are unit vectors corresponding to  the 
directions of electric field polarizations. Analogously, j l  (k,  w )  has two components: 

j l (k ,  w )  = epj, (k,  w )  + e, li, (k, w )  cos (Y - j, (k,  w )  sin a] , 

l j l (k ,w)12  = lj,(k,w)12 + l jy(k,w)cosa - j,(k,w)sina12. 

(47) 

(48) 

Using (44)-(46), we may rewrite j l ( k , w )  and l j l ( k , w ) I 2  in the form 

S 

X 

+w 

j l ( k , w )  = 27re [ep(-iulJ:(x)) +e , (v l -cosa  - 2111 sina)J,(z)]  &(y); (49) 
,=-m 

where the following opera.tor equa.lity [7, 91 was used: 

T 
b2(Y) = g w  

(here T is the total time of the electron emission). 
Using (35), (49) and (50) we have: 

w =  c w, 
5z-m 

where Ws = W,.l + W t ,  W,.i and W! are the emission powers associated with the 
components of E(k,w) polarized in the directions e, and e p ,  respectively. Thus, 

e2 J w 2 n ( w )  [ ( v l ~ : ( z ) ) 2  + ( v l -  S cos a - “11 s ina )2~~ ,” (x ) ]  ~ ( y ) d w d ~ .  w, = - 
2?rc3 X 

(52) 
Here 

sin /3~. sin a 
x = kro sin (Y = 

1 - Pllncosa’ (53) 
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236 A. G. GOUNDYREV AND V. A. RAZIN 

s c(c0s a - n)  
v~ - cos LY - VII sin a = 

n sin a 9 
3: 

(55) 

PI1 = q / c ,  D l  = V A / C ,  k = (w/c)n. 

I t  is easy to  perform integration over frequencies in (52). One rewrites 6(y) in the 
form [13]: 

q w  - W l )  + q w  - w 2 )  

Iy ’ (W1) l  IV’(w2)l ’ 6(Y) = 

where y‘ denotes the derivative of y with respect to  w ,  and w1 and w2 are the roots 
of equation y = 0: 

w1,2 = 2( 1 - sws cos a )  [ l T  ( 1 -  2p11wz. s2w; ‘OS a (1  - pi1 cos a)) y 2 ]  . (56) 

If the expression under the root tends to  unity, then: 

Thus. 
2 2  2 2 e s w g n  (w)  

2 4  1 - cos a)21n(w2) - cos Q I  w, = 

Here the facts that  Iy’(w2)I = In-pll cos al/n and w1 << w p  were taken into a.ccount. 
With an error not exceeding w;/w2,  (57) may be rewritten in the form:+ 

e2s2w,2 

27rc sin2 a( 1 - pll n cos a) 
w, = [ X ~ J : ~ ( S Z ~ )  + z2J: (sx1)]  dfl, (57’) 

where ~1 is the value of 2 for s = 1. 

cos a - pi1 n 
1 - p l p c o s a ’  

z =  

This result can be also easily derived if we present E(k, w )  as a suiii of two cir- 
cularly polarized waves. Let us introduce the following orthogonal complex vectors: 

e+ = (e ,  + i e ~ ) / 2 ’ / ~ ,  (60) 

tEq. (57’) can be obtained directly from (52) if we assume that n = const. 
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SYNCHROTRON EMISSION 237 

e- = (e,  - iep)/P12. (61) 
Vector e+ corresponds to  the wave with the left polarization (if one loolts towards 

the wave, the electric vector turns counter-clockwise) and e- corresponds to the 
wave with the right polarization. As follows from (60) and (61), 

e,  = (e+ + e-)/2112, 

ep = (e+ - e- ) / P I 2 .  
(62) 

(63) 
Expression (49) is transformed, with the help of (62) and (63), to  the form: 

+co 

j l ( k , w )  = 

+ 
{e+ . [ - v ~ J : ( z )  + ( ( v l s / x )  cos a - "11 sin a )  JJ(z)] 

e- . [ v ~ J : ( z )  + ((vls/z) COSQ - VII sin a )  Js(x)] } x 6(y). (64) 
s=-OO 

Using (35), one has: 

x 6 [ ~ ( l  - Piin COSCY) - swS] dw (65) 

w, = w;'+ w; (66) 

where W$ is the emission power of the harmonics with the left and right polariza- 
tion. Obviously: 

and we have again expressions (52), (57) and (57'). 
A few words about the summation over s in (52) are timely. As it was pointed 

out, positive a.nd negative frequences are physically equivalent. Besides, J-,(z) = 
(-1)' J,(z) and the formulae discussed contain these functions sqmred, hence for 
the terms with s > 0 we have equal terms with s < 0. Hence: 

+m +m 

w = c ws = ws=o + 2 c ws. 
We should mention that in the case considered ( n ( w )  < 1) 1 - P11n cos a cannot 

vanish. When w > 0 and s = 0, the argument of the &function in (52) also cannot 
be zero, and hence WS=o = O.t  

Taking into account these remarks, we may rewrite (57') in the form (see [7, 01): 

where s = 1 , 2 , 3 , .  . . 
'If the electron radiates in a medium with n > 1 and Plln > 1, then Ws=o # 0 and the 

Vavilov-Cerenkov emission appears. 
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238 A. G .  GOUNDYREV AND V. A. RAZIN 

3 THE EMISSION SPECTRUM FOR LARGE PITCH ANGLES 

To investigate the spectral distribution of synchrotron emission power, we perform 
the integration of (52) over a solid angle. Due to cylindrical symmetry of the 
emission angle distribution, one can set dQ = 27rsin ada. 

We show first how the plasma acts on the synchrotron emission for large pitch 
angles (0 - 1). In this case, one can use the following asymptotic form of the Bessel 
functions [18, 191: 

J& + cs1/3) M ( 2 / s ) 1 / 3 ~ i ( - 2 1 / 3 ~ ) ,  (69) 

J;(~ + csi/3) - ( 2 / s ) 2 / 3 ~ i ’ ( - 2 1 / 3 ~ ) .  (70) 
Here 

+m 

is the Airy function+ of first kind and s >> 1; the prime denotes a derivative with 
respect to the argument. Let us replace the variable x by introducing a new variable 
C in the following way: s + Cs1I3 = sz1 and c = - -~’ /~( l  - 21). Now 

J ~ ( ~ ~ ~ )  ( 2 / 4 1 / 3 ~ i  [ 2 1 ~ / 3 ( 1 -  zl)] , ((390 

J:(..~) - ( 2 / s ) 2 / 3 ~ i ’  [ 2 1 ~ / 3 ( 1 -  4 . ( T O ’ )  

We shall set z1 equal to (53) for s = 1, and use (69’) and (70’) for calculations 
with the help of ((38). To simplify calculations, we introduce the instantaneous 
coordinate system (z’, y’, z’),  so that z’ = z, y’ is parallel to the electron velocity 
a t  t = 0. In the new coordinate system, angle a is replaced by a’ = ~ / 2 ,  where 6 
is the angle between k (wave vector) and v (electron velocity) (e  << 1). Further, 
vi, = v: = 0, v y  = v& = v; 21 --+ nPcose, z ---t sine M E ,  wg -+ wo = wgsi i i0 ,  
w = SWO, and we obtain the modified Shott formula, allowing for the influence of 
the surrounding plasma on synchrotron radiation: 

(72) 
e2w2 [J:2(snpcos() + tZJ:(sn/3cost)] do.  w, = - 
2TC 

Using (S9’) and (70’), one finds from (72): 

‘The Macdonald functions I C , ( z ) ,  related to the Airy functions are also widely used (18, 191: 

1 
Ai (7 )  = - ( ~ / 3 ) ’ / ~ K ~ / ~ ( 2 ~ ~ / ~ / 3 ) ,  

Ai’ ( r )  = --(./31/2)IC2/,(2r3/2/3). 

7r 

1 
7r 
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SYNCHROTRON EMISSION 239 

Here HOL = Ho sin 8 and q = 1 + (1 - n 2 ) ( E / m ~ 2 ) 2 .  
With the new notation (73) reduces to  

(74) 
2e2 

W, = -p$ . ( w / 2 w 0 ) ~ / ~  [v’2(qx + v2)  + v2v2(qx + v2)]  dQ. 

Let us perform the integration of (74) over the solid angle dS2 = 2nd(, taking into 
account t1ia.t the range of essential values of W, is restricted by very sma.11 values of (. 
Besides one replaces the integration variable < by 7). Due to  the Doppler effect, every 
harmonic number is connected with frequency range ( A W ) ~  M wgy2 cos O /  sill3 0 
(“the line width”)+ when the angle < is changing within the beam - rnc2/E = yA1.  
On the other hand, the change of frequency due to  a change of the harmonic number 
s to  s + 1 is: (Aw), = wg/sin2 8. 

The result is (Aw)c/(Aw), M y2 cot 8. When 8 - 1, this ratio is of order 7’ 
(> l), i.e. the spectral lines overlap. Hence, it is reasonable to  sum (74) over s 
in the range dw and instead of W, we shall have the spectral density of the power 
emitted, W,. That is, W,ds = W,dw, and ds = dw/wo, one has W, = W,/WO. 
Finally, one has the following equation for the spectrum of the power emitted: 

where 

These formulae were derived earlier in 11-31 and were investigated in detail in 

It is convinient to rewrite (75) as a function of the parameter f = 2 ( q ~ ) ~ / ~  = 
[lG]. When q = 1, it is transformed to  Vladimirsky’s formulae [15]. 

f i43 /2 ,  fl = w/w1. 

tThe relative “width of line” is (Aw)c/w 7-l cot 8. 
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is a universal function which characterizes the power spectrum of an ultrarelativistic 
electron moving in magnetic field [15]. When q = 1, in the limit cases of low and 
high frequencies Y(f) can be approximated as [15]: 

0.256(f1/2)’/~ (fi << 1);  (79) 

(80) 
1 
16 
- - - ( ~ f ~ ) ~ / ~ e - - ( ~ f 1 / ~ )  (fl B I).  

Thus, we have derived a well known result: at low frequencies the synchrotron 
emission intensity increases with frequency as w 1 l 3 ;  at high frequencies, it decreases 
quasi-exponentially. The functions Y ( f )  and I ( x )  were calculated in [15]. Y ( f )  has 
a maximum for f1 M 0.5, Y(0.5) M 0.1. Hence a maximum of synchrotron emission 
in vacuum occurs at frequencies Y = w / 2 ~  around 

vmax M 0 . 5 ( ~ 1 / 2 ~ )  M 1.4 * 106Ho~(~/??X’2)2. 

WYmLX = 27rW,,,, M 3 .  10-22H~l[ergs-1Ht.-’]. 

(81) 

Here w is expressed in H z  and H ,  in Gs. The power a t  the emission maximum in 
vacuum is 

(82) 
When q > 1 (i.e., when the plasma influence cannot be neglected), the syn- 

chrotron spectrum changes radically. The spectral distribution of emission is deter- 
mined, mainly, by the function Y ( f ) .  At the frequency [2, 161: 

W j m i ,  = 21/2wpy, (83) 

the parameter f has a minimum value: 

3312 w p  W f m i n  
fmin = - --y M - , 

2 w1 Wmax 

where wmax x 0 . 5 ~ 1  is the frequency a t  the emission maximum in vacuum. If 
fmin << 1 (w* << w l ) ,  then due to the presence of noiirelativistic plasma oiily low- 
frequency harmonics (for which f > 1) are suppressed. If (w*/w) ’  >> 1, then 
f x (w*/w)’ and 

i.e., the spectrum sharply cuts off a t  frequencies w 5 w * .  The total power of the 
synchrotron emission decreases in this case to 

In the frequency range W* < w < 0 . 5 .  w1 the emission power M’, c( w 1 t 3 ,  as 
in vacuum. If fmin  > 1, then the synchrotron spectrum changes radically also at  
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SYNCHROTRON EMISSION 34 1 

high frequencies: the emission maximum is shifted to high frequencies (- wfmi,) 
and the emission power is strongly reduced. For w* > w1, the parameter f(w) = 
( w / w l ) ( l  + can be approximated by two terms of a series obtained by 
expanding f (w)  near w = wfmin = 2 l t2w* :  

Using (77), (80) and (87) one has (we replaced the slowly varying factor a t  the 
exponent by its value for w = wjmim): 

W" M 

Thus, when the plasma influence is strong, the synchrotron spectrum becomes 
quasi-gaussian with the line-half-width (31/2w1w*)' /2 at the e - l  level. I t  is not diffi- 
cult to  show that in this case the total emission power decreases quasi-exponentially 
with w * :  

The spectral power of synchrotron emission of the ensemble of relativistic elec- 
trons with a power law energy distribution decreases also quasi-exponentially a t  
frequencies w 5 w* [ l -3,  161: 

w oc (w/w*>'-" . ~ x ~ [ - ~ ' / ~ ( w * / w ) I  (89') 

( K  is the relativistic electron energy spectrum ( N ( E )  oc En) exponent). 

4 THE EMISSION SPECTRUM FOR SMALL PITCH ANGLES 

Consider the synchrotron radiation spectrum for small pitch angles (6  << 1). First, 
perform the integration of (52) over solid angle dR = 27r sin ada, and further per- 
form the sum over s. Introducing the new variable p = cos a, one has dS1 = -27rdp, 
sin cy = (1 - p 2 ) ' / 2 ,  
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After simple calculations one finds the following expression for power emitted in the 
frequency range w ,  w + dw: 

where 

The values of the harmonics number over which the summation runs are determined 
by the following inequalities: 

(92) 
W W 
-(1- npcosO) _< s 5 -(1 +npcosO), 
wg W9 

which follows from -1 5 po 5 1. Finally, inserting p o  in (90) one has: 

C { [nP sin OJ: (x )12  
2e2wdw 

cn2Pcos8 
w(w,e)dw = 

(93) 
(w - swg - w n 2 p 2  cos2 6)’ 

w 2 n 2 p 2  cos2 8 - (w - S W ~ ) ~  
i- 

t an0  2 2 2 2 112 x = -(w n p cos2e- (W - swg) ) 
W 9  

(94) 

The frequency range A w  in (93) is restricted by w1 5 w 5 w2,  where w1 and w2 

are the roots of the equation PO = 1 for (Y = 0 

(1 - pcos 8 ) )  1 ’ 2 .  
2p cos ew; 

A w  = 
1 - pcose s2w; (95) 

Formula (93) gives a possibility to calculate the synchrotron emission spectral den- 
sity from relativistic electrons spiraling at arbitra.ry velocities a.nd pitch a.ngles in  a 
rarefied plasma with the refractive index n2 = 1 - w $ / w 2 .  

This formula is rather complicated due to the presence of the Bessel function 
sum. But in the case of smaIl pitch angles only the Bessel functions of low orders 
are essential (i.e. some lower harmonics contribute to  the emission). If B 5 ( m c 2 / E )  
<< 1, then retaining only the terms up to  second order in 8 ,  one finds: 
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where the parameter q = 1 + (w$/w2)y2 is introduced. For 0 << (mc2/E), it is 
possible to set [18]: 

(sx)- l  
JS(St) R-i - ; J i ( s x )  R-i -I 

28s! 28s! 

Obviously, the emission at the first harmonic is dominant in this case and 

The radiated frequency interval is: 

(100) 
2 1/2 AW = w2 - w1 = 2wH7 (1 - ( W P / W )  ) , 

W ( w ,  0) = 0 beyond this range. 

the formulae obtained in [17]. 

approximation for the Bessel function: 

In the absence of plasma we have to  put q = 1 in (96) and (99), and this yields 

It is convenient to  use for numerical calculation in this case the Wild and Hill's 

J i ( S 2 )  = exp(-s/2no) (2*s)'/2z [(l- 2 7 3 1 2  + 11931- S (1 - &) , (101) 

where 
(1/2no) = In 1 + (1 - z2)3/2] - In 2 - (1 - z 2 ) 1 / 2 .  

This approximation has the accuracy 5% for 0 < z < 0.999 and s < 03 [14]. 
In Figure 1 the emission spectra corresponding to  individual harmonics in vac- 

uu'm and their sum are presented in the case B = mc2/E = Calculations were 
made with the help of (93) and (101). 

It ca.n be seen that really a wide frequency range between w1 and w2 is wider 
than separation between two adjacent harmonics for any harmonics and we have 
a continuous spectrum. In Figures 2-6, the emission spectra for 8 = 5mc2/E, 
B = 2mc2/E, B = mc2/E,  0 = 0.5mc2/E and B = 0.1mc2/E (mc2/E = 
are presented for vacuum and plasma and different plasma frequencies. When the 
pitch angle is sufficiently small ( B  5 0.1mc2/E; so that the inequality By << 1 is 
true), then as we have already mentioned, the emission occurs, mainly, at  the first 
harmonics and the spectrum falls off at the frequency 

[ 

(see Figure 6). At low frequencies w << WHY w ( w )  o( w .  
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w 

w,,7 

Figure 1 The synchrotron emission power spectral density of the relativistic electron with the 
pitch angle 6 = mc2 /E in vacuum (solid line). The spectra of separate harmonics (s = 1 , 2 , .  . . ,6) 
are shown dashed. 

Figure 2 The synchrotron emission power spectral density of the relativistic electron with the 
pitch angle 6 = 5mc2/E in vacuum (solid line) and in plasma (dashed lines): 1. w p  = 0 . 5 ~ ~ ;  

The frequency w* = w$/(w~sin6)  is marked here and in the following figures by asterisk. 
2. W p  = 2WH; 3. W p  = 5WH; 4. W p  = 1oWH; 5. W p  = 20WH. 
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SYNCHROTRON EMISSION 245 

Figure 3 The synchrotron emission power spectral density of the relat,ivistic electron with the 
pitch angle 0 = 2mc2/E in vacuum (solid line) and in plasma (dashed lines): 1. u p  = 0 . 5 ~ ~ ;  
2. W p  = W H ;  3. W p  = 2 W H ;  4. W p  = 3WH; 5. W P  = 5WH. 

ai 1 

iJ1 

'a" -r 

10 

Figure 4 The synchrotron emission power spectral density of the relativistic electron with the 
pitch angle 0 = mc2/E in vacuum (solid line) and in plasma (dashed lines): 1. w p  = 0 . 7 ~ ~ ;  
2. wp = 1 . 5 ~ ~ ;  3. w p  = 2 . 5 ~ ~ .  
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0.01 1 10 

Figure 5 The synchrotron emission power spectral density of the relativistic electron with the 
pitch angle 0 = 0.5mc2/E in vacuum (solid line) and in plasma (dashed lines): 1. w p  = 0.2WH; 
2. w p  = W H ;  3. W p  = 2WH. 

10 

lo-' 

loe3 

Figure 6 The synchrotron emission power spectral density of the relativistic electron with the 
pitch angle 0 = 0.1mc2/E in vacuum (solid line) and in plasma (dashed lines): 1. w p  = 0 .9~13  
(w' = 8.1~~7); 2. w p  = 1 . 5 ~ ~  (w' = 2 2 . 5 ~ ~ ~ ) .  
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The presence of plasma leads to the narrowing of the frequency range corre- 
sponding to the first harmonics number; the power emitted is also reduced (see 
Figure 6 for w p  = 0.9WH and Figure 4 for wp = 0 . 7 ~ ~ ) .  

When the plasma frequency increases to a certain value, the emission at the first 
harmonics is suppressed. This happens when the expression under the root in (95) 
becomes negative. The condition of the absence of emission at the s-harmonics is 
the following: 

(103) 
W P  2 2 112 < S* = wp7ppcose .  (1 - pcose)11/2 M -[I + e 7 1 . 

W H  W H  

For example, when 0 = mc2/E and w p  = 1 . 5 ~ ~  (see Figure 4), the first har- 
monics is not emitted and we have a considerably reduced emission power a t  low 
frequencies. For larger values of w p ,  the higher harmonics will not be emitted. In 
the case of 0 >> mc2/E,  plasma leads to a significant modification of the spectrum 
at frequencies w 5 w* = w$/(wH sine). 

When the pitch angle decreases and 0 -+ 0, the frequency W* increases too and 
tends to infinity. But, on the other hand, the power spectrum is restricted a t  high 
frequencies by wmax = 2 ~ ~ 7 ;  hence, w* becomes an inadequate characteristic of 
the plasma influence on the radiation at  small pitch angles. Hence, it is necessary 
to find the minimum value of 8, for which one can use the criterion (8). 

As can be seen from Figure 6, in the case 0 < mc2/E the criterion discussed 
is not accurate enough because it gives a too large value for w* (for example, for 
0 = 0.1mc2/E and w p  = O.gWH, the criterion gives W *  = 8 . 1 ~ ~ 7 ,  but the spectrum 
is restricted by w,,, = 2 ~ ~ 7 ) .  For 8 >_ mc2/E,  the criterion ( 8 )  is valid (see 
Figures 2-4). 

For example, for 8 = mc2/E and w p  = 1 . 5 ~ ~  the power emitted in plasma 
at the frequency W *  = 2 . 2 5 ~ ~ 7  (marked by asterisk in the figures) decreases by a 
factor of 2.5 in comparison with vacuum. 

At frequencies w < w* one can see a quasi-exponential fall-off of the power emit- 
ted: W, oc ex~[-(2/3)(w*/w)~]; at  frequencies w > w * ,  plasma does not practically 
change the synchrotron spectrum. 

Thus, criterion (8) is valid when 6 2 mc2/E. 
The inapplicability of (8) for fl < mc2/E is due to the following reasons. When 

obtaining the criterion, the following expression for the maximum frequency for 
6 >> mc2/E was used: w,,, - WHT2 sin 8 (wmaX is proportional to the square of 7). 

But for 0 5 mc2/E the maximum frequency is given by: Wmax - 2wH7 (Wmax is 
proportional to 7). 

Inserting 7 - w,,,/wH in (4), one finds for 0 < mc2/E that plasma influence is 
essential if 

(which is obvious also from eq. (100) for the emitted frequency interval). 
For 8 - mc2/E,  the criteria (8) and (104) are equivalent. Actually, writing 

(104) as W $ / W H  > W H  or  sine) > ~ ~ / s i n O ,  and taking into account that 
for 0 - mc2/E sin 0 N 0 - 7-' = mc2/E (for relativistic electrons) one has 

W P  > w H  (104) 

w$/(wH sin e) = w* > W H Y ,  (105) 
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Table 1 The frequency Y,&~ for several cosmic sources. 

Object Electron densi ty ,  Magnetic f i e l d  ve=r12* H Z  

cmw3 strength, Gs 

Solar bursts lo9 102 3 x lo8 
Supernova remnants 
(filaments) 103 1 0 - ~  3~ lo9 
Molecular clouds 102 3 x 108 
Interstellar medium 
(HII-regions) 1 3 x 10-6 10’ 
Gaseous nebulae 1 o3 1 0 - ~  3 x lo9 
Quasars 106 + 108 1 0 - ~  + I O - ~  3 x io1O + 3 x 
Active galactic 
nuclei 10’2 5 x 102 6 x 10” 

i.e., the criterion (8), because for B - mc2/E the obsermble frequencies a.re w - W H Y  

(see 102). 

5 CONCLUSION 

A strict solution of the problem of the synchrotron emission of relativistic electrons 
spiraling in a rarefied plasma with the refractive index n2 = 1 - w c / w 2 ,  shows 
that for 6 >_ mc2/E the plasma influence is essential at frequencies w 5 w* = 
W ; / ( W H  sin 6). 

For 6 < m.c2/E, the observable frequencies are less or of the order of 2 ~ ~ 7 ;  and, 
because W *  = ywp ,  the plasma influence is essential if w p  2 W H .  

The frequency ui=,12 = (1/27r) . W ~ / W H  (for B = 7r/2) is shown in Table 1 
for several cosmic sources [20-241. As can be seen, this frequency belongs to the 
frequency range of observations of these objects. If the electron pitch angle distri- 
bution is strongly anisotropic in some object and the average pitch angle is small 
(say, 6 - mc2/E) ,  then the frequency v* will be larger by the factor 7 = E/mc2 in 
comparison with the large pitch angle case: 

* 1 .  w; 1 w; 
u =-- M - -y = u;,*p . y. 

27r ~ ~ s i n 6  27r W H  

This means that v* increases hundred ar thousand times, because the value 
y = E/mc2 is large for relativistic electrons and, consequently, the plasma influence 
is essential practically always. 

Let us point out that  the following equation may be convenient for approsimatc 
calculations of u*:  

u*[Hz] M 1.5 . 107N0.6[~rn-3]. (1 06) 

H[Gs]  = 2 .  10-6N[cm-3], (107) 

It follows from (7) by using the following expression [25]: 
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which is valid for cosmic sources with linear dimensions 
assumption t1ia.t the gas is completely ionized). 

+- 10 pc (under the 
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