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THE IMAGE RANDOMNESS TEST FOR 
INVERSE' PROBLEMS 

V. Yu. TEREBIZH and V. V. BIRYUKOV 
Crimean Station of Sternberg Astronomical Institute, 

$34413 Nauchay, Crimea 

(Received December 31, 1992) 

A n  Image Randomnwn Test (IFlT) is applied to obtain efficient object estimates in inverse prob- 
lems, specifically, in the image restoration. According to the IKl', an observed image can be 
conaidend aa one of the typical random image simulatioru for a fedble object estimak. The 
likelihood b not a comprehensive estimate from the IfiT point of view; in addition, the Maximum 
Likelihood principle contradicts the IFlT. A Mean Likelihood requirrment b pro+ for thin 
purpose together with the statistical independence test. 

A connection of the concepts introduced with the information theory by Shannon M shown. 
The limiting accuracy and resolution an dkusacd for simple observational conditions. N u m a i d  
simulations show that the stability of the invcrae solution for the method d d b e d  k denificantly 
i n w .  

Exact and asymptotic expresaiona for the information and entropy of a Poisoon random variable 
arc given in Appendices, M well M some examplea of the parameter entimation with the mean 
information requirement. 

KEY WORDS Data d y & ,  image restoration 

1 INTRODUCTION 

The statistical approach to the image restoration problem is based on the following 
main propositions (Helstrom, 1969, 1970; Terebizh, 1990a, 1991, 1992): 

1. An unknown object is (in onedimensional version, for notation simplicity) a 
deterministic set of parameters S (4, . . . , S,,). The parameters correspond 
usually to the mean counts in detector pixels for an ideal image forming sys- 
tem, but they may include some structural parameters of the object as well. 

2. An observed image N G (Nl,. . . , N,) is a random simulation of intensity 
counts for a set of pixels of a real imaging system. The stochastic nature of 
the counts is caused not only by the background, but also by the phaton noise. 
This means, in particular, that the inverse problem cdnnot be for&ulated in 
terms of integral equation theory. 

3-3-39 37 
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38 V. Yu. TEREBIZH AND V. V. BIRYUKOV 

3. The object S and the image N are connected by a stochastic image formation 
model, which should ,be described by the investigator as simply as allowed 
by the physical meaning of the considered problem. The ultimate goal of 
the model developing is an explicit expression for .the conditional probability 
f (NIS)  td obtain the set N for any object S. 

4. The image restoration problem is formulated as searching for the statistical 
estimate S' E (Si, . . . , S:) of the true object S on the basis of the observed 
image N, the model f ( N I S ) ,  and a pn'on' information, which may include, for 
example, the non-negativity condition for the object, the Point Spread Func- 
tion (PSF) shape { h j k } ,  and the mean background (7,). Being a function of 
random array N ,  any estimate S * ( N )  is a multidimensional random variable. 
Its bias and variances relative to the true object S can be considered as a 
quality measure of the estimate, i.e., of the inverse problem solution. 

5.  For a wide area of applications, an adequate quality measure is the mean 
square scatter: 

where E denotes the mathematical expectation. Due to the well-known in- 
formation inequality, the scattering of an arbitrary estimate cannot be less 
than some boundary value that depends on the probability density f (N1S) .  
This means that the accuracy of the restoration (and, in general, of any in- 
verse problem solution) is limited by a method-independent value which is 
determined by the nature itself. We denote as the boundary estimate such 
an estimate which attains the lower limit in the information inequality, and 
as the efficient estimate such one that has the least scatter in the chosen esti- 
mate class. The boundary estimate exists when, and only when, the density 
f ( N I S )  belongs to the exponential family. As one can easily see that if the 
boundary estimate exists, it is also the efficient one (the opposite statement 
is incorrect). Generally speaking, the purpose of the investigator is not to 
search for just the boundary estimate, but to search for the efficient one, or 
very close to it practically. The reason is that the efficient estimation gives 
the accuracy of the solution of the inverse problem which cannot be improved 
in principle. 

A detailed description of the statistical approach to inverse problems and of a 
number of model and real cases can be found in the above references and in Terebizh 
and Biryukov (1990, 1991) and Terebizh ei al. (1991). 

It seems that in the frame of the approach described the most important point 
is the search for a concrete way of estimating that can give the limiting accuracy 
for a wide range of observational conditions. From the practical point of view, only 
this problem is of any interest, of course. 

The Maximum Likelihood (ML) principle has been considered in our previous 
papers as the most promising way to obtain the efficient estimates. The ML-estimate 
is defined by the following requirement (Fisher, 1912): 

!&k = E[(s: - s;)(si - s k ) ] ,  (1) 

S ( N )  = arg maxf(NIS), (2) 
S E W  
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IMAGE RANDOMNESS TEST 39 

Pixels 

Figure 1 
was processed with m+mum likelihood method (c ) ,  and mean information method (d, e). 

Examples of restoration of a Gaussian object (a). The blurred and noised image (b) 

where, as usually, argmaxf(z) means an argument value at which the function 
f(z) is maximum in a given domain. The minimum a priori  information about 
the object corresponds to the definition of the domain U :  {S 2 0). Note that the 
MGestimates are marked by a caret, and the arbitrary estimates are marked by an 
asterisk. 

The reason for considering the ML-estimates as promising ones is the theorem 
which states that the ML-estimate coincides with the boundary estimate, if the lat- 
ter exists at all (e.g., Borovkov, 1984). Model simulations and analytical examples 
that we considered earlier show the closeness of the M G  and efficient estimates to 
each other. At the same time, they are close not always, and, perhaps, the most 
evident way to show this fact is connected with the well-known phenomenon of the 
instability of inverse solutions. 

Figure l(a) shows an initial object 28 as a Gaussian density distribution with the 
standard deviation Cob = 2 pixels and the total flux F = lo4 counts. Figure l(b) 
illustrates the result of random blurring with a Gaussian PSF at UPSF = 3 pixels 
and adding a random Poisson background with the mean level 7 = 100 counts/pixel 
(simulation number 28-13). The ML-restoration of the blurred image is shown in 
Figure l(c); the non-negativity of the estimate was considered as a sole a prion’ 
information about the object. We see a hardly oscillating curve instead of a smooth 
original, and such an effect is typical not only of the ML-estimation, but of other 
approaches to the inverse problems as well, unless special precautions are introduced 
to suppress the instability. 

It is known for a long time (see, e.g., Phillips, 1962) that the instability of inverse 
solutions is caused ley the fact that a restoration method “tries to explain” details 
of the observed image, including random fluctuations at all scales. As far as a very 
large deviation in the object space is required to produce a very tiny fluctuation 
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Pixels 

Pixels 

Figure 1 (continued) 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
07

:4
9 

20
 D

ec
em

be
r 2

00
7 

IMAGE RANDOMNESS TEST 41 

Figure 1 (continued) 

in the image space under the smoothing process, the estimate of the object is so 
broken. It should be noticed that large estimate oscillations are random only to 
such an extent that fluctuations of the image are random. 

Thus, one should take into account under restoration not all but only statisti- 
cally significant details of the observed picture. This goal is attained in different 
ways by various image restoration methods (see Section 8). Usually the investigator 
minimizes some quadratic “misfit” between the dataand the model to a statisti- 
cally insignificant level, and then chooses the smoothest solution (in some definite 
sense) from all “feasible” solutions (Phillips, 1962; Tikhonov, 1963; Twomey, 1965; 
F’rieden, 1972, 1979; Bryan and Skilling, 1980; Skilling and Bryan, 1984). The mis- 
fit can be treated as the X2-statistics (Ables, 1974; Lucy, 1974). Using the X2-test 
leads to some technical problems like the subjectivity of a bin set, but the main 
difficulty is that the universal measure of deviation in the X2-test does not account 
completely for a concrete shape of the probability density f (N1S) .  

The purpose of this paper is to discuss a general criterion to search for an 
eflicient estimate in the discussed above strict meaning. An explicit formulation 
of this intuitively evident requirement allows to reveal the insufficiency of the ML- 
approach and to use some new ways to increase the accuracy of the solutions. 

2 THE IMAGE RANDOMNESS TEST 

Let us consider for simplicity the case when the imaging system is a linear one, and 
the event statistics follows the Poisson law (see a detailed discussion in Terebizh, 
1990a; Snyder, 1990; Terebirh et  al., 1991). Then the mean number of image counts 
at pixel j can be written as follows: 
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4000 

3000 

Pixels 
Figure 1 (continued) 

and the observed image counts { N j }  are simulations of mutually independent Pois- 
son random variables { C j }  with the corresponding mean values {Aj (S)} .  We will 
call, for brevity, the vector A(S) = {Aj (S) )  the mean projection of the object S 
onto the image space; then the image N should be considered as one of the possible 
random projections of the object S. The analogous notion of the projections can 
be used for both the true object S and any its estimate S. 

It was assumed in (3) that all pixels of the detector have equal sensitivities. The 
effects of detector inhomogeneity together with other effects which are important 
for real data processing were discussed consistently by Snyder et  al. (1993). 

Let us formulate the Image Randomness Test (IRT) as a certain requirement 
that continues points 1-5 in Introduction: 

6. Only such estimate S ( N )  of the object S are feasible for which the observed 
image N cannot be distinguished statistically from the typical image simula- 
tions corresponding to S ( N ) .  

In the case considered we should specify the IRT as follows: only such estimates 
S ( N )  of the object S are permitted, for which the observed image counts { N j }  
can be considered as a set of statistically independent one-dimensional Poisson 
simulations with mean values { A j [ s ( N ) ] } .  We denote the estimates satisfying the 
IRT by tilde. 

One may conventionally decompose the IRT into’ the requirement of the inde- 
pendence of the random variables that give rise to the image N (the white noise 
test) and the requirement of the Poisson distribution for these variables with the 
mean value vector equal to the mean projection {Aj(s)) of the estimate 3. The 
scheme in Figure 2 clarifies the IRT. 
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IMAGE RANDOMNESS TEST 43 

Figure 2 The marginal probability densities p[zj, A,($)] for aome object estimate 3 (thin lines) 
and really observed intensity counts Nj at merent pixels. Thick bars represent the marginal 
likelihoods p[Nj, Xj($)]. 
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44 V. Yu. TEREBIZH AND V. V. BIRYUKOV 

3 SHOULD THE LIKELIHOOD BE MAXIMUM 

Since Fisher (1912) introduced the Maximum Likelihood (ML) principle as a special 
estimating method for unknown parameters (in an implicit form, it was used as 
early as in the XVIII century), the ML-estimates became the most studied and 
widely used ones. It was mentioned above that, under some conditions, the ML- 
estimates coincide with the boundary estimates. Especially strong results concern 
an asymptotic domain when the investigator has a large number of simulations of the 
same random variable. Unfortunately, such situations are rare in image restoration; 
we usually have only one image of the object. For this reason, we concentrate on 
the case of a single frame, though multi-frame restoration does not introduce any 
principal difficulties. 

If some set of one-dimensional patterns is used for the parameter estimation (in 
the present context, the set of intensities in different pixels), the likelihood L is a 
product of the marginal distribution densities: 

where the marginal densities are now defined by the Poisson law: 

Ak 

k! p(k, A) = e-’-, k = 0,1 , .  . .; A 2 0. (5) 

Equations (2)-(5) completely define, in principle, the ML-estimate S ( N ) .  The 
maximization in (2) is a separate problem which is not considered here. 

Let us assume for a while (see Figure 2) that the numbers of image counts which 
are larger or less than the corresponding mean values are equal to one another 
within the statistical accuracy (of course, this fact is insufficient to claim .that the 
sample consists of a set of mutually independent random variables, but it does 
not complicate the problem just from the start). Then we have to check only the 
agreement of the deviations rj E Nj - A j ( s )  with the Poisson law. For this purpose 
one can use the set {rj} itself, but it seems more adequate to consider a product 
of the marginal probabilities p(Nj,Aj). Indeed, if (Nj} are situated near their 
mean values within natural fluctuations, the product will be large. At the same 
time, excessively strong fluctuations will result in decreasing the product, i.e., the 
likelihood L. 

Thus, being a function of the random array N, the likelihood itself is a random 
variable (statistics). Its expected value should be not far from the maximum value 
Lmax(N)  = f (NIS) ,  but it is unreasonable to require the observed value L to be 
strictly equal to Lmm. Just this requirement suggests that an estimate of the object 
must fit all details of the image, statistically significant or not, and, consequently, it 
will be almost definitely strongly oscillating. A much more attractive requirement 
is that the observed value L is equal to its expectation value: 
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IMAGE RANDOMNESS TEST 45 

or deviates from the mathematical expectation by a statistically insignificant value. 
The function E[f(NIs)] is given in Section 4 and Appendix A. 

Like equation (2), which defines the maximum likelihood estimate, equation 
(6) defines the mean likelihood estimate S ( N ) .  Some examples of such estimates 
can be found in Appendix B. It can be seen from these examples that, for simple 
one-dimensional distributions, S is unique and efficient. At the same time, for multi- 
dimensional distributions, which are the most interesting for us, the requirement 
(6) definea not a single estimate but some class of them. Therefore, when the 
likelihood L is increased, one does not have to attain the maximum point L,,, but 
it is better to stop after having reached the “feasibility layer”, i.e., a certain value 
which satisfies equation (6) within a natural statistical deviati0n.t 

4 CONNECTION WITH INFORMATION THEORY 

There are two notions of information in the probability theory; the first definition 
was introduced by Edgeworth (1908, 1909) and Fisher (1922) for the estimation of 
parameters, and the second one, by Shannon (1948, 1949) for the needs of com- 
munication theory. The Fisher information matrix I ik(S)  plays the main role in 
the expression for the lower scatter boundary of any estimate, and just with the 
Fisher information matrix is connected the name of the corresponding inequality 
(note, by the way, that along with the term information inequality there are widely 
used the terms ILw-Crarner inequality and Fkeche inequality). There were a few 
attempts to connect the image restoration and information theories; as one can see 
below, our way has some specific features. To distinguish the notation I for Fisher’s 
information used in our previous publications and the information by Shannon, we 
denote the latter by J .  

Let us remind briefly the main notions. Assume that r is a continuous random 
variable with a uniform distribution on the interval [0,1]. If we measure information 
in bits, then the information contained in the communication “the simulation of r 
is in the interval [z, z + &]” will be J = -log, E.  This value corresponds simply 
to the number of the first digits in a binary representation of r which one should 
communicate to know its position with the accuracy of E (e.g., Wiener, 1961). 
Consider then a discrete random variable ( which can take the values 0 , l .  . . k, . . . 
with probabilities p(O),p(l), . . . , p ( k ) , .  . ., whose sum equals unity. We may imagine 
simulating < as simulating r in the unit interval that includes all subintervals of 
the lengths p(O),p(l), . . .. r being in the interval p ( n )  is equivalent to the event 
that the simulation of ( is equal to n. As stated above, one has the information 
Jn = - log, An) about the simulation of T .  It is more convenient to pass from 

tGenerally appedring, one should introduce the probability density 9 ~ ( t )  of the statistics L and 
some deprificsnce level Q to obtain a first type error in the sense of a standard pure significance 
test, and the comsponding critical value La. Then the criticd estimate S, is calculated instead 
of the mean likelihood estimate, M usually. Since the Shannon information J considered below is 
a function of the likelihood L,  the same way is applicable to the estimation with J .  We will return 
to thia more complicated approach later. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
07

:4
9 

20
 D

ec
em

be
r 2

00
7 

46 V. Yu. TEREBIZH AND V. V. BIRYUKOV 

binary logarithms to natural ones; the corresponding unit of information is nat = 
log, e cu 1.443 bit. 

If the intensity count at the pixel j is Nj, then the amount of information 
resulting from this pattern is given by 

where p ( k , A )  is now defined by the Poisson law (5).  According to our model, the 
counts in different pixels are mutually independent random variables, therefore the 
information due to the whole image simulation is 

m rn 

j=1 j=1 
m 

= - In p ( ~ j ,  ~ j )  = - In ~ ( N I S )  = - In L. ( 8 )  
j=1 

Thus, the complete information in the image N is the logarithm of the likelihood L 
taken with the opposite sign. 

It is clear now that the arguments of Section 3 in favour of the mean, but not 
the maximum, likelihood are equivalent to the fact that, when considering a typical 
simulation, we expect to get not the minimum, but only some close to the mean 
amount of information. Thus, the mean likelihood principle can be treated also as 
a requirement of equal values of sample information in the image and its entropy. 

Note, by the way, that it is convenient to keep in the expressions for information 
and entropy the terms that are not dependent on the object; we then can measure 
information in absolute units, and to compare different images. 

As to the mean value of information, it is equal, according to the definition by 
Shannon, to the entropy H of a random variable: 

m 

m 
where 

k=O 

is the Poisson entropy that corresponds to one pixel. Exact and asymptotic expres- 
sions for Hp(A) are given in Appendix A. 

Similarly to the above relation, one may require approximately equal values of 
the sample information and the entropy not only for the.whole image, but also for 
different subsystems of pixels, in particular, for adjacent parts of the image. We 
call for brevity this requirement the local mean information principle. 

Unlike the ML-estimate, the MI-estimate is non-unique for a multi-dimensional 
case. We simply narrow the class of Weasible” (in terms by Skilling and Bryan, 1984) 
solutions by subsequent requirements like the MI.. The above local MI-principle also 
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IMAGE RANDOMNESS TEST 47 

narrows this class. Other requirements may include a strict estimate of the total 
object flux, the white noise test, and, of course, the available a pn'ori information. 

Let us stress, in order to avoid misunderstandings, that we do not discuss here 
any maximization of the entropy, and the meaning of entropy in our case is different 
from that in the well-known maximum entropy method. 

5 THE WHITE NOISE TEST 

It was supposed above that before testing data with the aid of the statistics L, 
an independence was checked for the set of random intensities which generates the 
observed image {Nj}. L itself can say nothing about the "mixing" of the deviation 
set {rj}. It ia possible, for example, to shift {Nj} in such a way that all new counts 
are on the same side from the corresponding mean.values, but L does not change 
its value at all (see Figure 2). Evidently, insofar as the likelihood is concerned, 
the new sample will be as feasible as an old one, but the new sample is completely 
unsatisfactory in terms of the white noise test. 

We come to. the conclusion that L alone is an insufficient statistics for the IRT. 
Nevertheless, as a product of marginal probabilities, it accounts for some important 
properties of the observed image, so it is possible to use L as earlier, but this time 
not in the maximum sense and together with some white noise statistics. 

Another way is to find out a single statistics that simultaneously checks both the 
mixing and the Poisson nature of the sample. As a matter of fact, the considered 
problem is the same as the well-known problem of testing the sequences of random 
numbers produced by a computer. There are powerful relevant methods, but it is 
out of our possibilities to consider them here. 

It should be noticed that the above general testing methods are extremely 
labour-consuming. Since image restoration makes high demands to computers as 
well, it is reasonable to consider briefly some simple white noise tests which can be 
added to the likelihood statistics to check the IRT. 

> 1, the simplest test compares 
the number of positive and negative deviations between {rj G Nj - Xi} .  Let um be 
the number of non-negative deviations in a sequence of length m. The mean value 
and the variance of Vm for a completely random sequence (null-hypothesis) are m/2 
and m/4, correspondingly, so, for a rather long image the statistics 

The sign test. Perhaps, in the case when 

2 ~ m  - m 

f i  
81 = 

is distributed approximately as a Gaussian random variable with an integral distri- 
bution function, 

t 

--m 

Therefore, the quantity 
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is the significance level for a two-sided test, that is for too little q1 (say, q1 < 0.05) 
one should reject the null-hypothesis. 

For rather small X j ,  the asymmetry of the Poisson density can be taken into 
account by calculating, instead of rj , the following deviations: 

The number of the series test. This test is as simple as the previous one. Let 
us call the series a sequence of deviations rj (or w j )  of the same sign. If 3tn is the 
number of series in a sequence of m/2 non-negative and m/2 negative deviations, 
then we expect for a white noise: E(y,) = m/2, and for the variance, D(rrn) = m/4. 
Therefore, now we may use the statistics 

which is quite analogous to 81. The significance level is now qz = 2[1- *(IfJzl)]. 
According to the above point, the mean 

series length is equal to 2 when negative and positive deviations are equally probable. 
At the same time, there are series of different lengths n = 1 , 2 . .  . in a white noise; 
their probabilities are 2-". This relation can be used to test the observed deviations, 
and a restoration algorithm can proceed, for example, from removing excessively 
long series. 

Further information concerning the testing of random sequences can be found 
in the special literature, e.g., Kendall and Stuart (1966, 1969), Yermakov and 
Mikhailov (1982). 

The distribution of the series lengths. 

6 THE ACCURACY AND RESOLUTION OF THE RESTORED OBJECTS 

Evidently, the accuracy and the resolution are connected notions that are interest- 
ing from both practical and theoretical points of view. The information inequality 
gives an explicit expression for the natural accuracy limit (Terebizh, 1991), but the 
calculations are very complicated for concrete situations. For that reason we inves- 
tigated the limiting resolution for any object shape both by numerical simulations 
and in the frame of the pattern recognition theory (Terebiah, 1990b, 1993). Some 
particular simplest cases will be considered in this Section; they can be used then 
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IMAGE RANDOMNESS TEST 49 

as a starting point in studying more complex objects and for estimating the quality 
of the restored images in the course of their processing. 

It is well known that the notion of the "limiting resolving power" has no unique 
definition; it depends on a concrete situation, on u priori information, etc. As 
regards the possibility to describe the resolving power by a single parameter, we can 
best refer to Wetherell (1980): "The field of image quality analysis, in common with 
other fields of intellectual endeavor, is beset by an a c t i o n  the present author likes 
to call "unimania" - the belief that highly complicated processes can be compared 
fully and accurately using a single on&real-number merit function. In optics, this 
takes the form of overreliance on merit functions such as Strehl definition, rms 
wavefront error, and limiting resolution". 

Perhaps, in image restoration theory one can obtain a complete information 
concerning the resolving power of some imaging system only by calculating the fie 
quency Restoration Function, which is similar to the Modulation ZIansfer hnction 
in optics, and one can describe by a single parameter only the simplest situations 
like those studied below. 

Let us consider first case A, when the limiting resolution pmin means a minimum 
shift of the object as a whole, which can be found from its blurred and noisy image 
(this is a standard problem for spectroscopy and astrometry). The probabilities 
of the so-called first and second type errors should be given in advance; we accept 
their values of the order of 0.05-0.20. Denote by S the total flux of the object, by 
B the background flux inside the blurred image, and by 

the signal-to-noise ratio for the whole image. Then it can be found from general 
expressions that the ratio of pmin to the PSF width A is given approximately by 
pmin/A N 0.5 - \E-' (case A). This relation is shown schematically in Figure 3. 

Consider then case B, when two alternative objects are a single point-like source 
of flux S, and a double source with point-like components of flux S/2 each. This 
is the limiting resolution problem in a classic Ftayleigh'a (1964, p.420) meaning. 
Now Pmin is the least separation between the components which can be detected at 
a given reliability level from the blurred and noisy image, when a single star-like 
source is the only alternative. Under this definition, the "resolution" is not so high 
as in the case A. Avoiding a less significant dependence on the PSF shape, we may 
write approximately: pmin/A N 2 * qf- 'J2 (case B). 

The last of the particular cases (C) concerns the ability to distinguish a double 
object with point-like components and an extended object with a Gaussian bright- 
ness distribution. Denote by S the flux of each object and by p, .the separation of 
the components; let p/2 be the standard deviation of the Gaussian density. The def- 
inition of Pmin is similar to that in case B. It follows from equation (30) by Terebizh 
(1990b) that p,,,in/A z 1.5.9-'14 (case C). If the background level is equal to zero, 
then the signal-to-noise ratio is qf = S'12, and we have for case C: pmin/A E S-'J8. 
The latter relation was derived by Lucy (1992a,b). 
43399 
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Figure 3 The w t i n g  resolution - SIN ratio! relation for an object’s shift detection (A) and 
double structure detection when an alternative object is a single star (B) or a Gaussian extended 
source (C). 

7 NUMERICAL SIMULATIONS 

Let us return to the model case t8 illustrated in Figure 1, and try to restore the 
same blurred image t8-13 under the mean information requirement. The results 
of two independent algorithms, which started from the same initial approximation, 
are shown in Figures l(d) and l(e). The calcu!ations were performed using the 
methods of multidimensional constrained optimization (e.g., Bertsekas, 1982). 

First, we may infer that the MI-estimates are much smoother than the ML 
one. Just this stabilization of the inverse solution was expected on the basis of the 
above arguments. The fact that the MI-estimates are somewhat dependent on the 
initial approximation and the method of restoration employed was also expected, 
because now we have a “layer” of feasible solutions instead of a unique MGsolution. 
Further constraints (the white noise test, a pn’ori information, etc.) should be used 
to narrow the class of MI-solutions; it is natural that we studied first a pure effect 
of the mean information requirement. 

Similar results follow from processing other simulations of the object t8. Two 
of them, t 8 1  and 28-13, are compared in Figure 4 with respect to variations of 
information and entropy. Both image simulations (say, Nl and Ni3) give the values 
of the information J(N1,  S) and J(N13, S), respectively, within f one standard 
deviation from the mean value, that is the Shannon entropy H ( S ) ,  but J(N1 , S) is 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
07

:4
9 

20
 D

ec
em

be
r 2

00
7 

IMAGE RANDOMNESS TEST 51 

Figure 4 The variations of entropy (0) and information (-) for the rimulations t8-1 and t813 
which were restored using d i f v t  methoda. The true object (S), the MLatimate (s), and two 
independent MI-estimates (S1, &) are shown. Bars correspond to f one atandard deviation of 
information in a random image pattern. 

less than the entropy, and. J(N13, S) is greater than H ( S ) .  One can expect that the 
ML restoration decreases significantly the estimate information (i.e., increases the 
likelihood L), 50 the final difference between the information and the entropy can 
be very large (as in the case of t8-1). For MI-estimates, by definition, this difference 
should be less than the standard deviation. Since the entropy of a Poisson random 
variable is a slow function of A (see equation (A8) and Figure 5) ,  the variations 
of the entropy are rather small. At a first approximation, we may consider the 
entropy even as a fixed value H[A(S)] 2: H(N). On the contrary, the variations of 
the information are quite large . For the MI-esttimates the information increases if 
the initial information value is less than the entropy; and decreases in the opposite 
case. Thus, to obtain a stable solution one sometimes has to reduce the likelihood 
L. 

A more extensive investigation of the MI-estimation along with the white noise 
test will be published elsewhere. 

8 DISCUSSION 

As a matter of fact, the Poisson distribution of image intensities is a consequence 
of a priori information which can be either inapplicable to the considered case, or 
simply not available for the investigator. Then we have to use a general scheme 
which does not assume any knowledge of photo-event statistics (Terebizh, 199Oa). 
4-2399 
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Strictly speaking, the intensities at different pixels are in this case dependent on one 
of other random variables. Nevertheless, the general expression for the probability 
density f (NIS)  does not differ drastically from the Poissonian one, 80 even for a 
rather small total flux the numerical results are very close to each other. For that 
reason the above consideration is valid, in practice, for a wider class of conditions 
as well. 

The same is true for the linearity requirement of the image forming system. 
As mentioned above, the instability phenomenon is typical of inverse problems. 

It is interesting to compare the way proposed here with that in the now most widely 
used approaches: the Maximum Entropy (MEM) and Regularization methods. 

Both methods define the image formation model by an equation which is similar 
to (3): 

n 

k=l 
but now it contains not the mean, but random values: the observed image N and 
the background <. It was shown earlier (Terebizh, 1991, 1992) that equation (17) 
is not adequate to a real stochastic model of the image formation (in particular, it 
does not account for the photon noise), so we consider here only a part of the whole 
problem that concerns the instability phenomenon. It is clear that any “good” 
.solution should give a not too large misfit vector 

n 

and the total normalized misfit 

D ( N ,  S )  = bj”/uj”, (19) 
1 

where u! is the datum variance in the j-th pixel. 
The first version of MEM (Frieden, 1972) proceeds from the minimization of 

(18); the version widely used now, proposed by Bryan and Skilling (1980) and 
Skilling and Bryan (1984), requires that D(N,  5’) should be close to that expected 
for a random simulation value, i.e., a requirement like the mean likelihood condition. 
This requirement itself defines only some domain in the object space which contains 
all feasible solutions. The choice of a real solution in this domain is based on the 
maximization of an “entropy” expression: 

n n 

1 1 

or some similar expression (there are several alternative versions). 
Of course, the choice of a quadratic measure for the misfit is not as natural as 

the likelihood (4), but a much more important step is the optimization of some func- 
tional like the “entropy”, which is based on intuitive reasons. Just here subjective 
requirements are introduced in an implicit way (Terebizh, 1991). 
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In the regularization method (Tikhonov, 1963; Tikhonov and Arsenin, 1977) the 
misfit D ( N ,  S) is minimized under the condition that th, solution power: 

n 
P = c s : ,  

1 

is less than some given value. This is equivalent to the minimization, with respect 
to S, of the functional 

F ( N ,  s, a) = D(N, S) - a P ( s ) ,  (22) 
where a is the Lagrange multiplier. Similarly to the MEM, one defines here some 
feasible domain, and then chooses the.solution with a least power iqstead of the 
1argeab"entropy" one. If the power is really known from a priori  information, this 
procedure seems quite natural, but this case should be considered as an exception 
to the rule in practice. Instead of the power, some other stabilization functionals 
can be used (Phillips, 1962). 

In connection with a danger to introduce at some step subjective motives, one 
should clearly distinghh the general approach to inverse problems from accounting 
for a priori  information. 

It seems that this accounting can be done in a natural way only in a statistical 
approach, which introduces a stochastic model of the image formation instead of 
equations like (17); the inverse problem is then formulated as an estimation problem 
for an unknown set of parameters. One can incorporate the available information to 
a general scheme at different levels. For example, the Poisson distribution appears 
when the explicit law (5 )  for probabilities has to be defined, and the non-negativity 
of the estimate searched for is accounted for by considering a corresponding domain 
in the object space. 

If an object S is known to be randomly chosen from some ensemble with the 
probability density w(S),  one may use the Bayes (1763) approach, and to introduce a 
two-dimensional density w(S) - f ( N I S ) .  It should be stressed that the Bayesian way 
is allowed only if the object was really chosen randomly from the given ensemble; 
this situation is extremely rare in practice. 

As shown above, the IRT uses some inner resources to stabilize the inverse solu- 
tion. If we have a priori information about the object (besides the non-negativity, 
of course) of both deterministic and stochastic nature, the quality of the solution 
will be higher. The nature of such information can be very diverse. In particular, 
sometimes we may consider as known the upper boundary of the spatial frequency 
interval where the bulk of power is concentrated. The limitation of the total power 
is also possible. Even stronger is the strict requirement of the smoothness of the 
desired solution expressed as a bound on second-order deviations. Just this require- 
ment was introduced in a pioneering investigation of Phillips (1962). 
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Appendiz A 

Let ( be a discrete random variable that can be equal to 0, 1, . . . with probabilities 
p(O),p(l), . . .. According to Shannon’s (1948, 1949) definitions, the information of 
the communication that ( has value n is J(n) = -1np(n), and the entropy H of 
the random variable ( is equal to the mean value of information J(n): 

The information and entropy of the Poisson random variable 

where we use natural logarithms, and the corresponding information unit is nat = 
log, e = 1.443 bit. 

For the Poisson distribution (5) we have: 

so in this case the entropy is 

00 . L  

H~(A) = ~ ( 1 -  In A) + e-’ . Glnk! .  
k=O 

The sum on the right-hand side can be transformed to an integral, if we use Euler’s 
gamma-function, k! = r ( k  + l) ,  and then the well-known Binet representation for 
logarithm of the gamma-function (e.g., Whittaker and Watson, 1927): 

The final expression is 

The function Hp(A) is shown in Figure 5. 
Equation (A5) can be easily expanded into series for small A: 

HJX) = ~ ( 1 -  In A) + CZA’ - C ~ A ~  + c4A4 - . . . , 
where the first coefficients are: 

1 
2 6 3  cz = - ln2 = 0.346574, c3 = f In 4 z 0.047947, 

1 32 
24 27 

c4 = -In - zz 0.007079. 

44-399 
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Figure 5 The entropy of Poisson random variable with the mean value A. 

Let us also give an asymptotic expression for large A: 

Hp(X) = In m + . . . , X >> 1 , 

where the first term corresponds to the entropy of the Gaussian variable with vari- 
ance A (even at X = 3, the first term provides the relative accuracy better than 

For applications to parameters estimation according to the mean information 
value (Appendix B), one should know both Shannon’s entropy and the variance of 
the information: 

2%). 

D(J) = E(J2) - [E(J)J2, (A91 
where E means the mathematical expectation value. An explicit expression for 
D(J) is too complicated, so we give here only an asymptotic one: 

1 1  
2 4.4 DpP] = - + -, X > 1. 

Note that standard deviation of the Poisson information is practically constant 
for X > 1, and equal to l/&! N 0.71 nat, that is, nearly to 1 bit. Therefore, the 
set of m independent Poisson variables with A j  > 2 has the standard deviation of 
Shannon’s information equal approximately to m. 
Appendix B 

Let us consider onedimensional random variable < with the probability density 
f(z, a) which depends on unknown parameter a. Shannon’s information which is 
connected with a simulation X is J ( X ,  a) = - In f(X, a), and its mean value, the 
entropy of el is equal to: 

The mean information estimations 

H(a) = E[J(<, a)] = - f(z, a) In f(z, a) dx. J 
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Let us define the Mean Information (MI) estimate of the parameter a as a solution 
of the equation 

with respect to a; we denote the solution by 6 ( X ) .  This is, of coum, some random 
variable. Consider a few examples of MI-estimates. 

Exponential distribution. We have in this case: f(t, a) = 0-l - exp(-t/a), 
J(X,a) = h a  + X/a, H(a) = 1 + h a ,  and the MI-estimate is 8 ( X )  = X. It 
coincides with the MGestimate; both estimates are unbiased and efficient. 

J(X,a) = H(a) p 2 )  

The geometrical distribution is a discrete one: 

ak , k =0,1,2, . . . ,  f(k* a) = (1 + a ) l + k  

where a > 0 is the mean value o f t .  Let n be a random simulation of (. Then 
the information is J(n, a) = n . h a  - (1 + n) ln(1 + a), the entropy H ( a )  = 
-a .  In a + (1 +a) .In( 1 + a), and the MI-estimate is again equal to the ML-estimate: 
8 = ii = n. Both estimates are unbiased and efficient. 

The Gaussian distribution. Let us assume that the variance of t is known in the 
density 

and one searches for an estimate of a. We have: J ( X ,  a) = (X -t1)~/2u~+ln(ud%) 
and H(a) = ln(u&), so there are two mean information solutions: i i l , z (X)  = 
X f u. Both are biased estimates, and it is needed to make the mean arithmetic 
value to have an unbiased MI-estimate. 

The Poisson distribution. An analogous result follows for the Poisson density (5 )  
which can be considered, for large A, as an approximation to the Gaussian density 
with u2 = a = A. If X > 1, and a simulation of ( is n, then A(n) N n f f i  , and 
the relative bias is 2: In the general case, the asymptotically unbiased and 
efficient estimate can be obtained by averaging the two MI-estimates. 

The only purpose of these examples is to show the reasonable meaning of MI- 
estimates. A more extensive study of the MI-requirement on the estimates will be 
given elsewhere. 

f(z, a) = (udG)-'  . exp[-(z - a)2/2u2], --oo < t < 00 034) 


