
This article was downloaded by:[Bochkarev, N.]
On: 19 December 2007
Access Details: [subscription number 788631019]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

Interacting universes and their quantum birth from
nothing
Kazuo Ghoroku a
a Department of Physics, Fukuoka Institute of Technology, Fukuoka, Japan

Online Publication Date: 01 January 1994
To cite this Article: Ghoroku, Kazuo (1994) 'Interacting universes and their quantum
birth from nothing', Astronomical & Astrophysical Transactions, 5:1, 3 - 14

To link to this article: DOI: 10.1080/10556799408245847
URL: http://dx.doi.org/10.1080/10556799408245847

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556799408245847
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:0
9 

19
 D

ec
em

be
r 2

00
7 

Astronomical and Astrophysical Transactiom. 1994, 
Vol. 5 ,  pp. 3-14 
Reprints available directly from the publisher. 
Photocopying permitted by license only 

@ 1994 Gordon and Breach Science Publishers S.A. 
Printed in the United States of America 

INTERACTING UNIVERSES AND THEIR 
QUANTUM BIRTH FROM NOTHING 

KAZUO GHOROKUt 

Department of Physics, Fukuoka Institute of Technology, Wajiro, Higashi-ku, 
Fukuoka 81 1-02, Japan 

(16 December 1992) 

A non-linear form of the Wheeler-DeWitt equation is obtained from a viewpoint of the interacting 
many universes. The non-linear parts can be classified into two types; (i) one is reducible to the linear 
term, whose coefficient is absorbed into the Hamiltonian of the original linear equation, (ii) and the 
one which still remained in the non-linear form. It is shown that the second type term survives only in 
the microscopic region of the Planck size. Due to this second type term, it would be possible to obtain 
the double exponential factor with respect to the cosmological constant in the expectation value of the 
number of created Universes. 

KEY WORDS Topology-change, Creation of universe. 

1. INTRODUCl’XON 

Recently, an instanton solution called the wormhole has been found by adding an 
appropriate matter field’** or higher curvature terms’ to the pure Einstein gravity. 
The discovery of this euclidean configuration has opened a new viewpoint that the 
topology of a space can be changed quantum mechanically by the tunnelling 
effect. Then many disconnected spaces (= universes) could interact with each 
other via wormholes. It should be noticed that this interaction is a pure quantum 
gravitational effect, and any contact between different universes cannot occur as a 
classical phenomenon. It would be astonishing that the small value of the 
cosmological constant (A) and the values of other fundamental parameters in our 
world could be determined if we take into account this effect. This has been first 
pointed out by C01eman.~ 

The viewpoint of many universes has also been obtained from the second 
quantization framework of the Wheeler-DeWitt e q ~ a t i o n . ~  The situation is 
similar to the case of the field equation of a scalar field in a curved space.6 
Similarly to the particle creation in the example in,6 we are led to the viewpoint 
that a great number of universes could be created from nothing. So it is 
reasonable that we consider the many body problem of universe by applying the 
second quantization formalism of the Wheeler-DeWitt equation to an interacting 
field theory of universe.’.* We call it the “universal” field theory. It is formulated 
here in a special mini-superspace, where only the size a(t )  of the de Sitter space is 
dynamical, and the universal field is denoted by Y(a). 

t Invited talk at Ya. B. Zeldovich’s Meeting, Moscow, November 5-7, 1992. 
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4 K. GHOROKU 

The field theory is composed of the free part (the quadratic term with respect 
to Y ( a ) ) ,  which gives the usual Wheeler-DeWitt equation, and the interaction 
term. As for the interaction, it is given in the form of the Y3-type, which 
represents the bifurcation of a universe into two parts. This term is constructed so 
that it reproduces the wormhole induced vertex, which can be derived in a path 
integral formalism.' Due to the introduction of this interaction term, the 
non-linear terms with respect to Y ( a )  appear in the classical equation, and the 
resultant Wheeler-DeWitt equation has a modified non-linear form. 

At large a, we get however the usual linear form of the Wheeler-DeWitt 
equation, because the universal interactions can be effectively rewritten in a 
linearized form for large a. But parameters in the Hamiltonian are modified after 
this linearization. While at small a, the interactions, which cannot be reduced to 
the linear Wheeler-DeWitt equation, survive. Then it is necessary to solve 
non-linear equation in order to get the value of Y ( a )  at small a. The surviving 
non-linear terms are classified into two types by the arguments (a's) of the three 
Y(a)s, i.e., (i) all the arguments are small, and (ii) only one of them is small and 
the other two are large. In the calculation of the number of created universes 
from nothing, it is necessary to connect the solutions at small and large a5.8*10. 
So the non-linear term which was neglected in the case of the usual Wheeler- 
DeWitt equation, can be expected to give a new effect to this problem. The same 
effect would be expected for any case in which the information of Y(a )  in the 
small a region is necessary. Our purpose is to study the effect of this non-linear 
term in the calculation of the number of created universes from nothing. It is 
shown that the vertex of type (ii), mentioned above, could lead to the double 
exponential factor of 1/A in the expectation value of the number operator of 
created universes. This result is consistent with the one obtained in the euclidean 
path integral approach4. But this is not a unique solution. In fact, we also get a 
result of a single exponential of l /h by using another simple solution of the 
non-linear equation. The problem remained here is to find a principle to 
determine which solution should we choose. This is an open question. 

2. Quantum Birth of Universes and Initial Conditions 

Here we briefly review how to calculate the number of the universes created from 
nothing in terms of the solutions of the Wheeler-DeWitt equation5.". For the 
sake of brevity, consider the pure Einstein gravity with the lagrangian, 

2'= ~ ( K ' R  +A), 
where K denotes the gravitational constant. Hereafter, the metric is restricted to 
the following Robertson-Walker type: 

a3' = -dt2 + a'(t) dQ:, (2) 

where dQ5 denotes the metric of S3. Then the Wheeler-DeWitt equation in this 
mini-superspace is written as 

where 
[a: - v"(n)]Y(a) = 0, 

u'(u) = ~ ' ( 1  - ~ A u ' )  - E ,  

(3) 

(4) 
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INTERACTING UNIVERSES 5 

and A = h / ( 4 8 n ' ~ ~ ) ,  E is a small positive number introduced for the 
convenience'. In Eqs. (3) and (4), we should use a' = 2 & x ~ a  instead of a, but 
the prime is omitted here for brevity. 

The solutions of Eq. (3) are given separately in three regions; (i) a <as, (ii) 
a > aL and (iii) as < a < a', where as(<a,) denotes the zero point of .'(a). In the 
regions (i) and (ii), oscillating solutions are allowed and they can be written in the 
operator form in terms of the creation and annihilation operators of the universes 
defined in each regions. Solutions obtained in the region (i) can be connected to 
the one given in the region (ii) through non-oscillating solutions of the region (iii) 
by analytic continuation. 

The expectation value of the number of universes (denoted by N) created from 
nothing in the region (ii) can be obtained by taking the expectation value of the 
number operator defined in the region (ii) between the vacuum state of the region 
(i). The result can be written in terms of the coefficients of the Bogoliubov 
transformation between the states in the regions (i) and (ii). The result is 
obtained within the WKB approximation, as follows: 

N = e", 
where 

I = s' u(a ' )  da'. 

It can be seen that I ;  l /A  for E = 0. Then we obtain 

N = ez'. ( 5 )  
This result means that the cosmological constant is very small for almost all 
created Universes. However this result is different from the double exponential 
behavior, N - exp exp(l/&), which has been obtained in the path integral 
approach4 as the probability to find universe whose cosmological constant is A. 

Similar calculations can be performed when matter fields exist. Consider a 
scalar field, q, with the following lagrangian: 

9 s  = f i { t g ~ ' a , q " q  + V ( q ) ) .  (6)  
For q = q(t), the Wheeler-DeWitt equation is written as follows: 

[a:- - 1 a' - v2(a, q ) ] Y ( a ,  q) = 0, 
a' , (7) 

where 

and ACn= (A + V(q))/(48n'~~).  We must note that q and a in Eqs. (7) and (8) 
are rescaled by 2 f i n ~ ,  but we used the original notations used in Eq. (6). For 
the case of a, V << 1, we can get the following result: 

v'(a, q) = a'( 1 - f&&') - E ,  (8) 

This result means that q should be at the minimum of V(q) just after the 
creation of the universes. Then an inflational explosion of the Universe after the 
quantum creation cannot be expected. The initial condition of the universes 
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6 K. GHOROKU 

created from nothing is therefore unfavourable for the inflation. In order to 
improve this situation, second quantization of inhomogeneous universes has been 
proposed [ll]. In this approach, it has been expected that a hot part of a large 
Universe should be excited quantum mechanically to create an inflational 
Universe. 

However we here restrict our attention only to the homogeneous space, and we 
examine the effect of the universal interaction on the initial condition mentioned 
above. The initial condition just after its creation is largely dependent on the 
dynamics in the microscopic region, where the equation cannot be reduced to a 
linear form. Then it is important to solve a complicated non-linear differential 
equation for Y(a ) .  In the following, we show two typical solutions. However, the 
problem with respect to the inflation is not resolved. And the situation is more 
serious than the previous result obtained by the linear equation. But our result is 
consistent with the path integral approach of ref. [4]. 

3. NON-LINEAR WHEELER-DEWITT EQUATION 

3.1. Universal Field and Interactions 

First, we define the universal fields of Y ( a ) ,  which means the field of the 
Universes, and their interaction, Y ( a )  is defined here by the so-called Hartle- 
Hawking wave function, 

where the lower and upper limits of the integral denote the de Sitter spaces with 
a = 0, the state of nothing, and a finite a, respectively. SE is the euclidean action 
of the gravitational theory. Among the various configurations of the paths, which 
connect two limits of the path-integral in Eq. (lo), there exists the one 
representing the topology changing. Namely a universe can bifurcate to two 
universes and return to the state of a single universe. This process implies an 
extended form of the Wheeler-DeWitt equation that includes the non-linear term 
of Y(a) .  To obtain the extended form, we introduce a universal interaction by 
extending a simple form of vertex, which can be obtained according to a usual - 
canonical approach in the path-integral, of the Universe into a general form. 

Taking into account the wormhole configuration in the path-integral in Eq. (10) 
is equivalent to considering the interactions with a baby universe whose size is 
very small. Due to this interaction, S, is modified so that the values of all the 
parameters in SE are shifted from their original values to the new ones. From this 
observation, we can find the interaction vertex of the three universal fields at a 
special limit where one of them has a negligibly small size, a. It would be 
obtained as follows. 

Consider Eq. (10) in the Lorentz metric, then rewrite its action into a canonical 
form according to ref. [9] and expand exp(iS) by a power series of a part of the 
Hamiltonian, which is denoted here by V(a3) .  Here a3 denotes the radius of the 
space between a,  = 0 and a2 = a. If we set a2 = 0, the linear term of V(a,)  in this 
expansion can be considered as an elementary vertex function with a very small 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:0
9 

19
 D

ec
em

be
r 2

00
7 

INTERACTING UNIVERSES 7 

universe. We denote it as Sp. It can be written, with the notations used in ref. 
[9], as follows: 

where z3(= T(t ,  - t3)), G2(= T(t3 - tz) ) .  K(1, 2; N ( t ,  - t2)) denotes the path 
integral kernel and N is the lapse function. Using the definition of the wave 
function, Eq. (lo), we obtain 

SS0) = I daV(a)Yz(a) .  (13) 

We should note here that the above simple form can be obtained for the 
mini-superspace only. The generalization of S$') to the vertex of three finite-sized 
universes is given in the next subsection so that it is consistent with the above 
special limit 

3.2. The Generalized Form of the Wheeler-DeWitt Equation 

Next, we extend the limited form of the universal interaction obtained above. 
According to the formalism of the universal field theory'.', we write the action of 
the universal field as follows, 

S=s,+S,, (14) 

S, = I da?Y(a)HY(a) ,  (15) 

where H in Eq. (15) is the Wheeler-DeWitt Hamiltonian, which will be given by 
the usual field theory defined in a four dimensional space-time manifold. By the 
variational principle with respect to Y(a), the usual Wheeler-DeWitt equation is 
obtained from &. 

S3 is the generalized form of SS"). The generalization is performed by 
introducing a local vertex function p. Since S, corresponds to the extension of the 
wormhole effect and the effective size of the wormholes is of the order of the 
Planck size, MP;', we require that only small-sized universes can be emitted from 
the other small or large one. Then we impose the following restrictions (Eqs. 
(18,19)) on the vertex function p(al, uz I a,): 

p(a1, 0 2  I a31 = Aaz ,  a1 la31 
P(al9 a2 I a3)a,--rm+ CL(% az)d(a,  - 0 3 )  

(17) 
(18) 

P(ai, 0 2  I a3)a,---* iI[Aa,, az)d(ai -123) + Aaz, ai)d(az - a d ] ,  (19) 
where the symmetry with respect to a, and a2 given by Eq. (17) is imposed for the 
sake of convenience. The function p(al, az) was introduced to denote the limiting 
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8 K. GHOROKU 

form of p at large a,. As shown below, p is related to the Hamiltonian operators 
by Eqs. (16) and (13). This function should decrease rapidly with respect to the 
second argument, a2, because a2 denotes the size of the small universe coupled to 
the larger one. So we require the following behavior: 

where r is some typical scale factor of the order of Mp,. Eq. ( 9) is symmetrized 
so that it is consistent with Eq. (17). 

p(a1, a2) a exp(-r2a5), (20) 

Using these equations, we get 

where f is given as follows: 

f ( a ,  a,, 0 2 )  = f [ 2 6 p ( a r  a, I 0 2 )  + b ( a 1 , a z  I a)  + 2p(a1, a)% - 4 1 >  (23) 
m a 1 9  (12 I a )  = A a , ,  a2 I a )  - t [ P @ ,  a,)Q(a - az) + p(a, a2)Wa - ad19 (24) 
W a ,  a,  I a21 = p(a, a1 I a21 - P(% a1)6(a - az) -P(a, ,  a)&(a, - a2). (25) 

For large a, the first term in Eq. (22) represents the contribution of the small 
universes to the larger one, because Y(a,) in the integrand survives only at small 
a, due to the function p(a, a,). And it causes the corresponding wormhole effect, 
i.e., the shift of the parameters like cosmological constant and other fundamental 
constants. After the integration over a, in this scheme, we will get the term which 
can be obtained from Eq. (13). Then the function p should be constrained as 
follows, I dU,P(U,  cQ-Jw = c &(a), (26) 

i 

where V,(a) are the operators in the Hamiltonian H. Then the first term of Eq. 
(22) can be rewritten as Ci aiV,(a)Y(a) ,  and they are absorbed into H Y ( a ) .  

This reduction does not work for the second term, and it remains to be a 
non-linear form. In Eq. (25), we defined 6 (a, a ,  / a z )  by subtracting the 
asymptotic form p ( a l ,  a)d(a,  - a2) from p(a, a, fa2). So, f is defined in Eq. (23) 
by adding this term to retain the consistency. Then the functions 6p survive only 
in the region where all three arguments of 6p are small, and they can be 
neglected if one of the arguments is large. On the other hand, the separated term, 
p ( u , ,  a)6(a, - a2) ,  remains to be finite for large a ,  and a,, but it vanishes at large 
a, which is the second argument of p(a,, a). This represents the influence of the 
large universes on the tiny one. This is in a prominent contrast to the case of Eq. 
(26), where the effect of the small universes on the larger one is represented in 
terms of the same function p. 

Finally, we obtain the following modified form of the Wheeler-DeWitt 
equation, 

(27) 

R = H + c &.(a). 
i 
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INTERACTING UNIVERSES 9 

We should note here the following point. At large a, 5 approaches zero and we 
have the usual linear form of the Wheeler-DeWitt equation with a modified 
Hamiltonian I?, 

AY ( a )  = 0. (29) 
In the next section, we try to solve Eq. (27). 

4. THE EFFECT OF THE UNIVERSAL INTERACTION ON N 

As seen in 02, the expectation value of the number of created universe, N, is 
determined in terms of the solution of the Wheeler-DeWitt equation. Here we 
try to solve Eq. (27) in the region including small a. 

The r.h.s. of Eq. (27) is separated as follows: 

-(r.h.s.) = G(a) + K(a) ,  

G(a) =; I da’Y2(a‘)p(a’, a ) ,  

J 

where 

E(a, a19 at)  = W W a ,  a1 1 a21 + Wa1,  a2 Ia)l. (33) 
Here we should note that the dominant part of the solution for Y ( u )  is 
exponentially increasing a in the tunnelling region as seen in 92. Further, we note 
that (i) p(a‘, a )  shows a gaussian damping with respect to a, but it does not 
necessarily decrease with a‘, and (ii) &a, u l ,  a2) decreases rapidly with both u1 
and a2, which are the integration variables in Eq. (32). From these facts, it can be 
said that 

G(a) >> K ( a ) .  (34) 
Then Eq. (27) can be approximated by 

BY(,) = -G(a). (27’) 
Then it is not necessary to know the detailed form of f ,  about which we do not 
have any clue to get its functional form. However, Eq. (27’) is still complicated, 
and it is difficult to solve generally. We give two typical solutions in the following, 
one of which leads to the double exponential behavior of N. 

4.1. A Simple Solution 

Eq. (31) by Y ( a )  and integrate it over a, then we obtain 
We first give a simple but exact solution of Eq. (27’). Multiply both sides of 

J ~ u G ( u ) Y ( u )  = - d ~ Y ’ ( a ) z  d K ( a ) ,  
3 “ J  i 

(35) 
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10 K. GHOROKU 

where we used Eq. (26). Now we introduce 

2 
3 i  

G(u) =-C dV(a)Y(a).  

By substituting this expression to Eq. (27'), we obtain 

4 
H,OdY(a) = 0, Rmod = H + - c a'v;.(a). 

3 i  
(37, 38) 

In this case, we would obtain a result similar to that obtained in 92, 

where Amod denotes the cosmological constant in Rmd. This result is not new. 
However, Eq. (36) is not a unique solution which satisfies Eq. ( 3 3 ,  and we 
search for another non-trivial solution in the next sub-section. 

4.2. Self-consistent Solution : 

We can get a self-consistent solution by imposing a reasonable ansatz on the 
solution. For a while, we forget the fact that G(a)  is a functional of Y ( a ) .  Then 
the solution of Eq. (27) can be written formally as 

Y(a) = A+Y:(a) +A-Y, (u)  + ~ u ' G ( u ' ) [ Y ; ( u ' ) Y ~ ' ( ~ )  - Y:(a')\Il,(a)]. 

(39) 
where Y,'(a) are the solutions of Eq. (29), and A* are the constants depending 
on the boundary condition. From this solution, we can observe the following two 
points: (i) At  small a, the third term is negligible, so the solution can be 
approximated by the solution of the linearized equation (29). (ii) At large a, the 
solution is approximated by 

Y ( a )  = [ A +  + [ ~ u r G ( o r ) Y ~ ( u r ) ] Y ~ ( u ) .  

Since G(a) decreases rapidly with a, the integral in the prefactor of ":(a) in Eq. 
(40) becomes to be independent of a for large enough a. Then the full solution at 
large a has the same form with the one of the linearized equation (29). However, 
we recall that G(a)  depends on V(a)'s, so the above prefactor should be 
determined self-consistently with the form of the formal solution, Eq. (39). 

In order to  estimate this prefactor, we consider another formal solution. Eq. 
(27) may be rewritten formally as 

where 

As in the previous case, we can obtain a solution of Eq. (41) by the WKB 
approximation if f ( a )  is regarded as a function which is independent on Y(a ) .  In 
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INTERACTING UNIVERSES 11 

this case, the increasing solution can be written as 

vfe(a) = a'@) +f(a), 

where B denotes the normalization constant, and 0' is defined by the equation, 
= -32 + a'(a). Here we notice that f ( a )  should decrease very rapidly with a 

because of its form, Eq. (42). This is seen from the fact that the a-dependence of 
G(a) is controlled by p(a', a )  and l/Y(a) rapidly decreases with a. Then we can 
consider that f(a) appears only at small a, where O'(a) can be neglected on the 
other hand. Then Eq. (43) can be approximated at large a as follows: 

Y ( a )  = 13 exp(f'n(o)a)Y$(a), (45) 
where YIlo+(a) is the WKB approximated form, 

YIlo+(a) = ~-l%!xp([da'a(n')), (39') 

and (I is a small constant given by 

6 d a y ( , ' )  =f'fi(O)a. 

Then it is necessary to obtain the value of f(0) for the evaluation of the number 
operator. In order to estimate f(0) by Eq. (42), we use Eq. (39) to get the value 
of Y(a) at small a. Further, we use both expressions Eq. (40) and Eq. (45) to see 
the consistency of the two formal solutions at large a. 

Here it should be noticed that the above Eqs. (43)-(45) are obtained for the 
case of smooth and positive f(a). For negative f(O), the solution of the form of 
Eq. (44) cannot be obtained and we get another solution which is similar to the 
one given for f(a) = 0. The difference between the solutions of the two cases, 
f(a) < 0 and f(a) = 0, is the value of the smaller zero point, as, of &(a). In the 
case of f(a) < 0, a, is larger than the one for the case of f(a) = 0. Since this 
difference does not produce any qualitative difference of the solutions compared 
to the case of f(a) = 0, we get a solution which has been obtained in ref. [lo], for 
f(a) < 0. So we consider hereafter the case of f(a) > 0. 

4.3, Determination off(0) 
For the sake of brevity, we assume the following factorization property for 

p(a' ,  

The function f ( a )  can be written as follows if we consider Eq. (26): 

i 
where 

(Yo = 1 dap(0, a ) Y ( a ) .  (49) 
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12 K. GHOROKU 

Since p(0, a )  fall off with a rapidly (see Eq. (20)), a. can be approximated as, 

a0 = w w 1 9  (50) 
where o1 is a number of order l / r .  

Then we get from Eqs. (39), (42) and (45), 

where 0' = 2p(O, 0)/(30,) and @(O) is defined as Y(0) = @(0)exp(fln(O)u). 
Further, 

@(O) = A+YY,+(O) + A-Y;(o), (52) 
where A* in Eq. (38) is replaced by A* exp(f'"(0)) for the later convenience. As 
for AL, they are constrained by the consistency of Eqs. (40) and (45), 

A- 2 
1 = [ YVo+(O) + - Y,(O) 0 3  - - Y,(O)f(O)], A' I[ 3Uz (53) 

where u3 = B/@(O).  
Here we assume u3 being independent of f ( O ) ,  this assumption is consistent 

with the Eqs. (40) and (45). This is the most simple case where we can get a 
nontrivial form of f ( 0 ) .  In this case, f ( 0 )  can be obtained from Eq. (51) if v . (a )  
were given. On the other hand, Eq. (53) gives a relation between A+ and A-, 
and the determination of this relation is equivalent to the prescription of an initial 
condition of the Universe. 

We evaluate f ( 0 )  for the dominant and most interesting case, v ( a )  = a4. The 
coefficient of this operator corresponds to the effective cosmological constant, 
which is denoted by A for simplicity. Y:(a) is given by Eq. (39'), and the range 
of integration in Eq. (51), is taken from a = 0 to a', which is defined in 02, 
namely in the tunnelling region. Near the turning points, a = aL and 0, Eq. (39') 
is not valid, and we should estimate the integral using another approximate form 
for Y;(a), which is given as 

Yo' - const. + 1x1, 

where x denotes the deviation of a from the turning point. However we can see 
that the main contribution to the integral comes from the form of Eq. (39'). and 
it is given as 

Z, = [*daa4Y:(a) = (A1A-5'3 -A2A-l)exp(;), (54) 

where 
A-113 A-10 

A~ = I, & e x p ( - ~ ) ,  A~ = drx2 exp(-gx3). 

For A<<2/3, Al  and A2 are considered as numbers independent of A, because 
the integrand decreases rapidly with x .  Since the created universes should develop 
according to the classical Einstein equation after the quantum birth, A should be 
fairly small and we consider Al and Az as A-independent numbers. Since the 
factor in Eq. (51), u ~ ( ~ / @ ( 0 ) ) z a i = u z u ~ a i ,  can be replaced by const. (A + 
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INTERACTING UNIVERSES 13 

const.), we obtain, 

where fi(A) is a finite power series of A, which is given as 
A2A-')(A + const.). Then the dominant A-dependence of f(0) is given by the 
exponential factor for small A. 

Finally, the expectation value of the number operator N is given as N = exp(2I) 
and 

where the first exponential term corresponds to fln(0)o, which cannot be 
obtained from the usual lines: Wheeler-DeWitt equation. In order to get this 
factor, the interaction term in the small a region should be taken into account 
under an appropriate boundary condition. 

As in 2, we can perform the same analysis given above in the case where some 
matter field, which is responsible for inflation, was added. Then we could get the 
result, Eq. (56), by replacing A by I\,*= A I V(q) under the same condition 
given in 2 for V ( q ) .  So it would become more difficult to get an appropriate 
initial condition for the inflation than in the case of the linear Wheeler-DeWitt 
equation. 

5 .  CONCLUSIONS AND DISCUSSION 

Second quantization of the Wheeler-DeWitt equation, which is often called the 
third quantization, leads to the concept of many universes, and this formulation 
can be extended to the interacting system of universes which are regarded as 
fields defined in the superspace. The interaction of the universes can be intimately 
related to the topology changing effects, the wormhole effect in the euclidean 
approach. Then a special limit of the vertex, where the size of one universe is 
very small, can be derived from the path integral formulation. This vertex can be 
generalized so that it includes the above special limit. 

From the universal field theory, which is formulated here by introducing the 
vertex mentioned above, we obtained an extended form of the Wheeler-DeWitt 
equation, which is non-linear with respect to the universal field. The non-linear 
terms are separated into two groups, (i) one is reducible to a linear form and (ii) 
the other is irreducible. Both terms are determined by the vertex function 
,u(u', a ) ,  which is an asymptotic form of three-point vertex being realized when 
the size of one of them is very small compared to the other two. For the type (i), 
this function ,u is responsible for the shift of the parameters in the Wheeler- 
DeWitt Hamiltonian. The same effects are seen also in the path integral approach 
as the wormhole effect. So we constrain ,u(a', a )  so that it reproduces the vertex 
which is derived from the path integral approach. We have calculated the 
expectation value of the number of the universes created from nothing by solving 
the non-linear equation. The second type of non-linear term is essential to obtain 
a double exponential factor with respect to 1/A in the expectation value of the 
number of created universes. In the usual analysis using the linear Wheeler- 
DeWitt equation, we cannot get this factor. 
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It should be noted that the result given in Eq. (56) depends on the assumption 
that u3 is independent off  (0), which is related to the boundary condition for the 
Universe. So this result is not unique. In fact we can get a simple other result 
given in 94-1, where a modified form of the linear equation is obtained. If we 
consider the case off (0)-dependent u, in solving Eq. (51), it may be possible to 
find other interesting form of f(0). It is still an open problem to find such a 
solution which is consistent with the creation of inflationary universes. 

Another important assumption go get Eq. (56) is the inequality f (0) >0, or 
equivalently p(0, O ) a j  > 0, where ai is the coefficient of v.(a)  = a4. In the case of 
p(0, O ) a i  < 0, we cannot however obtain Eq. (56) and we obtain only an extra 
phase of N due to the universal interactions, because f (0) is negative andfln(0) is 
pure imaginary. This situation corresponds to the case where the smaller zero 
point (a,) of vfrr(a) moves to a slightly larger point because of the negative f(0) 
(see Eq. (43)), and we obtain in this case almost the same result as that given by 
the linear Wheeler-deWitt equation. Therefore, our result given in Eq. (56) is 
sensitive to the sign of p(0, O)a,. 

The remaining problem is to give a principle to choose the most preferable 
solution among many ones. This will be done by developing the universal field 
theory proposed here. We can say that the framework of the universal field 
theory could give a useful tool to study both the quantum cosmological and 
gravitational problems. 
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