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ANISOTROPIC STELLAR WINDS IN BINARY 
SYSTEMS 

I .  PUSTYLNIK 

Tartu Astrophysical Observato y, Tcravere, EE2444, Estonia 

(Received April 13, 1993) 

Implications of the displacement of a sonic point due to the presence of a companion in a binary 
system for the properties of anisotropic stellar wind are studied for adiabatically expanding stellar 
wind. A mass flux tube is introduced for the evaporative wind and examined for characteristic 
temperatures of gas in the framework of the Roche model. Accretion radii values are tabulated 
for different values of the mass ratio and the ratio of the local sonic velocity to the escape velocity 
of gm. An explicit upper limit estimate To of gas temperature is introduced such that for T less 
than To conditions for transonic flow are fulfilled. The effect of optically thin anisotropic wind 
upon the light curves of eclipsing variables is quantitatively evaluated. 

KEY WORDS Close binaries - stellar wind, mass loss and mass transfer 

1 INTRODUCTION 

During the last two decades the peculiarities of stellar winds in close binary systems 
have been discussed in a number of papers (BaskoLand Sunyaev, 1973; McCray and 
Hatchett, 1975; Kolychalov and Sunyaev, 1979; Friend and Castor, 1982; Hadrava, 
1985; Ivanov, 1987; etc.). More recently a quantitative treatment of stellar wind for 
a non-spherical medium has been proposed (see, for instance, Chen Fusheng, 1989; 
de Araujo and de Freitas Pacheco, 1989; Mazzali, 1991). 

New observational data  point to  the existence of various types of inhomogeneities 
of circumstellar material. Thus, in some Algol-type systems where full eclipses pro- 
vide an exceptional opportunity of detailed study in morphology and dynamics 
of ambient gas, several peculiar features in its behaviour have been discovered; i) 
asymmetry between the leading and the trailing hemispheres of the mass gaining 
component; ii) regions emitting in continuum and in spectral lines are loosely spa- 
tially correlated; iii) velocity field is strikingly different from the Keplerian one, 
etc. (for more details see Kaitchuck and Honeycutt, 1982; Kaitchuck, 1989). Most 
probably, these inhomogeneities should result, at  least partially, from the stellar 
wind. 

The concept of anisotropic stellar wind has been introduced and worked out 
in papers of McCray and Hatchett (1975), Friend and Castor (1982) and Hadrava 
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(1985). Following these papers we examine here some implications of a displacement 
of a sonic point in a binary system for a simple model of evaporative stellar wind 
for the Roche model. 

The importance of studying the consequences of anisotropic stellar wind is un- 
derscored by the fact that in very many close binaries for which reliable photometric 
and spectroscopic elements are available classical accretion discs cannot be formed 
in view of redundant angular momentum of the accreting matter (Lubow and Shu, 
1975). Recently Tout and Hall (1991) proposed several arguments favouring the 
idea that bona fide stellar wind may be a driving mechanism governing mass trans 
fer if the time-scale for radius changes following mass loss is much shorter than 
for the radius changes owing to nuclear evolution. As it will be indicated below, 
anisotropy of stellar wind opens up an opportunity to assess a better mass trans- 
fer rate directly from the light curves provided the rate is sufficient to produce an 
observable effect upon the light curve. Generalization of available models for the 
case of the optically thick wind should give a better insight into the problems of 
the present status and the evolution of early type contact systems which are still 
far from being properly understood. 

2 ANISOTROPIC STELLAR WIND: EQUATIONS FOR WIND EXPANSION 
ZONE AND SOLUTION 

For a stationary flow, ignoring the Coriolis forces due to stellar rotation, the equa- 
tion of motion of gas and the equation of continuity look as follows 

(1) 

V(pii) = 0. (2) 

1 
p 

(U37)ii-F vi9 + -VP = 0 ,  

Here u' is the gas velocity, p and P are, respectively, the local density of matter and 
the pressure exerted by both gas and radiation, i9 is the gravitational potential. Eq. 
(1) is a good approximation provided that U , / U , r b  << 1 where u, is the local sound 
velocity and Uorb is the velocity of orbital motion. We shall treat here an idealized 
case of radial adiabatic expansion of gas from a one component of a binary. 

In this case Eq. (2) reduces to the conservation of mass flux (mass flow rate per 
unit solid angle) along the streamline, i.e., 

J = puR2 = const (3) 

and Eq. (1) reduces to 
du 1 dP dO 

zr-= ---- - dR p dR d R '  (4) 

Introducing the gravitational potential of the Roche model, using Eq. (3) and 
the relation between gas pressure and matter density valid for adiabatic process 
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ANISOTROPIC STELLAR WINDS 289 

P = Kp7 one obtains 

where us is the local sound velocity. 
Let us specify what we are going to investigate subsequently and the limitations 

involved. Suppose that the term dP/dR in Eq. (4) would include the radiative force 
iri spectral lines proportional to upu ]&I-’ where u is the electron scattering cross 
section and du/dR the velocity gradient. In that case, we would have conventional 
equation of radiative stellar wind treated in a number of papers quoted above, 
specifically by Friend and Castor (1982). The spatial extent of the wind formation 
zone (chromosphere) is small, at most a, where a is the semi-major axis 
of the orbit. Beyond that zone, the influence of forces other than gravitation and 
gas pressure quickly diminishes. This is the physical reason behind the definition of 
the ‘central core’ and ‘halo’ of the wind (Mihalas, 1978; Castor ef al., 1975). In our 
subsequent treatment we focus our attention on this extended region that we would 
call the expanding wind zone and look more closely at the effects of anisotropy 
caused by the presence of the secondary component. 

Rom now on we shall consider for the sake of simplicity a two-dimensional case 
and introduce the gravitational potential, given by 

- 

, 

GMi + GM2 G ( M i  + M2) a = -  
+ 2a3 R da2 - 2aRp + R2 

x [..- MI 2M2 + M2 R p + (  MI M2 + M2 ,’] 
at the equatorial plane. G is the gravitation constant, MI, M2 are the masses of 
m a s  losing and mass accreting components, respectively, p is the cosine of angle 
between the line joining the centres of two stars and the direction considered in 
the equatorial plane from the centre of mass losing component. To facilitate the 
derivation of subsequent formulae, we express the radial velocity in dimensionless 
units v = u/u,  where u, - - 4- and we introduce a dimensionless potential 
C = G(My!M2j (Plavec and Kratochvil, 1964) and express R in units of a. Thus we 
obtain 

dr r dr I 

and 

In the latter equation, p is the mass ratio. In Eq. (7), p is treated as a parameter. 
Actually the absence of another equation involving in addition to Eq. (7) implies 
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that we assume simply up << v, opposite to the case of accretion disc theory where 
ordinarily just the opposite is supposed, i.e., v,, >> v,. 

We examine now more closely the anisotropy of the stellar wind due to the 
secondary component. Denoting the coordinates of the sonic points r: and r; for 
p = 1 and p = -1, respectively (p  = 1 corresponding to the direction towards mass 
accreting component and p = -1 to the opposite one), we find from Eq. (7) the 
radial difference dr, = r: - r; of the equatorial sonic point coordinates due to the 
presence of the companion star 

where r, = i ( r :  + r:) and 

When deriving relation (8) we neglect the difference in sonic velocities us for p = 1 
and p = -1 and take into account that Ar,/r,  << 1. Since r, N 0.1 - 0.3 for typical 
binaries, f(r,) - 1 and u:/u: N 1, one obtains Ar,/r ,  - - lo-' a which for 
ar, = & implies the displacement Ar, 2: 10' cm, a value comparable to the scale 
of the chromosphere. Since the mass loss rate hk = 4irp,u,r~ depends primarily 
on the gas density p which is very sensitive to the depth in the chromosphere (us 
scales as the square root of temperature but the accompanying change with the 
depth would be much smaller), the net result should be the higher mass flux in the 
direction pointing to the companion star. 

A similar conclusion follows from the arguments connected with the mass flux 
conservation condition. Suppose that we deal with the evaporative stellar wind 
from a single star. Then for small Mach numbers one should have 

GM 
J = puR2 = p , ~ ,  R: exp- - R, kT . 

By the same token we can suppose for the case of binary systems in a two- 
dimensional case considered here 

@, J - exp- - kT, 
where @, is the effective potential including repulsive forces at the sonic point 
where solutions for subsonic and supersonic regimes should be matched. Combining 
relations (3) and (11) we have 

where = J dw is the mass loss rate and 
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ANISOTROPIC STELLAR WINDS 291 

F(ros,  q,  p )  denotes the difference of dimensionless potentials C 

F(rO* 9 q ,  p )  = c(q, p )  - c(q> rOJ 9 = l ) 9  

and ros is the coordinate of the sonic point for p = 1. 
Both the velocity and density distributions should be found as a self-consistent 

solution of the set of Eqs (7), (12) with the equation of state valid for adiabatic 
expansion and the boundary conditions properly formulated. That will be done 
elsewhere. Here we confine our treatment of the problem to semi-quantitative esti- 
mates. Namely in what follows we shall indicate that formulfll2)-GfiGponds to 
stream tubes with different values of u,/u, for different types of flows. We examine 
here the location of the sonic points in the framework of the Roche model for some 

If the left-hand side of Eq. (7) equals zero then either u = us or zlp=r, = 0 
(the case when v = v,  and $ I r z r ,  = 0;) will not be considered here). Both 
former cases are physically justified. If rs N r L I ,  where rL1 is the coordinate 
of the first Lagrangian point, then gravitational attraction of both components is 
counterbalanced and the velocity of gas would be minimum, at  least for a free-fall 
case. On the other hand, in a supersonic flow v changes quite slowly so that u N us 
in the vicinity of the first Lagrangian point (Basko and Sunayev, 1973). 

i) The case us << v,. For vs << v, zero points of the right-hand side of Eq. (7) 
coincide with the equipotentials of the Roche model. 

It can be indicated that the zero points of the right-hand side of Eq. (7) forming 
closed curves around the mass gaining component (accretion circles) lie within the 
cone whose width can be found from the condition of contact, i.e., p = ro. The 
respective radius R,,, may be called the radius of accretion from the stellar wind, 
i.e., R,,, = d T  in the framework of our two-dimensional model and ro, as can 
be seen directly from Eq. (7), can be found as the real root of the following cubic 
equatio?: 

types of flows. 
dv 

where 

We have tabulated R,, values as a function of the mass ratio q and t r , /Ve  (Ta- 
ble 1). Note that for v , /v ,  N 0.16 - 0.23 (depending on the mass ratio value q) R,,, 
exceeds the radius R L ~  of the Roche lobe, thereby setting an upper limit of v./ue. 
3-40 1 
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Table 1 Accretion radius R,,,, M a function of mass ratio q and the ratio v, /v ,  

va lve  9 

0.10 0.15 0.20 0.25 0.90 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

0.024 
0.048 
0.073 
0.097 
0.122 
0.145 
0.169 
0.193 
0.217 
0.240 
0.264 
0.287 
0.311 
0.334 
0.357 

0.025 
0.050 
0.074 
0.099 
0.125 
0.149 
0.177 
0.197 
0.221 
0.246 
0.270 
0.294 
0.318 
0.341 
0.365 

0.025 
0.051 
0.076 
0.101 
0.127 
0.152 
0.180 
0.201 
0.226 
0.251 
0.276 
0.300 
0.324 
0.348 
0.372 

0.026 0.026 
0.052 0.053 
0.077 0.079 
0.103 0.105 
0.129 0.132 
0.154 0.158 
0.183 0.185 
0.205 0.209 
0.231 0.235 
0.256 0.261 
0.281 0.286 
0.306 0.312 
0.331 0.337 
0.355 0.362 
0.380 0.387 

Table 1 Continued 

v./ve 9 

0.35 0.40 0.45 0.50 0.55 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

0.027 
0.054 
0.080 
0.107 
0.133 
0.161 
0.187 
0.213 
0.240 
0.266 
0.292 
0.318 
0.343 
0.369 
0.394 

0.027 
0.055 
0.082 
0.109 
0.137 
0.164 
0.190 
0.217 
0.244 
0.271 
0.297 
0.323 
0.349 
0.375 
0.401 

0.028 
0.056 
0.083 
0.110 
0.138 
0.166 
0.194 
0.221 
0.248 
0.275 
0.302 
0.329 
0.355 
0.382 
0.407 

0.028 
0.057 
0.083 
0.111 
0.144 
0.169 
0.197 
0.225 
0.252 
0.280 
0.307 
0.334 
0.361 
0.389 
0.414 

0.029 
0.058 
0.085 
0.115 
0.144 
0.172 
0.200 
0.229 
0.257 
0.284 
0.312 
0.345 
0.373 
0.394 
0.420 
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0.60 0.65 0.70 0.75 0.80 

0.02 0.029 0.030 0.030 0.031 0.031 
0.04 0.058 0.059 0.060 0.061 0.062 
0.06 0.088 0.089 0.090 0.092 0.093 
0.08 0.115 0.119 0.119 0.122 0.125 
0.10 0.145 0.148 0.150 0.153 0.154 
0.12 0.175 0.177 0.180 0.183 0.185 
0.14 0.203 0.206 0.210 0.213 0.216 
0.16 0.232 0.236 0.239 0.243 0.246 
0.18 0.261 0.265 0.268 0.272 0.276 
0.20 0.289 0.293 0.298 0.302 0.306 
0.22 0.317 0.322 0.326 0.331 0.336 
0.24 0.345 0.350 0.355 0.360 0.365 
0.26 0.373 0.378 0.383 0.389 0.394 
0.28 0.400 0.406 0.412 0.417 0.423 
0.30 0.427 0.433 0.439 0.445 0.451 

Table 1 Continued 

v,/.e 9 

0.85 0.90 0.95 1.00 

0.02 0.031 0.032 0.032 0.033 
0.04 0.063 0.064 0.065 0.065 
0.06 0.094 0.095 0.097 0.098 
0.08 0.125 0.127 0.129 0.130 
0.10 0.156 0.158 0.161 0.163 
0.12 0.188 0.190 0.193 0.195 
0.14 0.219 0.221 0.224 0.227 
0.16 0.249 0.253 0.256 0.259 
0.18 0.280 0.283 0.287 0.291 
0.20 0.310 0.314 0.318 0.322 
0.22 0.340 0.345 0.349 0.353 
0.24 0.370 0.375 0.379 0.384 
0.26 0.399 0.404 0.409 0.414 
0.28 0.428 0.434 0.439 0.444 
0.30 0.457 0.463 0.468 0.474 

3-2-401 
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Beyond this limit approximate Eq. (7) evidently loses its validity . For each bina- 
ry with known MI, M2 and a we may introduce gas temperature T h c h e  such that 

RL, being the radius of the Roche lobe. 
ii) $I,=,,, = 0. Consider Eq. (7) at some point close to  the first Lagrangian 

point rl = d w  where H = &?v,(-dg,R/dr)-'/*r = rL, is the scale length 
for isothermal depsity drop-off of the gas flow at  r = rL1. If one puts the right-hand 
side of Eq. (7) equal to zero one finds 

H = 2v,/v,ak-l , where 

so that H / a  2: v , / v ,  (Meyer and Meyer-Hoffmeister, 1983). In the vicinity of the 
first Lagrangian point the derivative $ has a minimum. Thus relation (16) implies 
that if T < To the right-hand side of Eq. (7) will be negative everywhere (except 
for a small region of a relative size H/a near L1). In other words, for T < TO the 
conditions for transonic flow will be fulfilled since the velocity of the wind will be 
a growing function for subsonic velocity values and a decreasing one for supersonic 
velocities. 

Finally one can introduce the minimum temperature T,,otr of isotropic evapo- 
ration (expansion) by setting simply the particle total energy (kinetic energy plus 
specific enthalpy minus the difference between the potentials a t  the surface of the 
mass losing component and the Roche critical potential) equal to  zero. In our 
dimensionless units, we then have 

v2  + 5v,2 + C(P,P, p1) - C1(q) = 0, (17) 

where C,(q) is the value of the potential for the inner critical Roche lobe. Since the 
velocity does not change very drastically, one has 
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Table 2 Characteristic temperatures To, x,,,, and T R ~ ~ ~ ~  for some binaries 

System M i 0  Ma0 a fR0  TollO' z!,,,,, / 106 TRochcf lo' 

v380 CYg 
v453 c y g  
vv on 

6 Ori 
V539 Ara 
sz cam 
TX Her 

V448 c y g  
UW CMa 

SV Cen 
U Cep 
Rs c e p  

13.3 7.6 62.2 
16.8 12.9 32.2 
10.2 4.5 13.4 
23.0 9.0 43.0 
6.7 5.7 21 .o 
20.4 5.1 24.0 
1.6 1.4 9.0 
22.4 17.5 50.2 
43.5 32.5 47.8 
11.2 9.4 16.2 
4.3 2.8 14.8 
1.9 0.7 31.4 

~ 

2.0 
6.8 
4.0 

33.5 
3.1 
12.5 
86.0 
3.5 
5 .O 
14.6 
3.5 
4.5 

2.9 
4.3 
3.3 
1.9 
5.4 
3.8 
4.5 
13.3 
1.3 
0.4 
5.5 
3.3 

0.4 
1.1 
0.6 
0.8 
0.4 
0.6 
0.6 
1.9 
0.3 
0.1 
1 .o 
0.5 

We have calculated TO, T , t r  and T b c h e  for some detached and semi-detached 
binaries, their values are indicated in the fifth, sixth and seventh columns of Table 2, 
respectively. Again we have set for the sake of simplicity r, = r1, r1 being the radius 
of the mass losing component. Note that TO < T b c h e  < T,,,,. T,=tr is in a good 
qualitative agreement with the temperatures of the coronal wind, Tbche with the 
chromospheric temperatures and TO with the continuum data (evidence for the gas 
flows from light curves). 

Figure 1 illustrates the behaviour of the mass flux as a function of p calculated 
for three values u,/v, corresponding to the typical TmLr, T ! c h e  and TO. It is 
noteworthy that the intermediate curve matches well the results for J ( p )  obtained 
by Friend and Castor (1982) thereby implicitly confirming the validity of our model. 

Different ad hoc flux tube approximations have been introduced in a number of 
papers, among others by Modisette and Kondo (1980), Haisch e i  ul. (1980), and 
Kopp and Holzer (1976). From all the above-mentioned, it is clear that Eq. (12) 
may be regarded as an equation of a flux-tube based upon very simple but physically 
justified assumptions. 

3 THE EFFECT OF ANISOTROPIC STELLAR WIND ON THE LIGHT 
CURVE OF AN ECLIPSING BINARY 

We apply now the formulae derived above for optically thin stellar wind from one 
binary component and evaluate the mass transfer rate fitting the model and the 
observed light curves of detached binaries. Our schematic model is shown in Fig- 
ure 3. Two stars with radii ri revolve around the common centre of gravity in a 
circular orbit. Radially expanding stellar wind from the primary component forms 
a semi-transparent envelope of accreting matter whose size around the mass gaining 
star is R,, (RXcr values are tabulatedin Table I), the size of the envelope around 
the primary RA = - 2 4 1  - h/a) ,  6 = ,/RLr - H a  is determined by R,,, 
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!.@a- 

Figure 1 DXercnt 'flux tubes' or angular dependencies of the maa.9 flux J (mass loss rate per 
unit solid angle) for different ratios of sonic u. to escape ue velocities, p = 1 for the direction 
pointing towards the mass gaining component (for more details see the text). 

and the size of the neck H connecting the two stars (see also Eq. (16)). In addition 
we suppose that i) the gas is fully ionized and scattering on free electrons is the 
predominant source of opacity; ii) both components are black body emitters with 
the effective temperatures T d  and Ten; iii) stationary mass outflow takes place 
from the primary component at the mass loss rate A?. We neglect i) proximity 
effects for both components, ii) their finite sizes when calculating the optical depths 
of gas along the line of sight. We calculate the light curves with a due account for 
i) body eclipses by both components, ii) the screening effect of a semi-transparent 
scattering envelope and iii) the contribution of the latter into the total luminosity 
of a close binary. 

When calculating the optical depth along the line of sight we need the density 
distribution which we find from Eq. (12), whereas the velocity distribution can be 
determined directly by integrating Eq. (7). 

In view of the crudeness of our approach we have introduced subsequent sim- 
plifications: i) v, is assumed to be constant (isothermal medium), ii) performing 
integration over p in Eq. (12), we expand the exponential factor in series and retain 
terms up to rzs which is sufficient for our purposes taking into account that F& << 1 
and + N 0.2 - 0.3 for detached binaries. 

&us we obtain the following expression for the density distribution: 

1 q  v 2 3  
I(ql pas) N 1 - - -r2 -k - - 

2 1 + q W u , a  4 
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Figure 2a 
denotes the direction towards mass accreting component. 

Velocity distributions for different valuu of p ,  q = 0.3, cool gM, Us/Ue  = 0.065, P =  1 

.and 

The velocity distribution for our case reads off 

u2 - u:/v," In u2 = 2u,2/v," In r2 + C(r, p,  q )  + Co, (20) 
where 

Co = -vf/uz { 5 +In [CI(q) - 5u:/uz] r;,} (21) 
is the integration constant fixed by postulating the total particle energy at the first 
Lagrangian point to be zero. Thus fixing the integration constant we fix the velocity 
distribution of a supersonic flow for r > r, . Two limiting cases have been considered 
here: i) cool gas, u, < u,, T = TO (see Eq. (16)), ii) hot gas, uf/uZ 5 $Cl(q), 
T N Timtr (see Eq. (18)). 

Figure 2 illustrates the velocity distributions for these two cases and different 
p. The case v, < ue is actually a free-fall case whereas for the hot gas u, 2: u, the 
velocity gradient is significantly lower due to the influence of the repulsive force of 
gas pressure. As one can see from Figure 2, in both cases u rapidly increases as 
p --+ 1. At the same time, the shape of the light curve in all cases studied 90 far 
proved to be quite insensitive to the velocity distribution. 

The optical depths of the gas along the line of sight towards the observer 71 and 
rz for the primary and secondary components, respectively, can be written down as 
follows: 
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Figure 2b The same as in Figure 2a for the hot gas, uJ/ue = 0.65. 

Zmin 

Here 
n;r 

2 2 A =  Jm, To=o.i-, 
rpvk 

R 2 = z 2 + a  A ,  

f(r,A), f(z,A) stand for the functions describing the flux tube shape and the 
velocity field of the stellar wind (specified by Eqs. (19) and (20), respectively), the 
appropriate value of the initial velocity Vk at the base of the expansion zone should 
be taken either from the observed chromospheric line profiles or from theoretical 
models of stellar wind, j i  is the molecular weight, i is the angle of orbital inclination, 
4 is the orbital phase angle measured from the moment of a superior conjunction 
of'a primary component. Integration limits in R and z depend on the distance 
between the components aA as seen projected upon the plane of the sky, 

aA 1 %cr 1 

= { i cos 4 + d&r - aAz, aA 5 &,,, cos 4 > 0 , 

asinicos4 5 R2 , 
zmin = { i i '+asinicos4,  asinicosd > Rz, cos4 > 0 ,  

asinicos4 5 RZ , 
Ractr+asinicosq5, asinic-4 > Rz, cos4 > 0 , = { Raca9 

Rz - alsinicost$I, 
- alsinicos+I, 

aA > RA, cos4 < 0, 
aA < RA, cos4 < 0, zmin = 
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Figure 3 A schematic model of a close binary. The component of radius t l  1- maan due 
to anisotropic stellar wind, LCr b the accretion radiua (tabulated in Table 1 in the unita of a 
semi-major axis of a relative orbit a). 

RWr-a sinicos41, a A >  R A , c o s ~ < ~ ,  
. a A  5 RA, C O S ~  < 0, = { @&F, 

For the sake of simplicity consider the case when the anisotropy of the stellar wind 
is absent and the gas velocity along the line of sight is constant. We compare for this 
case the optical depths at elongation and during superior conjunctions. Performing 
integrations in (22a) and (22b) we have simple relations 

(234 
Rxcr 744 = a/2) = - arctan - - arctan - 

T o (  a a a 

. (23d) 
a sin i - Rz 

72(4 = 7r) = - + arctan acoei acoei acosi 

As one can see from Eqs. (23a), (23b), (23c) and (23d) the value of 7-1 does not 
change within the phase angle interval (~/2,7r) and only slightly increases in the 
phase angle interval (0, r/2ksince the density of gas rapidly declines with distance 
from the mass losing component. On the contrary, for the mass gaining star n is 
steadily increasing and for i close to 90' may be by up to 2-3 odders of magnitude 
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Figure 4 Model light curve ?f an eclipsing binary illustrating the effect of anisotropic stellar 
wind with the mass loss rates M = 10-12Mg /yr, iif = 5 .  10-sMg /yr and M = lO-*Mg /yr 
for the following set of orbital elements and physical parameters: Tefl = 6000K, Tef2 = 12000K, 
rl = 2.2RgI 12 = 0.88Rg, a = lORg, i = 85', q = 1, X = 5500A and u1 = u2 = 0. 

higher compared with the value at elongation. This effect can easily explain the 
distortion of one of the branches of the deep minimum observed in some Algol 
binaries and thus it can be attributed to the effect of anisotropy of the stellar wind 
coming from the Roche lobe filling low mass components. 

The total light of a binary (normalized to the brightness at  elongation, i.e., for 
4 = 90') is given by 

LA(+) = &A($) +&A(+)  + Lenv, 

Ljx(i4) = rr;l?jx(Tj)(l - ~j/3)[1-  Aj(id)] exp - ~ j ( $ ) ,  (24) 

where Ljx is the luminosity of the respective component j with a due account for 
an eclipsed portion Aj(i4) of the visible disc. Here Bjx is the'Planck function, and 
U j  is the limb darkening coefficient. The luminosity of the envelope Len, has been 
evaluated as the radiative energy of both components scattered by the envelope 
averaged Qver the orbital period, 

- n  2 

m being the number of points or phase angle values for which the model light curves 
have been calculated. 

The shape of the light curve is fully determined by the model parameters Ten, 
Ten, r l ,  1'2, i and TO or M, q ,  ul, and 142. The effect of anisotropic stellar wind 
upon the light curve is illustrated in Figure 4 for one of the model light curves 
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with the physical parameters and orbital elements typical of Algol-type binaries 
and three values of the mass loss rate. For ni = 10'12M~ /yr the light curve 
is practically indistinguishable from the light curve of an eclipsing binary in the 
absence of circumstellar gas. As one can see from Figure 4, for it4 = 5 - 10'9Mo 
/yr and u1: - 100 km/s the increase by a factor of two in the mass loas rate results 
in a decrease by 7 per cent of the ratio of the depths of minima. 

The above model has been applied by Poiushina and Pustylnik (1994) for a 
detailed analysis of numerous UBVR light curves of SZ Camelopardab - an early 
type detached binary. * 

The author expresses his gratitude to Prof. A. Sapar-for fruitful suggestiom and 
encouragement and to Mrs. A. Tootsi for her help in preparing the final computer 
version of the manuscript. 
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