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A method proposed by L. Herrera and collaborators in 1980 to study General Relativistic Spheres 
in the free streaming out is extended to handle a general radiating spheres. We have applied this 
method to study a specific scenario, where the luminosity proiile is obtained for radially oscillating 
contracting spheres, and the evolution of the boundary surface is analyzed when pulsating profiles 
are provided. It is found that, in both cases the oscillatory frequency of the surface coincide with 
the frequency of the pulsating profile. 

1 INTRODUCTION 

Recently, it has been reported that the rapid variations of the luminosity of a young 
supernova remnant, generally interpreted as due to its rotation, can be alternatively 
explained as radial oscillations of the compact object (Abramowicz, 1989; Lindblom 
and Mendell, 1994). Ramaty el al. (1980) and, recently, Hameury and Lasota (1986) 
describe y-ray bursters as objects that transform a fraction of their gravitational 
energy into gamma radiation via oscillations of the neutron star surface. Energy 
fluctuations in stellar binary systems endowed with thermomechanical oscillations 
can be used to describe X-ray bursters (Aquilano et al . ,  1987, 1988, 1990). 

We present results on a close relation between the oscillation of the surface and 
the pulsation of the radiation. Within the modeling, free streaming out approxima- 
tion for the radiation is considered. 
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2 THE FIELD EQUATIONS AND THE METHOD 

Let us consider a nonstatic, spherically symmetric distribution of matter formed 
by a fluid and unpolarized radiation (null fluid). In radiation coordinates (Bondi, 
1964), the metric takes the form 

ds2 = e2P ((V/r)du2 + 2dudr) - r2 ( d P  + sin2 ddp2) , (2.1) 

where and V are functions of u and r .  Here u = zo is a timelike coordinate, r = z1 
is the null coordinate and 9 = z2 and ‘p = x3  are the usial angle coordinates. The u- 
coordinate is the retarded time in flat spacetime, and therefore u-constant surfaces 
are null cones open to  the future. This latter fact can be readily noticed from 
the relationship between these coordinates and the usual Schwarzschild coordinates 
(TI R, 0, 

21 = ~ - J ~ d r ,  r 8 = 0 ,  

r = R, c p = @ .  (2.2) 

It is assumed that for a local observer moving with a radial velocity w ,  the 

i) an isotropic fluid of density jj and pressure P ,  
ii) isotropic radiation energy density 3P, 

iii) unpolarized radiation energy density 2 travelling in the radial direction. 

space-time contains 

For its moving observer, the covariant energy-momentum tensor can be written as 

) .  (2-3) 

((@+:;+2) ( P + P + E ^ )  -& 0 0 

0 ( i , + P )  0 
0 0 ( P + P )  

TjI” = 

The energy-momentum tensor describing this fluid can be written, for a non co- 
moving observer, in the radiation coordinates as (for details see Herrera and NGez,  
1990) 

T,” = ( p  + P)uJ,uJ” - Pg,, + X,K” (2.4) 
where P = P + P I  p = ,? + 3P. 

The four-velocity is given by 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
08

:0
1 

20
 D

ec
em

be
r 2

00
7 

RELATIVISTIC RADIATING SPHERE 189 

Outside the matter, equation (2.1) should represents Vaydia’s metric, therefore: 

m0 ( u )  
47rr(r - 2m(u)) ’ p = 0, V = r - 2m(u), and E = 

In these expression m has been considered as an integration function depending on 
u. This function is the “mass aspect” defined by Bondi and collaborators (Bondi 
et  al., 1962) and in the static limit it coicides with the Schwarzschild mass. Inside 
the matter, the configuration m(u) is generalized to m by considering everywhere 

v = e2P(r  - 2m(u, r ) ) .  

Now Einstein’s field equations can be written as 

47rr(r - 2m) 
r 

1 - w 2  V 
+ E = e-2P-T, = p + P w 2  

(2.8) 

(2.9a) 

(2.9b) 

(2 .9~)  

(2.9d) 

Observe that it is possible to obtain algebra.ically the physical variables (w ,  p, 
P ,  and E )  from the field equations (2.9a-d), once the functions P(u, r )  and m(u, r )  
are given. This is only valid for the physical system considered in the present paper, 
i.e. an isotropic fluid configuration plus a free streaming radiation field. For richer 
physical environments, such as anisotropic fluids, thermal conducting fluids, viscous 
fluids and charged fluids and when the surface phenomena are involved, additional 
information has to be provided (Herrera and Nlifiez, 1990 and references therein) 

Now, defining two auxiliary functions: 

and - P-pw p=-, 
l + w  

(2. lob) 

which will be hereafter referred to as the effective density and the effective pressure, 
respectively, and integrating equations (2.9b) and (2.9c), it can be obtained that 
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2?rs2 p =  J - ( p + F ) d s ;  
s - 2 6  

(2.1 l b )  

where r = a(.) defines the boundary of the fluid sphere. 
Consiquently, m(u, r )  and p(u, r )  are written as functions of and P in the same 

way as they are expressed in terms of p and P for the static limit. To complete the 
HJR method outlined below to  be consistent, it is nessesary to  match the interior 
solution to  the Vaidya metric at the boundary surface. This matching can be also 
carried out either by using the Darmois-Lichnerowicz Conditions or by requiring 
the continuity of the functions p and m across the boundary surface and requiring 
that 

(2.12) 

(Herrera and Jimknez, 1983). 

near the boundary surface r = a(u ) :  
Using that p is continuous and p = 0 for the Vaydia metric, we may expaad it 

Poa + hP1a = 0; (2.13) 

where u = %. Substituting expression (2.13) into (2.12) and using equations (2.91)) 
and (2.9c), it is obtained 

(2.14) 

On the other hand, the matter velosity can be written in the radiative coordinates 
as 

dr  V w 
du r l - w '  

- - - -- 

Therefore, it follows that 

(2.15) 

(2.1G) 

The crucial point of the HJR method is the system of ordinary differential equa- 
tions for quantities evaluated at the surface. The first of these equations is (2.16). 
Scaling the radius a ,  the total mass m and the timelike coordinate u by the total 
initial mass m(u = 0) = m(O), i.e., 

A = a/m(O), M = m/m(O), u/m(O) + u 

and defining 
1 

1 - w ,  
F = 1 - 2 M / A ,  fix--, 
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RELATIVISTIC RADIATING SPHERE 191 

equation (2.16) can be written as 

A = F(R - 1). (2.17) 

The second Surface Equation emerges from the evalution of equation (2.9a) for 
r = a + 0, and i t  takes the form 

M = - F . E .  (2.18) 

As stated above, the total luminosity E is defined by 

(2.19) 

Now, using the definition above and Equation (2.17), we can rewrite equation (2.18) 
as 

F - 2 E + ( l - F ) ( R - l )  - - 
F A 

(2.20) 

The third surface equation can be obtained from the field equations (2.9b), (2 .9~)  
and (2.9d) evaluated at r = a ,  together with condition Fa = 0 or, equivalently, by 
recalling the conservation equation (2.16). Finally, using the effecive variables (2.11) 
and (2.12), and after some straightforward manipulations, we arrive at  

which is a generalization of the Tolman-Oppenheimer-Volkov (TOV) equation for 
hydrostatic support in dynamical radiative situations. We stress the conspicuous 
role played in this expression by the effective variables i j  and p .  

Equations (2.17), (2.20) and (2.21) conform to the System of Surface Equations 
(SSE). This system may be integrated (numerically in most of the cases), for any 
given radial dependence of the effective variables. For completeness we outline here 
a brief resume of the HJR method for radiating fluid spheres in the free streaming 
out approximation (see Herrera and N S e z  1990, for details): 

1. Take a static interior solution of the Einstein equations for a fluid with spher- 
ical symmetry. 

2. With the r dependence of j and F and using (2.11a) and (2.11b) we get m 
and p up to  three functions of u. 

3. For these unknown functions of u ,  we have a system of ordinary differential 
equations (2.17, 2.20, 2.21) for the quantities evaluated at  the surface: the 
surface equations. %The first two equations (2.17) and (2.20) are model inde- 
pendent, and tlie third one depends of the particular choice of the equation 
of state. 
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4. One has three surface equations (2.17, 2.20, and 2.21) corresponding to: the 
boundary radius A ,  the velocity of the boundary surface (related to Q), the 
function m evaluated at r = Q(U) (related to  F )  and the “total luminosity” 
F E .  Providing one of these functions, the system of surface equations ca.n be 
integrated for any particular set of initial data. 

5. By substituting the result of the integration in the expressions for m and p, 

6. The complete set of matter variables for energy density p ,  pressure P ,  radial 
matter velocity w ,  and radiation energy flux E can be algebraically found for 
any part of the sphere by using the field equations (2.9a-d). 

these metric functions become competely determined. 

3 THEMODEL 

We sha.11 work out three models previously studied in the free streaming out ra- 
diation flux approximation (Herrera e l  al. ,  1980). They are: Schwarzschild-like, 
Tolman-VI-like and Tolman-V-like solutions. In the static limit, the Schwarzchild- 
like homogeneous solution represents an incompressible fluid of constant density. 
The equation of state of the static Tolman VI solution approaches the one of a 
highly relativistic Fermi gas and, therefore, with the corresponding adiaba.tic ex- 
ponent of 4/3. Finally, for the Tolman V solution, the rela.tion P / p  - 1/3 is 
maintained during the contraction a t  the center of the distribution. 

In order to close the system of surface equations, we have first provided a pul- 
sating pattern for the luminosity profile, and, second, a contracting and oscillatory 
evolution for the boundary surface is given. This is 

where A0 and A j ,  respectively, represent the initial and the fina.1 radius of the 
configurations, 6 is the variation over the the final radius in the oscillatory motion; 
x and 7 control the contracting evolution as in any Fermi-like distribution function. 

The first model considered is the Schwarzschild-like homogeneous model. The 
effective density is assumed to  be 

3 l - F  p = f(.) = - - 
87r A2 ’ 

and the effective pressure can be easily computed as 

(3.2a) 

(3.2b) 

where n 
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The second model is the Tolman VI-like model expressed in terms of the effective 

p = -  I 3h(u) (3.3a) 
variables: 

r2 
and 

P = - (  - jj 1 -9k(u)r  ) .  
3 1 - k(1L)r 

(3.3b) 

Obtaned of equations (2.10a) and (2.10b), and therefore, k(u)  can be expressed as 

1 
8x 

k(u) = -(1- F ) .  

4 R - 3  
3a(4R - 1). k(u) = 

(3.4a) 

(3.4b) 

The last model studied is the Tolman-V-like model, and its effective varia.bles 
are 

and 

(3.5a) 

(3.5b) 

Functions ~ ( u )  and z(u) can be expressed in terms of the surface variables as 

and 

1 
28 

w ( u )  = -(1- F ) ( 5  - 2 q  

5 (1 - F)(4S1- 3) 
A713 

z(u) = - 
847~ 

(3.6a) 

(3.Gb) 

In the case where the radiation profile is given, Schwarzchild-like homogeneous and 
Tolman-VI-like solutions have been integrated using 

A(0) = 10.00, F ( 0 )  = 0.80, and n(0) = 0.80 

as a set of initial conditions. Corresponding radiation profiles have been given as 

L oc 1 - sinpu (3.6) 

We have run several models with these initial conditions and luminositied. 
On the other hand, if A(u) is given, the integration has been carried out using: 

F ( 0 )  = 0.80, A0 = 10.0, A,  = 9.0, x = 5.0, T = 8.0 and q5 = lo4 

Variation from 6 = 
Figure 1 displays the evolution of the contracting boundary for the models con- 

sidered. In Figure 2, a typical given oscillatory radiation profile is sketched. Fig- 
ure 3 contains the oscillatory radiations profile for the Schwarzschild-like equation 
of state in the case the evolution of the boundary surface is provided. Finally, 
Figure 4 displays the same for the Tolman-V and Tolman-VI models. 

to 6 = lo-" has been used to run Schwarzschild-like. 
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cn 9.00 
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3 7.00 
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0.00 5.00 10.00 15.00 20.00 25.00 30.00 

U 

Figure 1 Curves A,  B, and C 
describe the collapse when the pulsating luminosity profile is given, for the Schwanschild-like, 
Tolman-VI-like and Tolman-V-like models, respectively. Curve D represents the contracting pat- 
tern adopted for the boundary. 

The evolution of the boundary surface for different models. 

' 25E-002 3 

U 

Figure 2 
tions. 

A pulsating radiation profile provided as input to close the system of surface equa- 
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3.00E-002 

2.50E-002 

h 
3 '6; 2.00E-002 z 
'l 1.50E-002 
3 
4 PJ 1.00E-002 

Figure 3 The oscillating luminosity profile for the Schwanchild-like model. 

5.OE-003 

O.OE+OOO 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 

U 

Figure 4 
curve with a greater amplitude corresponds to the Tolman-V-like model. 

The oscillating luminosity profile for the Tolman-V and Tolman-VI-like models. The 
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4 CONCLUSIONS 

Radiation flows freely only at early stages of the collapse, but for the present calcu- 
lations we are interested to  show that,  even in the case when matter and radiation 
are slightly coupled, variations in luminosity may cause the oscillation on the surface 
of the distribution and vice versa. 

It is clear from Figure 1 that the variations of the boundary radius are compa- 
rable for all the models considered. Figure 2 contains a typical adopted oscillatory 
luminosity profile. Again, Figures 3 and 4 show the same period for the variation 
of the luminosity in these models. 

The possibility t o  treat oscillations in the “diffusion limit” is under a curse. 
Within this limit, radiation is considered to  have a mean free path much smaller 
than the characteristic length of the system, and this limit is relevant a t  a later 
epoch of the collapse. 

We would like to  conclude to clear to the reader that of the procedure consist in 
avoiding a head-on integration of Einstein’s equations. Instead, a heuristic relation 
among the matter variables is assumed. 

This work has been carried out under the bilateral cooperation agreement 
CONICIT (Venezuela) - CONICET (Argentina). It has been also partially sup- 
ported by the Consejo de Desarrollo Cientifico Humanistic0 y Tecn6logico de la 
Universidad de Los Andes, under project 559-92-05; by the Consejo de Investi- 
gaciones de la Universidad de Oriente under Project C.I. 5-022-00393-89; and by 
the Directorate General for Science, Research and Development of the European 
Communities under contract C-11-0540-M(TT). 
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