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THE CATASTROPHE THEORY AND SOME 
PROBLEMS OF GRAVITY THEORY: FROM 

ZELDOVICH’S PANCAKES TO GRAVITATIONAL 

METRIC 
LENSES AND GEODESICS IN THE KERR 

A. F. ZAKHAROV 

Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, 
11 7259, Moscow, Russia 

(15 December 1992) 

We use the catastrophe theory (the theory of the singularities of smooth functions) for an analysis of 
structurally stable and unstable images in gravitational lenses and for computations of the asymptotics 
of some rapidly oscillating integrals. We used also the methods of the catastrophe theory for the 
problem of the classification of particle motion type in the Kerr metric. 

KEY WORDS Gravitational lenses, black holes, geodesics. 

The formation of pancakes in the framework of the adiabatic theory of the 
large-scale structure formation was predicted in a remarkable paper of Zeldovich 
(1970). A possible scenario of the formation of pancakes (folds, in the 
catastrophe theory language) in the framework of nonlinear one-dimensional 
approach was presented in this paper. A widely accepted theory of large-scale 
structure formation was presented in a seminal paper of Arnold, Zeldovich and 
Shandarin (1981). 

Following Bliokh and Minakov (1989), we use the following equations of 
gravitational lensing when the source is at infinity: 

(1) 2 p (P ,  Ddo) = P + DdoQ&) = p - 2rgDdop/P 9 

where p is the impact parameter (vector), p is the vector that describes the 
deviation of the observer from the symmetry axis (for the given value of the 
impact parameter), Ddo is the distance between the lense and the observer. We 
can find the impact parameter for a given p: 

PI.&) = f V1l4 + 2rgDdo/p2]* (2)  

mi. =J(Ddo, p ) h p  dp,  (3) 

(4) 

We have, from the energy conservation, 

where Xi, is the introductory aperture, P is the intensity, J(&) is the intensity at 
the distance Ddo, 

Zin = {WPI  PI + P Z  Id~2l) 
85 
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and for gravitational lenses we have (Bliokh and Minakov, 1989) 

where 1 = V m .  It is clear that q-*w for p+O. Similarly, if the source is at 
the distance 0, from the lens, we introduce the following parameters: 

P = DSdp/ (Dsd  + Qo), 

B d o  = DdoDsd/(Ddo + Dsd)r (7) 

Then 
i = V =  

If p =0, then p = and the observer sees a ring of the radius 7 (the Einstein 
ring). The observer sees the Einstein ring only at distances D d o  > Ddo.min, where 

with R, the lens radius. We do not see sources with D d o  < R2/(2rg).  A Czech 
engineer Mandle once asked Einstein about the computations and Einstein 
published them in 1936 in “Science” (Einstein, 1936). Einstein wrote that “There 
is not much hope of observing this phenomenon directly”. If a source has some 
displacement from the symmetry line, then one observes a double star (Chwol- 
son, 1924). Therefore the Einstein ring is structurally unstable and it is more 
correct to say about the impossibility of the Einstein ring image but not about a 
small probability. However most authors repeated Einstein’s phase (see, for 
example Wamsganss, 1990a). Another example of the application of the 
catastrophe theory methods to gravitational lenses is a description of the section 
of a caustics surface by a plane through the symmetry axis of a gravitational lens 
(Bliokh and Minakov, 1989): 

Ddo,min = Dd2/(2rgDd - R2), (9) 

p = +/XF)(1 - xP/x)3“, (10) 
where x is the distance from a fixed point xF (x is the symmetry axis, xF is the 
focus of the gravitational lens). It is well known that this function describes the 
singularity known as the pleat (cusp) (Poston and Stewart, 1978). It is clear that if 
we consider small perturbations, then the caustics surface is similar to that 
described by Poston and Stewart (1978) as the perturbational section of the 
caustics surface is different from the circle. It is well known that caustics surfaces 
in 3-dimensional space (structurally stable) may be only “folds” (codimension l ) ,  
pleats (cusps) (codimension 2), swallowtails, hyperbolical and elliptical umbilics 
(codimension 3), and, in 4-dimensional space (the case may be for moving 
caustics surfaces) me have also “butterflies” and parabolic umbilics (codimension 
4) (Amol’d, 1984a). The calculation of the intensity near a singularity of a known 
type reduces to the evaluation of the asymptotics of integrals of rapidly ossilating 
functions. It is known that the intensity near the singularities is related to the 
wave vector by I - k”; a = 1/6 for the fold singularity A2 (Airy), LY = 1/4 for the 
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pleat (cusp) singularity A3 (Persey), CY = 3/10 for the singularity A4 (swallowtail), 
CY = 1/3 for the elliptic and hyperbolic umbilics (D4) (Arnol’d ef af., 1984). 
Knowing the asymptotics we can determine the type of the caustics surface (if the 
enhanced image brightness is caused by crossing a caustics surface) since we may 
observe the intensity in different spectrum intervals. 

Recently, two groups of German astrophysicists from Hamburg Sternwarte 
(Kayser, 1989) and from Garching Institute for Astrophysics (Wamsganss, 1990b) 
presented the results of numerical simulations of caustics surfaces from microlen- 
sing for concrete astrophysics objects. The asymptotic analysis adds to the 
numerical simulations. 

The equation of motion for the radial variable in the Kerr metric is 
(Chanrasekhar, 1983) : 

p4(dr/dr)’ = R(r), 

R(r) = r4 + (a’ - f z  - q)r2 + 2M[q + (5  - a)’]r - a2q (Photons), 

R(r) = r4 + (a’ - 5’ - q)r2 + 2M[q + (5  - a)’]. - a2q - r2A/E (Particles), 

where p2 = r2 + a’ cos’i3, A = r’ - 2Mr + at and a = SIM. The constants S and M 
refer to the black hole, namely S is the angular momentum and M is the mass of 
the black hole. The constants E, f and q refer to the particle, namely E is its 
energy at infinity, f = L J E  ( L  is the angular momentum of the particle about the 
axis of rotation of the black hole), and q = Q / E  (Q is given by Q = p g +  
cos28[a2(fz - E’) + Lt sin-%] and p is the mass of the particle). It is readily 
verified that the radial motion of the particle depends on the following constants: 
5 = a/M, E = E / p ,  = f / M  and f j  = VIM. The radial motion of photons does 
not depend on the constant E. Instead of the coordinate r, we now introduce 
i = r l M .  (The A-symbol will be omitted henceforth). Thus, the character of 
motion in the r-coordinate for a given value of a is determined by the three 
constants E, f ,  r) in the case of a moving particle, and by the two constants f and 
q in the case of photons. 

In this part it will be shown that a black hole in extreme rotation can have 
stable geodesics with any energy (in units of particle mass) in the range 
0 5 E 5 3-lR although it is well known that for a particle moving along a circular 
geodesics in the field of a black hole in the state of extreme rotation, the binding 
energy has been found capable of reaching the value 3-ln. One readily finds 
(Carter, 1968) that if the particle is moving in the equatorial plane (6  = n/2) ,  
Q = 0. The particle will then travel along a circular orbit if the relations 

are satisfied, as well as the orbital stability criteria a2R/aZr < 0. Let us consider a 
black hole with an extreme value of the rotation parameter (a = 1). Assume that 
the particle orbits lie in the equatorial lane, with the following values for the 
constants of motion: L, = 2E, E < ( 1 1 4 ,  r = 1. It is not difficult to see that the 
stability criteria will then hold true. Accordingly, as a particle moves through 
successive near-circular orbits, an energy of order 1 can be liberated. It is also 
noteworthy that for any value of the constant Q(Q > 0) and the constants of 
particle motion that satisfy the conditions, the criteria will remain valid; that is 
stable orbits will exist that correspond to the motion of a particle along the 
surface r = const with a given energy and given angular momentum, but which 

(11) 

R(r) = 0, aR/& = 0 (12) 
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are not circular. The maximum value of 0 for such orbits will be determined by 
the value Q. Outside the equatorial plane one finds, as Wilkins (1972) has 
argued, that stable nonequatonal orbits also can exist throughout the energy 
range 3-ln < E < 1: L, = 2E, Q > 3E2 - 1. One should recognize, however, that if 
the black hole departs slightly from a state of extreme rotation, there can be no 
stable circular orbits with energy in the range 0 < E < 3 - ’ 1  In just the same way, 
the stable orbits (16) will disappear if the rotation falls short of the extreme case. 
This result can be demonstrated either by considering the potentials V, as done 
by Wilkins (1972) (the potentials V+ and V- will merge into a “knife edge” 
(Christoudoulou, 1971)), or by turning to Eqs (9, which implicity specifies, say, 
the parameters L, and E as functions of the rotation parameter (Zakharov, 
1986). The property that we have here is analogous to the straight-line part of the 
relation between p , , ( p I )  and the capture cross-section in the case where a = 1 and 
photons or particles (Zakharov, 1986) are incident on the black hole. Thus the 
presence of stable circular orbits is not sole property that distinguishes extreme 
(a  = 1) from nonextreme holes. Since the Wilkins potentials coinside (V- = V,) 
for parameter whose values confirm the criteria (6), one can readily see that the 
value 1 for the rotation parameter a represents a bifurcation point corresponding 
to the fold singularity (Brocker, 1975; Gilmore, 1984; Arnol’d, 1984b) and if u 
departs from that value the stable orbits (7) will disappear. 

It is easy to see the connection of the problem of the classification of particle 
motion in the Kerr metric with the singularities of the smooth functions (with the 
catastrophe theory), particularly, those sets are connected with semialgebraical 
submanifold of the algebraic manifold Df (swallowtail) (Zakharov, 1991). 

Now we present conclusions. Some properties which we considered in 
astro-physical gravitational problems are structurally unstable (for example, the 
“Einstein ring” and some properties of geodesics in the extreme Kerr metric) 
and we may use some results of mathematical theory for astrophysical problems 
as Zeldovich and others made for the large-scale-structure formation and we 
made above for gravitational lenses. 
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