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STATIONARY MOTIONS OF A SATELLITE 
WITH SPHERE OF INERTIA AND THEIR 

STABILITIES. PLANAR MOTIONS 

Yu. V. BARKIN’ and A. ELIPE’ 
‘Moscow State Technical University, Russia ’ Grupo de Meca’nica Espacial, Universidad de Zaragoza, 50009 Zaragoza, Spain, 

e-mail: elipeOcc.unizar. es 

(Received February 24, 1993) 

In this paper, stationary motions and their stabilities are investigated for a system of two rigid 
bodies, one spherical and the other with a nonsphnical distribution of density,.but whose ellipsoid 
of inertia is a sphere. Under the assumption of a planar orbit, stationary solutions and stability 
conditions are found. 

KEY WORDS Satellite dynamics, rigid body attitude, stationary solutions 

1 INTRODUCTION 

Generally, in the investigation of the orbital-attitude dynamics of rigid bodies, the 
case in which the ellipsoid of inertia of the body is a sphere is not taken into 
consideration, although this model may represent a wide class of celestial bodies 
and artificial satellites. 

Most of the studies devoted to  attitude dynamics of a satellite under a central 
force field consider only the third power of the inverse of the radial distance in 
the potential, and therefore, when the satellite is such that the three axes of its 
ellipsoid of inertia are equal (sphere), only the Keplerian potential remains in the 
force function. However, if we take into account higher powers of the radial distance, 
these terms - although small in magnitude - may change drastically the attitude of 
the satellite, new equilibria appear and their stability should be determined. 

This paper is a first step in the way of analyzing the dynamics of a non-spherical 
rigid body with sphere of inertia under the gravitational attraction of a homogeneous 
sphere. To begin with, we study the restricted (we mean that the orbit is a known 
function of the time) and later on, the unrestricted (the coupled orbital-rotational 
motion) problem of the motion of the satellite. 
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212 Yu. V. BARKIN AND A. ELIPE 

The main property of the problem under consideration is that the second har- 
monic is equal to zero in the force function of the satellite, and the dynamics of 
the satellite is determined by the third, fourth and higher harmonics. Of course, 
the classical results about existence and stability of the stationary solutions for the 
satellite (Lagrange, 1870; Beletskii, 1965; Kinoshita, 1972; Barkin, 1985; etc.) are 
not applicable here, and this is the reason why we think that the problem considered 
here presents not only a theoretical interest, but also a practical interest for attitude 
dynamics of spacecrafts with special requirements and also for celestial bodies with 
such a configuration. 

In Section 2 we formulate the problem, define the reference frames, and give 
the equations of motion in a Hamiltonian form. In Sections 3 and 4 we obtain 
the stationary solutions and their stabilities for the restricted problem when only 
the third and fourth harmonics are Considered, respdctively. Different regions of 
stability depending on some dynamical parameters are plotted. The unrestricted 
problem is studied in Section 5 and Subsection 5.2. The stability for these cases 
is analyzed in Subsection 5.1. The complete analysis considering higher harmonics 
and non-planar orbital motion will be the object of further studies. 

2 EQUATIONS OF MOTION 

Let us consider the motion of a system of two finite rigid bodies SO and S of masses 
mo and m which experience no other forces than the mutual gravitational attraction. 

The rigid body So (that will be considered as a primary) is supposed to be a 
homogeneous sphere, with a concentric distribution of mass and therefore may be 
assimilated to a mass point 0 0 .  The other rigid body S (considered as a satellite) has 
one plane of the dynamical symmetry, and its ellipsoid of inertia is assumed to be a 
sphere, i.e., their principal central moments of inertia are equal ( A  = B = C). When 
only third powers of the inverse of the radial distance are taken into consideration in 
the development of the potential function, the problem is equivalent to the Keplerian 
one. However, when higher orders are considered, equations for the translational- 
rotational motion are to be integrated. 

A further additibnal hypothesis is that we suppbse that the orbital motion of the 
center of mass of the satellite 0 with respect to the center of mass of the primary 
00 is planar, and that the dynamical plane of symmetry of the satellite coincides 
with the orbital plane. 

Let us consider the following references frames: 
a) The space frame. Ooxyz. A fixed system, centered at the point 0 0 ,  with the 

b) Oxyz. A system parallel to the previous one, but centered at the center of 

c) The body frame: OtqC. The body frame, centered at  the center of mass 0 
of the satellite, so that the plane OEq is the dynamical plane of symmetry of 
the satellite, and coincides with the orbital plane Oxy. 

plane Ooxy being the orbital plane. 

mass 0 of the satellite S. 
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STATIONARY MOTIONS OF A SATELLITE 213 

The orbital motion of the center of mass 0 of the satellite S with respect to the 
space frame Ooxyz may be described by polar Coordinates p and 0, whereas the 
rotational motion of S about its center of mass is given by the longitude v of the axis 
O<, measured from the axis Ox. The angle v is defined by cos Y = x - <. Another 
angle that will be useful is the angle tc,, the longitude of the axis O<, measured from 
the radial direction (cos tc, = ( p  - ( ) / p ) .  Obviously, we have tc, = v - 0. 

The problem has three degrees of freedom, and in variables p ,  8 ,  v, the kinetic 
energy of the system may be expressed as 

1 1 T = Tp(b2 + p 2 j 2 )  + -Ib2,  
2 

where p is the reduced mass p = mom/(mo + m) and I is the moment of inertia of 
the body S about any axis passing through its center of mass 0. 

The force function of the mutual gravitational.attraction of the bodies So, S 
may be expressed as the classical spherical harmonics expansion (cf. e.g. Kaula, 
1966): 

Here p ,  A and 4 are spherical coordinates of the center of mass 00 of the body SO in 
the body frame OtqC. The orbital motion being planar, the latitude of the point 
00 is null (4 = 0), and the longitude is X = ?r - tc,. 

In (l), G is the gravitational constant, R is the mean radius of the body S, 
p,k(4) are the associate Legendre polynomials and the coefficients c n , k  and Sn,k 
are the Poinsot constants of the gravitational field.of the satellite. These constants 
are given by 

n 
&,k = --I 2 ( n - k ) !  (g) p$(4 ’ ) s ink~’6 ( r ‘ ,~ ’ ,X’ )dr ,  

rn6k (n + k)! 
where 60 = 2, 6 k  = 0, (k E N), and r‘, d‘, A’ are spherical coordinates of a particle 
of elementary mass with elementary volume d r  and density 6(r’, d‘, A‘). 

In our problem, the coefficients of the second harmonic of the force function are 
equal to zero, since the principal moments of inertia are equal, i.e., 

2 C - A - B  A - B  
= 0, c2,2 = - - 

Depending on different assumptions on the symmetry of the rigid body, there follow 
several simplifications in the expression for the force function. In some specific parts 
of this paper, some of the following restrictions will be employed: 

2mR2 4mR2 c2,o = 

- If the coordinate plane O t v  is a plane of symmetry in the density distribution 
of the body S, the coefficients are 
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214 Yu. V. BARKIN AND A. ELIPE 

Cn,n-2k'-l = 0, Sn,n-2kt-1 = 0, (k' = 0,1,. . . , [ (n  - 1)/2]). 

- If the rigid body S has two mutual orthogonal planes of dynamical symmetry 
Otq and O<C, then 

s n , k  = 0 ( n = O , l  ,...; k = O , l ,  ..., n ) ,  
Cn,n-Zk8-1 = 0 (k' = 0, 1 , .  . . , [(n - 1)/2]). 

- If all the three planes Otq,  O<C and OqC are planes of dynamical symmetry, 

Sn,k = 0 ( n = 0 , 1 ,  ...; k = 0 , 1 ,  ..., n) ,  
C2n'+l,k = 0 (n' = O,1 ,...; k = 0,1, ..., 2n'+ 1). 

All over the present paper, we shall consider that the plane O<q is a dynamical 
plane of symmetry for the body S. Therefore, by using the first property in the 
first terms of the expansion (l) ,  the force function takes the form: 

Emom u = -  
Em0 + 3-mR3[(-C3,1 cos 11, + S3,1 sin 11,) 
2P4 

P 

+1O(c32 cos 311, - S3,3 sin 311,)] 
15 - Y(C4,2 cos 211, - S4,z sin 211,) 

1 +105(c4,4 cos 411, - S4,4 sin 411,) 

Em0 15 + -mR5 [ ~ ( C 5 , l  cos 11, - S ~ J  sin 11,) 
P6 

--(C5,3cos311, 105 - S5,3sin311,) 

+945(~5,5  cos 511, - ~ 5 , s   sin^^)] 
2 

+ WA11,) 

where W(p, 11,) is the remaining part in the force function (1): 

and the coefficients are 
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STATIONARY MOTIONS OF A SATELLITE 215 

Let p, 8, v be the generalized coordinates and P,,, Po, P, their conjugate m e  
menta. In this set of canonical variables, the Hamiltonian is 

Since the variables Y and 6 appear only as the difference Y - 0 = +, by means of 
the canonical transformation (p, B, Y, P,,, Po, P,) - ( p ,  w ,  +, P,,, P,, P+) given by 

+ = - e, = e, P+ = P,, pW = P, + pe, 

the Hamiltonian adopts the form 

The coordinate w being cyclic, its conjugate momentum P, is a first integral, which 
as a matter of fact corresponds to the integral of the angular momentum. 

3 THE RESTRICTED PROBLEM. THIRD HARMONICS 

To begin with, we consider the attitude dynamics of a satellite moving in a circular 
orbit under a central force field, when only third and fourth harmonics are retained 
in the force field functions. In the current section we shall take into consideration 
only the third harmonics for the restricted problem, i.e., for a Kepleriap circular 
orbit, whereas the influence of the fourth harmonics will be studied in the next 
section. Under these conditions, the Hamiltonian is: 

1 
2 1 .  

'H = -P$ - nP+ - U(+), 
with the force function being 

(5) 

where a is the radius of the circular orbit, and n is  the orbital mean motion. 
The equations of the motion corresponding to this Hamiltonian are 
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216 Yu. V. BARKIN AND A. ELIPE 

-3O(S3,3 co8 3rl, -I- C3,3 sin 3$) ( 6 )  

The conditions for the existence and stability of stationary solutions of the 
Hamiltonian ( 5 )  are: 

(7) 
rn a2x a2x a2E -- rn -0, - = o ,  ---(-) > o .  

ap, all, aP,j a$2  

That is to say, the Hessian, when evaluated at the critical points, must be a 
quadratic form positive definite. 

3.1 

In a problem similar to ours, but considering only the second harmonics for a 
triaxial rigid body, Lagrange (1870) obtained several particular solutions such that 
the principal axes of inertia are either in radial direction, or tangential or normal 
to the orbit. For the unrestricted problem and considering an axisymmetric body, 
analogous cases were named by Duboshin (1960) as arrow, spoke and float solutions. 
In our problem, every body axis passing through the body’s center of mass 0 (and 
in particular Ot, Oq and OC) is a principal axis of inertia. Therefore, we named, 
formally,.as the Lagrangian solutions those for which the body axes (OE, Oq, OC) 
have the LagranGan orientations, characterized by the folIowing values of the angle 
$: 

Lagrange’s Solution and Their Stabilities 

rl, = 0,7712, A, 311-12. 
For rl, = 0 and rl, = A, the body axis O( coincides with the radius vector, whereas 

for the other two values, the axis is tangent to the orbit. 
For the existence and stability of these particular stationary solutions some 

additional restrictions to the dynamical structure of the body should be added, 
such as shown in the following table: 

4 Eziatence Stability 

0 s = l  c < 3  
r s = 1  c > 3  

3 ~ / 2  c = - l  a <  -3 
n /2  c = - 1  s > - 3  

where the parameters c and 8 are 
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* I  1 I 

I I I 

w 
I I 

I 
I 

1 
a 

Figure 1 The existence of stationary solutions for the third harmonics,when the rigid body has 
two orthogonal planes of dynamic symmetry. Dashed lines correspond to unstable solutions and 
solid lines, to stable points. 

It is worth to note the difference with the Lagrangian solutions in the classical 
case. Indeed, in the classical one, the conditions for the stability of the points + = 0, + = H (analogously for + = n/2, + = 3n/2 )  are identical, just the contrary that in 
the present case. 

3.2 A Rigid Body Having Two Orthogonal Planes of Dynamical Symmetry 

Let us consider a body S having two planes of dynamical symmetry: O(q and O(C. 
For this particular case, we use some of the properties of the Poinsot coefficients 
noted in Section 2. In this case, we have S3,I = S3,3 = 0, and the conditions (7) for 
existence and stability are: 

Existence: 
Stability: 

sin +(3 - c - 4sin2 +) = 0, 
cos +(3 - c - 12sin' +).> 0; 

therefore, for 11, = 0 and + = 7r are critical solutions for whatever value of the 
coefficients C3,l and C3,3. Besides these, when c is in the range -1 5 c 5. 3 ,  there 
is a critical solution for 
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3 x / 2 t  ad.9 

0 x n  x 3 x n  27c 

Figure 2 The existence of stationary solutions for a = 0.1, 0.3, 0.5, 0.7, 0.9 in the general case, 
considering only the third harmonics. Dashed lines correspond to unstable solution and solid lines, 
to stable points. 

The critical points and their stability for this particular case are given in Fig- 
ure 1. Continuous lines represent sufficient conditions for stability, whereas points 
on dashed are unstable. 

3.3 

Let us consider now a more general model: the body S has only one plane of 
dynamical symmetry (Oeq), which coincides with the orbital plane. Defining the 
parameter 

A Rigid Body Having a Single Plane of Dynamical Symmetry 

a = 30 

the angles CT, and 95 

= $' +4i1 d = 953 - 3951, 
and two auxiliary angles 41, 43 by 
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STATIONARY MOTIONS OF A SATELLITE 219 

4-l 
4-j 

= - 4- , C O S 4 3  = - 

, cos& = S3,l sin& = 
J C r n  

after some elemental manipulations, the conditions for existence and stability (7) 
become 

(8) 
Existence: 
Stability: 

sin 9 + a sin (39 + 4) = 0, 
cos 9 + 3a cos (30 + 4) < 0. 

Curves of stationary solutions (4 versus 9) for different values of parameter a, and 
their stability given by the conditions (8) appear in Figure 2. 

4 THE RESTRICTED PROBLEM. FOURTH HARMONICS 

In this section we consider :the restricted problem, but assuming that the force 
function contains only the fourth harmonics. The Hamiltonian now is: 

15Gmo mR4 [(c4,2 cos 24 - s4,2 sin 24) x = Zi~,$-nP++T 1 
2a 

+14(S4,4 sin 44 - C4,4 cos 4+)]. (9) 

From this Hamiltonian, we shall obtain the stationary solutions and their stability. 
As in Section 3, we shall obtain th_e Lagrangian solutions and also the stationary 
solutions when some restrictive hypotheses about the symmetry of the rigid body 
S are made. 

The equations of motion corresponding to this Hamiltonian are 

_ -  d 4  - iP+-n, 1 

- -  dP+ - -- mR4 [(-C4,2 sin 24 - s4,2 cos 2+) 
dt 

dt a5 

+28(S4,4 cos 44 + C4,4 sin 44)] (10) 

4.1 Lagrange 's Solutions 

Besides the classical Lagrange solutions 4 = 0,7r/2, ?F, 3 r / 2 ,  the following values of 
the rotation angle: 
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are stationary solutions when some restrictions on the coefficient C,,," and S,,,,,, of 
the fourth harmonics (n = 4) in the force function are implemented. The conditions 
for their existence and stability are given in the following table: 

rl, Ezistcncc Stability 

with 

s 4 , 2  , s c =  -. , c s = -  , ss=- c 4 , 2  s 4 , 2  c 4 , 2  cc = - 
2ac4,4 28S4,4. 2854,4 28C4,4 

It is worth noting that, in distinction to the cas? n = 3 (Section 3), the condition 
of stability of one solution ($0) is the same as for its opposite value ( - 7 4 0 ) .  

4.2 

When a rigid body S has two orthogonal planes of dynamical symmetry, such as 
mentioned in Section 2, coefficients S4,2  = S4,4 vanish and the force function adopts 
the form: 

A Body Having Two Orthogonal Planes of Dynamical Symmetry 

and now, the conditions for the existence of equilibrium solutions and stability (7) 
are, respectively: 

(11) 
Existence: 
Stability: 

sin 2+(cc - 2 cos 274) = 0, 
2 + cc cos 211, - 4 cos2 2$ < 0, 

where cc = C4,2/(28C4,4). 
The first equation (11) is satisfied when 

a) either $ = (0, fn/2,fx) ,Vccl  

b) or cos 2$ = cc/2. 

From the second equation (ll), we deduce that the solutions $ = 0 , f r  are stable 
for cc < 2, and $ = fn/2 are stable for cc > -2 

The second set of solutions cos2$ = cc/2 does not satisfy the sufficient con- 
ditions of stability (ll), and therefore, they are always unstable in the Lyapunov 
sense. 

The plot of the stationary solutions and their stable or unstable character are 
illustrated in Figure 3. 
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cc 
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0 
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0 
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0 
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8 
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8 
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0 * 
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# 
0 

- w  
E 

Figure 3 The existence of stationary solutions considering only the fourth harmonics when the 
body S has two orthogonal planes of symmetry. Dashed lines correspond to unstable solutions 
and solid lines, to stable points. 

4-3 

Let us suppose now that the body has the plane O<v as the only plane of dynamical 
symmetry, and that it coincides with the orbital plane. Under this condition, from 
the equations of motion (LO), and after introducing parameter 6 as 

A Body with a Single Plane of Dynamical Symmetry 

6 = 28 

two auxiliary angles 4 2  and 4 4  defined by 

s4,4 G4,4  , 
c 4 , 4  + s4,4 

sin44 = -dn, C o s 4 4  = - Jn 
c 4 , 4  + s4,4 

and angles Qp, 4 as 

@ = 2 4  4- 4 2 ,  4 = 4 4  - 242, 
after some manipulations, the conditions for the existence of the critical solutions 
and their stability are given by, respectively: 

sin@++ssin(23+4) = 0, 
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0 I xn x 3xn 2 x  
9 

Figure 4 The existence of stationary solution for d = 0.1, 0.3, 0.5, 0.7, 0.9, 1, when only the 
fourth harmonia is considered. Dashed lines correspond to unstable solutions and solid lines, to 
stable points. 

cos 9 + 2& cos(29 + 4) < 0. (12) 

' We have solved the first of equations (12) for several values of parameter 6 ,  and 
found the regions of stability in the parameter plane 4,Q. The result appears in 
Figure 4. 

5 THE UNRESTRICTED PROBLEM 

In the two previous sections, we assumed that the orbit is a known function of time, 
namely a Keplerian circle. When we consider that the attitude and the orbit are 
not independent, but coupled, the problem is much more involved, since the number 
of degrees of freedom has increased. In a first step, we will suppose that the orbit 
is planar, although it depends on the rotational motion. The Hamiltonian of the 
coupled orbital-rotational motion of the two rigid bodies So and S, is given by (4). 
The stationary solutions to this Hamiltonian will be obtained by solving the system 
of equations: 
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From the first one, we have only the trivial solution Pp = 0. The rest of equations 
are: 

1 -3O(C3,3 sin 3+ + S3,3 cos 34)  
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-315(c5,5 sin 5$ + s5,5 cos 5$) - - = 0, (14) 1 :; 
where the function W(p,  $) was defined in Section 2 and contains powers of order 
7 and higher of the radial distance. 

As usual, we may assume that the size of the satellite is small in comparison 
with the orbit radius. This assumption allows us to introduce a small parameter 

c = R g l ,  a 

with R the mean radius of the satellite (or the radius of the smallest sphere in which 
we can put the satellite); and a the radius of the unperturbed circular orbit. 

Equations (14) form a system of three algebraic equations in the unknowns P,, 
PJ, $ and p,  but P, may be chosen as a constant value, equal to that in the 
unperturbed Keplerian motion of the body S, considered as a material point on 
a circular orbit of radius a and the mean motion n = (G(m + Then 
P, = p a 2 .  

For the sake of dimplicity, let us introduce three dimensionless quantities p ,  r 
and c defined as: 

After simple algebraic manipulations and making use of the dimensionless quantities 
defined above, equations (13) for the existence of the critical points adopt the form 

where functions f; , g;, h; are 

1 
fo = P-- 

r2 ’ 
cm with p = -, P P  

f 2  = - 
r z  ’ I.’ 
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ho = (C3,l sin 4 + s3,1 cos 4)  - 30(C3,3 sin 34 + S3,3 cos 3$), 
10 

hl = - [(C4,2 sin 24 + s 4 , 2  cos 24)  - 28(C4,4 sin 44 + S4,4 cos 44)] , r 

h2 = - - - (Cs , l s in$~+S5,1cos~)+ ~ ( C 5 , 3 s i n J 4 i . S 5 , 3 c o s 3 4 )  
r2 8 

21 

-315(c5,5 sin 54 + s5,5 cos 5 4 )  , I 
I 

lo[ 

h3 = --[ 140 1 ( ~ 6 , 2  sin 2+ + s 6 , 2  cos 24) - 9(~6,4sin 44 + S S , ~  cos 44) 
$ 8  

+297(c6,6 Sin 6 4  + s 6 , 6  COS 64)  . 

In order to obtain the critical points, we have to  solve system (15). To perform 
that, we follow a scheme given in Barkin (1985) and based on recurrent power 
series (Steffensen, 1956): we try solutions in the form of power series in the small 
parameter c, 

PO + cr1+ c2t2  + c3r3 + . . . , r =  

4 = 4 0  + + &$2 + &343 + ..., 
P = Po + + & Z P 2  + a3P3 + ... 

and first of all, we compute the zero order approximation (Po, 4 0 , p o )  to  the solution. 
With this approximation, we determine the first order (qI$1,p1), and so on. 

The equations for the zero order approximation (e = 0) are 

A solution of these equantions is 

ro = 1, Po = 1, $0 = $0(0,4), (17) 
where the angle $ o ( ( Y , ~ )  depends on the coefficients of the third harmonics, and 
its value is obtained by solving the first of equations (8). Taking into account the 
above definition of the parameters, we obtain.the values of the variables at the zero 
order approximation: 
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Consequently, the zero order approximation coincides with the solution of the ana- 
logous restricted problem, previously considered in Section 3. 

By using the implicit function theorem, we can confirm the existence of a sta- 
tionary solution of the unrestricted problem in the neighborhood of solutions (17), 
and they may be expressed in terms of power series in small parameter E ,  which 
are convergent for sufficiently small values of the parameter when the following 
condition is satisfied: 

# 0- 
w o o ,  go, ho) 
8(P, r,  $1 A = det 

This determinant must be computed with the unperturbed values of the variables 
(17). In our problem, we have 

0, 
8 f o  ago ah0 ah0 
a+o. a+o bpo 8ro 
-=- - -=-= - 

and therefore 

where 

and therefore, the sufficient condition for the existence is reduced to  

ah0 - = (C3,l cos +O - S3,1 sin $6) - 90(C3,3 cos 3$0 - S3,3 sin 3+0) # 0; a+o 
and proceeding as in Section 3, we have 

cos Q + 3 a  cos (3Q + 9) # 0, 

where Q = $0 + $1,  4 = $3 - 341, and the angles $1, $3 were defined in section 
3. Since a bifurcation point appears when the determinant vanishes, this situation 
has place when the angles Q and $ are in the relation 

3 tan = tan(3Qr + 4). 
Before proceeding to higher orders, let us recall that if we have a function F ( r ,  y), 
such that its arguments are power series in E ,  

the expansion of F in power series is 
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Substituting series (16) into equations (15) and making use of the expansion (18), 
we will have higher order approximations for the stationary solution. We need only 
to solve the system obtained by making zero the coefficients e, E' ,  etc. 

The task appears to be very tedious, but it is very simple to perform with the 
help of an algebraic manipulator. After making the substitutions, we have 

f = (Po- $) + $) 
2) PPO 3 4  ( Po r: 

+ e p z + - - ; f - - + -  

9 = ($ -Pi) + E  (-2P0P1 - ") 
+ E2 (-2p0p2 - p: + % r0 - 9) 0 6 

h = ( E J ) + E ( ~ + + I ~ )  1OE4 
d$O 
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dE3 "; d2E4 + ;$:= 1 d3E3 + T E ~  140 
+$1$2- + -- 

d$o PO dllr; PO 

+ O(&", 
where functions Di($) and Ei(y5) are the coefficients appearing in the definition of 
functions g and h, depending of the i-th harmonics, that is 

When we replace P o ,  $ 0 ,  and PO by the zero-order solutions (17), functions f , g and 
h become 

+ o(24). 

The first-order approximation is obtained by equating to zero the coefficients of 
& in f , g and h,  and solving the system in the unknowns p1 , 7-1 and $1. The solution 
is : 

PI = 0 ,  
rl = 0, 

dE3 
$l = -10E4/--. 

d$O 
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Once having determined the values p1, rl and $1, we may obtain the second-order 
approximation in an analogous way. The system to solve is 

and its solution is 

P2 = 3P, 
r2 = -2P, 

From these values, we see that the second-order perturbations of the orbital variables 
- r and p - do not contain terms due to the shape of the body S. The direct 
influence of gravitational attraction of the bodies So and S appears in the third 
approximation: 

-10 
$3 = 3 ( 3 5  [ 12pE4 ( 3 4 - 3 0 E 5 ( 3 3 ( 3 )  - 

+ 3ooE4 (2)' (z)2 -3OE4 ($9' (2) 
d2 E3 d2E3 

+ 30E4E5 (2)2 (m) - 4 5 0 G  (2) (2) (x) 
+ 150E," (x) d2E3 + 150E,' (g) (2) 
- 50E: (g) ($$)I. 

Therefore, coming back to the original variables, we have the solution 
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All these formulae describe the effects of the nonsphericity of the satellite on its 
altitude at a circular orbit. Besides, it follows that the orbit of the satellite is non- 
Keplerian, and its radius vector is defined by parameters of the gravitational field 
of the satellite and angle $0 .  The orientation of the satellite is defined by angle $0 

and it depends on higher harmonics of the force function. 

5.1 

Let us analyze the stability of  the stationary solutions just obtained. To perform 
this task, we need the equations of motion in the neighborhood of the equilibria. 
The Hamiltonian is a first integral, and it will be used as the Lyapunov function. 
As it is well known, sufficient conditions for the stability in the Lyapunov sense 
coincide with the requirement for the Hamiltonian to be positive definite. After 
simple manipulations, we obtain the following conditions for the stability of the 
stationary solutions: 

Stability in the Unrestricted Problem 

A11 > 0, A11A22 - A:2 > 0, (20) 
where the coefficients A;j are the quadratic part of the transformed Hamiltonian, 

and the Second derivatives of the force function ( l ) ,  

X- (Cn,n-2k sin ( n  - 2k)$ + Sn,n-Zk cos ( n  - 2 k ) $ ) .  ( 2 2 )  

All these derivatives must be evaluated at the stationary solutions, that have been 
obtained as series expansions in small parameter E .  

When E = 0, conditions (20) reduce to 
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STATIONARY MOTIONS OF A SATELLITE 231 

As it might be expected, conditions (23) coincide with the stability conditions (8) 
obtained for the unrestricted problem. 

The detailed analysis of the influence of higher oFders of perturbation in the small 
parameter E are not given here. Let us mention only that these additional terms in 
the conditions of stability lead to an unimportant deformation in the boundary of 
the region of stability of the stationary solutions. 

5.2 A Particular Case (S3,; = C3,i = 0) 

.We have seen that in the zero order approximation, the equilibria and the stability 
conditions coincide with those obtained in the restricted problem, when all harmon- 
ics but the third are null. Now, we shall consider a particular case of the unrestricted 
problem in which the coefficients of the third harmonics are null (S3,i = C3,i = 0). 
In this situation, equations ( 5 )  for the equilibria become 

f o b 1  r) + c 2 f 2 ( p ,  r) = 0, 
go(r) + c 4 9 4 ( r ,  11) + . . . = 0, 

h ~ ( $ ) + ~ h ~ ( r , $ ) + c ~ h g ( r , $ . ~ ) + . . .  = 0, (24) 

where f o ,  f 2 ,  go, g4 ,  hl ,  h 2  and h3 have been already defined. By setting E = 0 in 
equations (24), we obtain the zero order approximation: 

PO = 1, Po = 1, 11 = $0(64), 
where $o(&, 0) was defined in equation (12). As expected, the zero order approxi- 
mation coincides with the exact solution of the restricted problem. 

A sufficient condition for the existence of solutions of equations (24) as expan- 
sions in series in small parameter E is that the Jacobian 

or equivalently 

(C4,Z cos 240 - s4,Z sin 2110) - 56(C4 ,4  c-440 - s4.4 sin 4110) # 0, 
the condition which may be written in the form 

COS@+ 2&COS(20 + 4) # 0. 
AS in Section 4, a bifurcation point appears when the parameters 0 and 4 are 

in the relation 

2 tan = tan (29  + 4). 
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The procedure to obtain different elements of the series is completely analogous 
to the previous part, and we do no repeat it. We only give the final formula for the 
first order perturbation of the angle of rotation $1: 

I - 315(c5,5 sin 5$0 + S5,5 cos 5$0)  

1 
2 [(c4,2 c- 240 - s4,2 sin 2$0) - 56(C4,4 co9 4$0 - S4,4 sin WO)] * 

X 
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