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Gaps in observational time series due to factors beyond our control are habitually considered as 
a nuisance, since they make the spectral analysis of the time series much more complicated as 
compared with the case of regular observations. Nonetheless, in some applications the gaps may 
be found useful. It is shown that the spectral analysis of a multi-harmonic function given a t  two 
intervals, separated by a gap, yields the results very much similar to those which one has in the 
case of two antennas connected as an interferometer. This analogy leads to a conception of the 
Time Interferometer, which in some cases is superior to regular observations since it (a) makes the 
spectral lines sharper, (b) separates two close harmonics a t  the cost of suffcient reductions of time 
and observational expenditures, (c) improves the low frequency problem. This paper presents a 
theoretical foundation of the Time Interferometer and its application to astrometric time series. 

KEY WORDS Time series, power spectra 

1 INTRODUCTION 

The “classical” spectral analysis of time series (Jenkins and Watts, 1968; Otnes and 
Enochson, 1978; Marple, 1987, et.) presumes that the observed data are represented 
either by continuous functions, or by samples with an even distribution in time. In 
astronomy, it is rather a rule that the time series are given a t  unequally spaced time 
points due to various factors - weather conditions, radiation belts, breakdowns, etc. 
To use the standard techniques of spectral evaluating, one needs such’ observations 
to be regularly spaced in time. Many approximate meth6ds are used to do this 
preliminary step: interpolation, mean square fitting to a given function, averaging 
over a fixed interval, etc. While these methods may be satisfactory in some cases, 
they do not solve the problem in general. 

The first rigorous analysis of unequally spaced data was performed perhaps by 
Deeming (1975). He showed that the periodograms of unevenly distributed data 
are contaminated by spurious details and explained how the “ghosts” may be recog- 
nized. In its modern state, the problem of gaps in observations may be described as 
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178 V. V. VITYAZEV 

follows. We know nothing about the spectrum and gaps are beyond our control, so 
we are doing our best to extract, from the observed values, as much information as 
we could if the observations were regular. Several techniques (Delache and Scherer, 
1983; Duvall and Harvey, 1984; Roberts et  al., 1987) encourage that the true spec- 
trum may be reconstructed almost completely. In this connections one may ask 
whether it is always necessary to have regular observations, or in some applications 
it is possible to  make observations with arranged gaps. This paper, presenting a 
rigorous study of the spectral analysis of data gathered in blocks and separated by 
gaps, gives a positive answer to this question. 

2 THE SPECTRUM OF A MULTI-HARMONIC FUNCTION 

We start by considering some theoretical aspects concerning the spectral analysis 
of deterministic functions given a t  arbitrary set of time points. 

Suppose a time series is a multi-harmonic function, 

with amplitudes Ak, frequencies wk and phases d k  of the harmonics. The corre- 
sponding auto-correlation function k(r) and the true power spectrum G(w)  are 

T 

0 

-CU 

n 

where b = 6(w)  is Dirac's delta function. To describe the gaps in the observations, 
we introduce the t i m e  window function, 

(2.4) 
1 if a t  time t the data exists, { 0 if a t  time t the data  is absent. h( t )  = 

With this notation, the observed time series may be represented as 

Y ( t )  = h ( t ) z ( t ) .  (2.5) 
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THE TIME INTERFEROMETER 

It can be easily shown that the periodogram 

IT 12 

and the true spectrum G(w)  are related by 

G(w’)H(w - w ’ )  dw’ + D ~ ( w ) ,  7 D(w)  = 
- W  

where 
n 

4Do(w) = x A ; [ R ( w  - wp)R*(w +up) exp(i2dp) 
p=l  

+ 
+ 

W ( w  - wp)R(w +up) e~p(- i%$~)J  
n c A,Aq[Q(w - % N * ( W  + Uq) exp(i(4, + 4q)) 

c A p A q W  - Wp)Q*(W - wq)exp(i(dp - 4,)) 

..9=1 
P # q  

+ 

+ 
R*(w - W p ) Q ( W  +wq)exp(-i(dp + 4q))I 
n 

P.P= l  
P f P  

+ Q(w + wp)Q*(w + wq) exp(-i(4p - 4q))I. 
The functions R and H in Eqs. (2.7) and (2.8) are defined as follows: 

112 

R(w) = [ &] / h(t)  exp(-iwt) d t ,  
0 

Henceforth, the function H ( w )  will be referred to as the spectral window. 

Comments 

1. A set of multi-harmonic functions (2.1) with the phases (bk randomly dis- 
tributed within the interval [0,27r] may be regarded a stationary stochastic 
process. Averaging Eq. (2.8) over the set of realizLtions yields E[Do] = 0, 
thus reducing Eq. (2.7) to a convolution of the true spectrum G(w)  with the 
spectral window H ( w ) .  This result was  obtained by Deeming (1975), who 
studied the periodogram averaged over a set of realizations, given at one and 
the same set of time points. 
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-1.d7 

1.00 

0 1 2  3 4 5 6 7 8 3 1 0 1 1 1 2  
time Cyrl 

0.50 ~i 1 
0.00 

0.00 3.14 6.28 9.42 12.57 
freqvency [ r a d a r ]  

fC)  

0.00 3.14 6.20 9.42 12.57 
frequency t r r d q r l  

Figure 1 The spectral analysis of two consinusoids with equal amplitudes, zero phases and the 
periods PI = 1.3 and Pz = 0.7 yr: a, regular observations sampled at 120 points over 0.1 yr; b, 
the spectral window; c, the resulting spectrum. 

2 .  If only one realization is available, there is nothing to  average. In this case 
the term DO in Eq. (2.7) cannot be neglected. However, i t  can be shown that 
except for some highly specific, so to  say, “pathological” cases, this term is 
small as compared with the convolution integral in Eq. (2.7). 

3. Eqs. (2.6) and (2.7) are the basic tools in evaluating the observational spec- 
trum D ( w )  and in revealing the artifacts introduced by the missing data. 
Suppose the spectrum G ( w )  has sharp features at  w = f w o ,  

where A = const. According to  Eq. (2.7),  we obtain 

Hence, Eq. (2.12) describes the transformation of the initial spectrum G ( w )  to 
the observed one D(w).  It is important to underline that the transformation 
from G ( w )  to D ( w )  is completely determined by the spectral window. If the 
data  are irregularly spaced, the spectral window H ( w )  usually h a  a central 
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THE TIME INTERFEROMETER 181 

-1.87 

1.00 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  
tinc Cyl 

(b) 

0.50 

, , - -J\- , , , ~ , 1 0.w 
0.00 3.1, 6.28 9.42 1257 

frequency C r s d ~ j r l  

0. Do 3.1, 6.28 9.42 12.97 
f r cquencq t r ad/yr 3 

Figure 2 The same as in Figure 1: a, observations with 1 yr periodic gaps; 6 ,  the spectral 
window: the sidepeaks are centered at frequencies 2a and 4% rd/yr; c, a dirty spectrum: the 
highest peaks are real, all the rest are “ghosts”. 

peak at w = 0, the sidepeaks centered at some frequencies w = Gk, k = 
1,2, .  . ., and the sidelobes of the central peak and of the sidepeaks (Figure 
2b). The sidelobes are caused by a finite time span of observations. They 
exist even for equally spaced data. The sidepeaks appear only if the data are 
spaced irregularly. According to Eq. (2.12) all these features are present in 
the observed spectrum. Indeed, the central peak is visible a t  w = W O ,  and, 
showing the true features of the initial spectrum, it may be called the true 
peak. The sidepeaks are responsible for the spectral features at w = two f w k ( .  

The initial spectrum G(w)  has no lines at these frequencies. Hence, these 
features are false and may be regarded as “ghosts”. To illustrate the results 
of the spectral analysis of evenly and unevenly distributed data, we consider 
two consinusoids with periods PI = 1.3 yr, Pz = 0.7 yr, sampled at 120 points 
over 0.1 yr regularly (Figure 1) and with annual gaps (Figure 2). 

These are the only essential features which may be extracted from Eq. (2.7) 
in general case. If we need more, we are to have additional knowledge of the 
specific properties of the spectral windows. 
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182 V. V. VITYAZEV 

3 ANALYTICAL STUDY OF SPECTRAL WINDOW FUNCTIONS 

The standard way to study the spectral windows implies calculating H ( w )  for a 
given set of time points. This calculation is performed each time when we do 
the spectral analysis. Unfortunately, i t  allows us to  see the details in the spectral 
window, but not to explain them. To remedy this, we propose another approach. 
Its main idea lays in representing by regular observations with missing points of the 
situations frequently met in practice. Considered in this section are two examples: 
data  spaced with periodic gaps and two sets of observations separated by a single 
gap. Both the cases, being of interest from practical point of view, lead us to 
quite a new understanding of unevenly spaced data,  namely to the idea of the Time 
Interferometer. 

3.1 Observations with Periodzc Gaps 

In real astronomical observations, gaps are either periodic or quasi-periodic. Gro-- 
und-based observations are interrupted by meteorological changes, which, for a 
given site, are repeated annually. Night observations are stopped in the daytime, 
and such gaps follow with a 24-hour period. In both examples we have a certain 
cycle of observations, one part of which is filled with data,  and the other is emply. 
To describe such situations, we introduce the following notation: 

At = const - the interval of sampling, 
AT = ( n  + p ) A t  - duration of one cycle of observations, 
n - number of observations in the cycle, 
P - number of missing points in the cycle, 
m - number of cycles, 
M = ( n  + p ) m  - p - total number of points in the time series; 
N = n m  - total number of observations in the time series. 

The sequence of cycles and the distribution of observations and gaps inside each 

Consider now two time window functions, 
cycle are shown in Figure 3. 

n 

6[t - ( j  - l)At], 
j = 1  
m 

h,(t) = 6[ t  - (k - l)AT]. (3.2) 
k = l  

The first one samples the observations within a cycle, the second one describes 
the sampling of cycles. Obviously, the resulting time window function is the convo- 
lution 

h( t )  = h,(t')h,(t - t ' )  dt' .  (3 .3)  
-00 7 
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THE TIME INTERFEROMETER 183 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 @ @ @ 0  

Figure 3 Observations with periodic gaps. 

We are looking for the ‘spectral window function 

(3.4) 
I 

satisfying the condition H ( 0 )  = 1. Using the theorem on the Fourier transform of 
a convolution, we get 

where 
~ ( w )  = Ion ( w )  1’ IQm (w ) I’ (3-5) 

-a2 

sin( nwAt/2) 
n sin(At/2) 

- - exp(-iw(n - l)At/2),  

+oo 

Q,(w) = -L J hm(t )exp(- iwt )d t  
m 

-a2 

exp(-iw(m - l)AT/2). - sin( nwATJ2) 
m sin(wAt/2) 

- 

If we introduce the standard function, 

sin2(NwAt/2) 
N 2  sin2(wAt/2) ’ Ho(w,  N ,  At) = 

(3.7) 

then for the spectral window under consideration we find 

H ( u )  = H ~ ( w ,  TI ,  At)Ho(w, m, AT). (3.9) 

Thus we expressed the spectral window function of periodically interrupted obser- 
vations in terms of the standard window function Ho(w, N ,  At),  corresponding to a 
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1.00 

0.50 - 

0.00 

1.00 1.00 

0.50 0.50 - 

0.00 0.00 + , h-, , , Q , 

r . !.00 ’ 

0.50 - 

‘h-l- , - I I , 0.00 . In; I ~ I I I t l  

Figure 4 Spectral windows corresponding to observations with periodic gaps: Q, standard 
windows Ho(w,m = 12 ,AT = 1);  H o ( w , n  = 4,5,6;At = 0.1); b ,  H ( w , n  = 4 , A t  = 0.1); c ,  
H ( w , n  = 5 , A t  = 0.1); d ,  H ( w , n  = 6 , A t  = 0.1). 

set of N points equally spaced in time with an interval At = const. The function 
H o ( w )  is an even periodic function: 

H o ( w ,  N ,  At)  = H o ( - w ,  N ,  At ) ,  (3 .10)  
Ho(w + 2nwc,  N ,A t )  = Ho(w, N,At ) ,  R = f l ,  f 2 , .  . . , (3 .11)  

where w ,  is the Nyquist frequency, 

wc = ir/At. (3 .12)  

The zeros of Ho(w)  are located at  the frequencies 

wk = 2irk/NAt, k = f l , f 2 , .  . . . (3.13) 

It is instructive to illustrate the formation of the spectral window H ( w )  as given by 
Eq. (3.9). Figure 4(a) shows narrow peaks and sidelobes of H o ( w ,  rn = 1 2 ,  AT = 1 )  
running with the period 2?r/AT and broad central peaks of H o ( w ,  n = 4; 5 ;  6, At = 
0.1) on the interval [ O , w , / 2 ] .  Multiplication of these functions yields the results 
shown in Figure 4(b-d). The corresponding function H ( w )  has central peaks and 
sidepeaks of decreasing intensities accompanied by a fine structure of the sidelobes. 
The sidepeaks are centered a t  

L;lk = 2xk/AT, k = f l , f 2 , .  . . , (n + p ) ,  (3.14) 
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THE TIME INTERFEROMETER 185 

and their intensities are given by 

I k  B Ho(G,, n ,  At).  (3.15) 

The frequencies G k ,  defined by Eq. (3.141, are of special interest for us, and we 
shall call them the Proper Frequencies (PF). Correspondingly, we can introduce the 
Proper Periods (PP), 

(3.16) 

Now we see that the first (and the largest) sidepeak displays the period of gaps, 
while the others form the sequence AT/2, AT/3, etc. Since the positions of the 
zeros of H o ( w , n , A t )  depend on the number of observations within AT, some of 
the sidepeaks may be suppressed. Figure 4(c) shows an example corresponding to 
n = p (one half of AT is filled, the other is empty). Here only the first sidepeak 
appears, while the second one is absent, since it is located exactly at the zero of 
Ho(w,  n ,  At). 

3.2 

Sometimes observations which lasted for a certain period are interrupted, and after 
a lapse of time they are resumed. As a result, we have two time series separated by 
a gap. To describe the situation, we use the following notation: 

n1, n2 

P 
M = nl + n2 + p 
N = nl + n2 
The distribution of time points corresponding to the situation is shown in Figure 5 .  
For the case under consideration, the time window function is given by 

Two Observat ional  S e t s  Separated by a G a p  

- the numbers of equally spaced data in the first and 

- the number of missing points, forming the gap, 
- the total number of points in the whole time series, 
- the total number of observed points. 

second blocks of information, 

h(t)  = hl ( t )  + h2(t) 
nl  M 

= c6(t - kAt)+ 6( t  - kAt). (3.17) 
k = l  k=n+p+l 

Now, according to Eq. (3.4), the corresponding spectral window is 

(3.18) 

From Eq. (3.18) it is clear that if each block of observations were treated 
separately, the corresponding spectral window would be either Ho(w, n l ,  At)  or 
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Figure 5 Observations with a gap. 

o.uo}  ,- I , , I , J 
0.00 3.11 6.28 9.42 12.57 

frequency Cr a&yr 1 

0.00 3.14 6.28 9.42 12.57 
frequency i r ad/yr I 

0.00 3.14 6.28 9.42 12.57 
rreqbwvq Crxi/yrI 

Figure 6 
b ,  n1 = 30, p = 30, n2 = 5; c, nl = 30, p = 30, nz = 10; d ,  n1 = 30, p = 30, n2 = 20. 

The spectral windows of two unequal blocks of observations: a, nl = 30, p = 0, n2 = 0; 
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- 1.00 1 

h 
0.50 - 

1.00 ’i 1.00 

0.50 - 0.50 - 

Figure 7 
b, n1 = 20, p = 40, 732 = 20; c, nl = 30, p = 30, n2 = 30; d ,  nl = 40, p = 20, nz = 40. 

The spectral windows of two equal blocks of observations: a, n1 = 10, p = 50, nz = 10; 

’ 

H o ( w ,  n2, At). Figure 6 shows how the function H ( w )  changes when observations 
of the second block are added to  the first block. As n2 increases, the central peak 
of H ( w )  changes its form, and at frequencies 

0. M) 

- 4sk 
6k = k =  1 , 2 ,  ..., 

( M  +p)At’  

h - 0.00 

(3.19) 

for which the cosine in Eq. (3.15) is unity, the embryos of the sidepeaks gradually 
develop. 

Let us consider now the most interesting case of two equal series.separated by a 
gap. For n = n1 = n ~ ,  Eq. (3.15) yields 

(3.20) 1 + cos(n + p)wAt  
2 Ho(w, n,  At). H ( w )  = 

We would obtain the same expression if we had taken m = 2 in Eq. (3.9). Hence the 
structures of the spectral windows corresponding to  periodic gaps and to  a single 
gap are basically similar. In both cases the sidepeaks, located at PF, 

27rk 
( n + p ) A t ’  

6 k  = k = 1 , 2 , . . .  (3.21) 

are present. Figure 7 illustrates the structure of spectral windows for the case of 
two equal blocks of observations, corresponding to three cases: the gap is wider 
( p  > n), equal ( p  = n) and narrower ( p  < n) than each block of observations. We 
see that the longer is the gap, the higher are the sidepeaks. 
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188 V. V. VITYAZEV 

b I 

Figure 8 The analogy of interferometers: a, the space interferometer implies a separation of 
ante- in space and observations made at one and the same point (interval) of time; 6 ,  the Time 
Interferometer implies a separation of “antennas” in time and observations made at one and the 
same point (site) of space. 

4 THE TIME INTERFEROMETER 

Upon close examination, it turns out that if we treat each block of observations 
separately, we have a rather broad spectral window, whereas a combined treatment 
of the blocks results in splitting the central peak into several narrow sidepeaks. The 
situation is similar to what one has in an interferometer, for, as we know, the central 
beam of each telescope is splitted into several lobes if two telescopes are connected 
to  form an interferometer. Figure 8 displays this remarkable analogy. There is 
a good reason to call sets of observations with gaps the Time Interferometer. 
Keeping in mind that results of experiments may be referred not to time but to any 
other variable, a more general term - the Numerical Interferometer would also 
be natural. 

The quantity 

b = * A t  = (n1/2  + p + n2 /2 )A t  
2 
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is essentually the baseline of the Time Interferometer. Now, the Proper Periods of 
one gap spectral window can be represented as 

(4-2) 
b 
k’ 4 = - k =  1,2, .... 

So, the period.of the first sidepeak reveals the length of the baseline. The 
same interpretation of the PP is implied by Eq. (3.16). Now, while a series of 
observations with a single gap corresponds to a simple two-element interferometer, a 
series of periodically interrupted observations corresponds to an array of equidistant 
antennas (a grating interferometer). Having established the correspondence between 
the space interferometer and the time interferometer, we find that the gaps in 
observational series stand for the spacings between the antennas. Our main general 
conclusion is as follows: the laws of interferometry govern many problems we meet 
in the spectral analysis of time series. 

5 WHAT CAN THE TIME INTERFEROMETER DO? 

In this section we discuss several typical situations, when gaps in observations are 
useful. For all the cases we consider, the results are specific to regular observations 
and to distributions of time points with gaps. Using the terminology of interferom- 
etry, we can introduce several types of “time telescopes”: 

a) A Simple Antenna (SA), i.e. a time series given at N equidistant points over 
the interval At = const. The total time span T = (N - 1)At is the numerical 
counterpart of the diameter of the antenna. The beam of the antenna is the 
spectral window function Ho(w, N, At), defined by Eq. (3.8). 

b) A Simple Time Interferometer (STI), i.e. a set of two data blocks separated 
by a gap. The numbers of observations in the blocks are nl and n2, the gap 
consists of p points, all the points are equidistant with an interval At = const. 
The baseline of the STI is given by Eq. (4.1), and the length of the STI in 
time (duration) is L = (711 + p + nz - 1)At. The numerical counterpart of the 
interference fringe system is the spectral window function H ( w ) ,  defined by 
Eq. (3.18). 

c) A Grating Time Interferometer (GTI), i.e. a set of data blocks separated by 
gaps. Each block consists of n observations, each gap consists of p points. All 
the points are equidistant with an interval At = const. The main period of 
gaps is AT = (n+p)At, the duration of the GTI is L = [ ( n + p ) r n - p -  l]At. 
The dirty beam of the GTI is described by the spectral window function (3.9). 

5.1 The Frequency Resolution 
In spectral analysis, the quality of a spectrum is estimated by its frequency resolu- 
tion. This is the frequency band,‘within which spectral details are not separable 
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Table 1. Numerical values of x in Eq. 5.3 

0.5 1 2 

0.05 0.573 0.393 - 
0.10 0.642 0.502 - 
0.20 0.750 0.668 0.609 
0.25 0.788 0.722 0.677 
0.30 0.819 0.764 0.727 
0.40 0.865 0.823 0.760 
0.50 0.894 0.861 0.840 
0.60 0.914 0.886 0.867 
0.70 0.926 0.901 0.885 
0.80 0.934 0.911 0.895 
0.90 0.939 0.917 0.901 
1 .Q0 0.941 0.919 0.903 
1 .50 0.939 0.911 0.889 
2 .OO 0.931 0.894 0.861 
3.00 0.920 0.870 0.815 
4.00 0.918 0.860 0.789 
5 .Q0 0.920 0.859 0.778 

The frequency resolution ismeasured by the width of spectral lines. In theory, when 
a multi-harmonic function is k.nown for any time t ,  the spectral lines are given by 
delta functions. They are infinitesimally wide. In reality, the time span of obser- 
vations is finite, and the delta functions are replaced by spectral window functions. 
The central peaks of the spectral windows have the profiles which depend on the 
distribution of the samples. For this reason, the comparison of the spectral windows 
is possible only with a certain measure which has one and the same meaning for 
each case. The commonly used measure of the width of the central peak is the 
half-power width. If this measure is adopted, then the frequency resolution of the 
SA can be evaluated as 

where XI = 0.89 for N 2 10. In the case of the STI, the corresponding value can 
be represented in the form 

( 5 . 2 )  
a 

q b  = x2b, 

where A2 depends on n2/n1 and p / n l .  Equating QN and Q b ,  we find 

N A t  = x26, (5.3) 

where x = A l / X 2 .  The numerical values of x are shown in Table 1. 
From Eq. (5.3) it follows that to  achieve equal frequency resolution, using STI 

and SA, the durations of the experiment and the required number of observations 
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Table 2. 
(STI aa compared to SA) 

Gain of duration; GD, per cent 

0.5 1 2 

0.05 
0.10 
0.20 
0.25 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1 .00 
1.50 
2.00 
3.00 
4.00 
5.00 

-32 -71 - 
-19 -35 - 
-3 -3 -1 
1 4 9 
5 9 14 
8 14 21 
11 17 24 
12 19 26 
12 19 27 
12 19 27 
12 19 27 
12 18 26 
9 15 22 
6 11 17 
2 4  8 
0 0  1 

-1 -2 -3 

are different. It is useful to  introduce two numbers, DD and DO, to measure the 
relative efficiency of SA and STI in spectral resolution: the difference of durations 

and the difference of observations 

From Eqs. (5.4) and (5.5) one can see that if x is close to unity, then 

DD M p b t ,  
DO M 2p. 

In other words, the difference of durations is approximately equal to the length of 
the gap, whereas the difference of observations is almost twice the number of missing 
points. The gains in time and labor expenditures GD = D D / T ,  GO = DO/N are 
shown in Tables 2 and 3.  It is instructive to analyze the Tables, assuming that the 
observations of the second block are added point by point to the first block. One 
can see that 

a) the two-element Time Interferometer becomes shorter than the corresponding 
Simple Antenna, starting from the value n2/n1 M 0.25 and remains to be 
shorter up to nZ/nl M 4; 
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Table 3. 
(STI an compared to SA) 

Gain of observations, GO,. per cent 

0.5 f 2 

0.05 
0.10 
0.20 
0.25 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
.1 .oo 
1.50 
2.00 
3.00 
4.00 
5 .oo 

11 12 
19 29 
27 45 
30 47 
31 48 
33 50 
33 50 
33 50 
32 49 
31 48 
30 47 
29 46 
24 39 
19 33 
13 23 
10 17 
7 13 

- 
62 
65 
66 
67 
68 
67 
66 
65 
64 
63 
57 
50 
39 
30 
23 

b) the Time Interferometer provides the same frequency resolution using less 
observations than the Simple Antenna needs. 

The most favourable situation for both GD and GO takes place if 

n2 

nl 
0.5 < - < 1 

for every fixed ratio plnl. The gains grow up while this ratio increases for every 
fixed value of nz/n1. Hence, the longer is the gap, the less expensive are the 
interferometric results as compared with the regular observations. The efficiency 
can be increased if we are able to organize the experiments in such a way that the 
spare time of the gap could be filled with observations of other programs. 

Similarly, we may consider the GTI. In this case the half-width of the central 
peak is 

where A3 depends on p/n and m. Equating q N  and qm, we obtain 

NAT = XmAT, (5.10) 

where x = 0.89/A3. The corresponding differences of durations and of the number 
of observations now are 

DD = T - L = [p(l+ m(x - 1)) + mn(X - l)]At,  
DO = N - mn = Xmp+ mn(X - 1). 

(5.11) 
(5.12) 
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Table 4. Numerical values of x in Eq. 5.10 

m p / f n  + P) 

0.7 0.5 0.5 

2 
4 
6 
8 

10 
50 

0.895 0.914 0.941 
0.975 0.979 0.986 
0.989 0.991 0.994 
0.994 0.995 0.997 
0.996 0.997 0.998 
1 .Ooo 1 .OOo 1 .Ooo 

Table 5. 
(GTI as compared to SA) 

Gain of duration, GD, per cent 

m P/ (n  + P) 
0.7 0.5 0.9 

2 27 18 10 
4 15 11 6 
6 11 8 4 
8 8 6 3 

10 7 5 3 
50 1 1 1 

Table 6. . Gain of observations, GO, per cent 
(GTI as compand to SA) 

m p/ (n  + P) 

0.7 0.5 0.3 

2 
4 
6 
8 

10 
50 

66 45 26 
69 49 29 
70 50 30 
70 50 30 
70 50 30 
70 50 30 
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200 0.27 

aOc1 0.13 - 

0.00 -200 

n. 

A 4 h- 
I l l  I l l 1 1  

Figure 9 The spectral analysis of two cosine functions with periods PI = 0.923 and Pi! = 0.571 
yr: a, regular observations consisting of 110 points, spaced by 0.1 yr; b ,  the resulting spect-; C, 

the Time Interferometer (nl = 30, p = 30, n2 = 30); d ,  the resulting spectrum. 

The numerical values of x and of the gains of time and labour expenditures GD and 
GO, corresponding to the GTI, are shown in Tables 4-6. From these Tables one 
can see that the GTI, consisting of a small number of twc-element interferometers 
(rn 5 S), reduces the duration of the experiment by up to 4-27 per cent. As to the 
gains of observations, the GTI always yields the gains which are very well estimated 
by the ratio p / ( n  + p ) .  

5.d The Sharpneis of Spectral Lines 

I t  is quite obvious that the narrower a spectral line is, the more accurate its central 
frequency may be evaluated. As it was pointed out, the frequency resolution and 
the half-power width of a spectral line are practically one and the same thing. For 
this reason, all the beneficial properties of the Time Interferometer concerning the 
frequency resolution may be applied to the sharpness of lines. Figures 9(a, b) show 
the spectrum of two cosine functions generated a t  110 equidistant points without 
gaps, and Figures 9(c, d) show the spectrum of the same functions, but represented 
as the Time Interferometer with parameters n1 = n2 = 30, p = 30. We see that 
the lines in both spectra have equal half-power widths ( q  = 0.51 rd/yr), though the 
STI required for this purpose less time and less observations. 
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a 3 7  r 13 

0.18 - 

0.22 * P 

0.11 - 

Figure 10 The separation of two consinusoids: A1 = 0.7, PI = 1.0 yr, 41 = 0; A2 = 1, P2 = 1.2 
yr and 4 = 7r: a, no separation is visible (NO = 54, C = 0); b,  the separation appears (No = 75, 
C = 0); c, a partial separation (No = 80, C = 0.10); d ,  a partial separation (No = 90, C = 0.55). 
A complete separation is shown in Figure l l(b).  

5.3 Separation of Spectral Lines 

0.00 ' I 1 I I 0.00 

The striking ability of space interferometer to discriminate between two close sources 
on the celestial sphere is a motivation to  consider the same ability of the Time 
Interferometer. Two harmonics specified by frequencies W k ,  amplitudes A k  and 
phases d k ,  k = 1 , 2  are said to be separated (resolved), if one can see in the spectrum 
two maxima placed at frequencies w1, w2 together with a minimum at ( w 1 +  w 2 ) / 2 .  
The separation may be measured by the contrast 

I I I I I I I I I  

(5.13) 

where Imjn means the spectral power at the minimum, I,,, the spectral power at 
the lower maximum. The contrast of separation depends on the total'tirne span 
of the observations, on the frequencies and on the amplitudegof the harmonics. If 
C = 1, then the separation is complete, if C < 1, we have a partial separation. 
In the case when no minimum is visible, the lines are unresolved, and, setting 

In the case of regular observations, for every set of parameters w k ,  A k l d k ,  k. = 1 , 2  
two quantities may be introduced. One of them is NO, which is the upper limit of 
the total number of observations when the lines are not resolved (C = 0). The other 
is the number of observations N1, corresponding to a complete separation of the 

Imin = I,,,, we get C = 0. 
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-0.07 - 

- 1 . 5 i r  

0.00 3.14 . 6 2 8  9.42 12.57 
frequency Crad~jrl 

0 1 2  3 4 5 6 7 8 9 101112 
time Cyrl 

( C) (d) 

9 1 0.27 I ,  
0.13 - 

1 
0.00 

J\ 
I I I I I I , I I 

A - A  
I I I I I I I I I  

196 

1.70 

0.0t 

-1.57 

1.43 

Figure 11 A complete separation of the same cosinusoids as in Figure 10: a, regular observations 
consisting of 120 points over interval 0.1 yr; b,  the resulting spectrum; c, the Time Interferometer 
(nl = 30, p = 30 and nz = 30); d ,  the resulting spectrum. The Time Interferometer provides 25 
per cent gain of time and 50 per cent gain of observations. 

lines (C = 1). In all intermediate cases (No < N < N1) the separation is incomplete 
(C < 1). Figures 10 and l l (b )  show a successive separation of two cosine functions 
with parameters 

A1 = 0.7 ,  PI = 1.0 yr, 41 = 0, 
A2 = 1.0, P2 = 1.2yr, 4 2  = x ,  

(5.14) 

(the time series, composed of cosinusoids (5.14), will be used in the following sub- 
sections as a working model). 

Consider now the case of complete separation. Two harmonics are said to be 
resolved completely if 

I w ~  - ~ 2 1 =  Aw, (5.15) 

where A w  stands for the width of spectral lines, measured from one zero point to 
the other. For the SA, in accordance with Eq. (3.13), we may take 

4n 
N1 At ‘ 

AW = - (5.16) 

Thus, the total number of observations sufficient to  resolve the harmonics completely 
is 

(5.17) 
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1.43 ~ I ~ 

0.17 - 

0.20 - f 

0.10 - 1 

Figure 12 The same as in Figure 11: a, the Time Interferometer (nl = 20, p = 40, np = 20); 
b,  the resulting spectrum; c, the Time Interferometer (nl = 15, p = 45, nz = 15); d ,  the resulting 
spectrum. Comparison with regular observations (Figuns Il(a), l l(b)) yields 33 and 37.5 per 
cent gains of time and 68 and 75 per cent gains of observations, correspandingly, 

-1.08 ; ,d , I I I I I L  I I t I I - 0.00 

In the case of the equal block STI, we may replace Eq. (5.11) by 

r -I b Y I  

2r AW = - 
b ’  

1 

I 

which for the baseline of the STI yields 

0.15 

0.07 

(5.18) 

-1.09 

(5.19) 

- 1 ’  I I I I I L  I 1 I 1 0.00 

The comparison of Eqs. (5.16) and (5.18) yields again Eq. (5.3) but now with 
x = 1. This means that, with respect to a complete resolution of the two harmonics, 
the STI with the baseline b is preferable to the SA with the “aperture” N 1 A t  = b 
since the STI resolves close lines faster than the SA, and requires less observations 
to be made. The gain of time and labour expenditure may be estimated with the 
help of Eqs. (5.4) and (5.5) (with x = 1). It is also remarkable that the resolution 
condition (5.19) defines only the length of the baseline and leaves free n and p .  
In other words, to separate the harmonics with frequencies w 1  and war one may 
construct a multitude of equal block interferometers with various values n and pI 
provided that the sum n+p remains unchanged. Figures 11,12 demonstrate various 
ways of observations needed to resolve the same functions as in Figure 10, as well 
as the estimates of the profit we gain replacing regular observations by the equal 
block Time Interferometer. 
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0.10 

0.05 - 

am 

A n  I 0.27 r - 

0.00 ,' ~, /)J\yT , -  

I I I  I I 0.13 -I 

frequency Crad/yrI frequency Crad/yI 

frequency Crad/yrl f r equrncy Cr o d / y l  

Figure 13 Separation of the same cosinusoids as in Figure 10, made by equal block Time In- 
terferometers with variable baselines and variable amounts of observations: a, n1 = 20, p = 30, 
n 2  = 20; b = 5.0yr, M = 70, C = 0.12; b ,  nl = 30, p = 30, n 2  = 30; b = 6.0yr, M = 90, C = 1.00; 
c, nl = 40, p = 30, n 2  = 40; b = 7.0 yr, M = 110, C = 0.96; d, n1 = 45, p = 30, n 2  = 45; b = 7.5 
yr, M = 120, C = 0.97. 

In some applications (when discovery or confirmation of a double structure is 
needed), it is quite sufficient to have a partial separation of the lines. As we have 
seen, in the case of the SA the partial resolution of two lines takes place if the 
total amount of observations is less than the specific value defined by Eq. (5.17). 
When the Time Interferometer is used, a partial separation occurs uxider two cir- 
cumstances. The first one is specific for the STI with equal blocks when condition 
(5.19) is not satisfied. Figure 13 shows the spectra ofour cosinusoids (5.14) following 
from the equal block STI, for which the baselines and the total numbers of obser- 
vations are changing from b = 5.0 to 7.5 yr, and from M = 70 to 120, respectively. 
These figures tell us that the STI may yield a good separation even if we know the 
periods a prion' with an error of about 30 per cent. Another example of partial 
separation is the STI with unequal blocks of observations (nl # 112). As we have 
seen in Sect. 3, if n 2  < n1/2, then the first sidepeak of the spectral window is not 
separated completely from the central peak, while the upper part of the central peak 
becomes narrower as compared with its width corresponding to 712 = 0. Figure 14 
demonstrates the ability of the STI with unequal blocks to separate our cosinusoids. 
The comparison of Figures lO(c), 13(a), 14(b) leads us to a very important conclu- 
sion: with respect to partial separation of spectral lines, the Time Interferometer is 
again preferable over the SA, since with M = 70 the STI produces the separation 
of our lines with such a value of the contrast (C = 0.12 + 0.19), for which the SA 
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0.21 - 

0.10 - 
v - 0.00 

frequency Crrd/yrl frcqJmcy Crad/yrl 

. I* , I I I I I I >  

Figure 14 Separation of the same cosinusoids ar, in Figure 10, made by non-equal block Time 
Interferometers: a, nl = 30, p = 30, n2 = 5; b = 4.75 yr, M = 65, C = 0.00; b, n1 = 30, p = 30, 
nz = 10; b = 5.0 yr, M = 70, C = 0.19; c, n1 = 30, p = 30, n2 = 20; b = 5.5 yr, M = 80, 
C = 0.80; d,  nl = 30, p = 30, n2 = 40; b = 6.5 yr, M = 100, C = 0.97. 

requires 80 observations. And still one remark is to be made. Figures 13(a) and 
14(b) show that in the case of the equal block interferometer the sidepeaks are much 
more pronounced if compared with the non-equal block interferpmeter. From this 
point of view, the latter interferometer is preferable to the former, since it allows 
to suppress false details in the spectrum making it almost clean. 

5.4 The Lowest Frequency Component 

The resolution power of the Time Interferometer may be used for contribution to 
the so-called problem of low frequencies. In the case of equally spaced time points, 
the lowest frequency which may be recognized in a spectrum is the one wich is 
separated from the zero-point by a distance equal to a half-width of the spectral 
window (measured from one zero point to another), 

(N) 2* Wmin = - 
N A t  * 

(5.20) 

In the case of the equal block STI we may take the half-width of a central peak to 
get 

( b )  a Wmin = - 
b '  

(5.21) 

These results being reformulated in terms of periods imply that the longest period, 
which can be established from a set of equally spaced data, is 
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1.00 0.26 

aoo - 0.13 - 

0.00 J 9- I 'I I I , 1 

0 1 2  3 4 5 6 7 8 9 101112 
time tyrl 

0 1 2  3 4 5 6 7 8 9 101112 0.00 3.14 6.28 9.42 12.57 
time tur l  frequency t r a d q l  

Figure 15 
(c,  d )  Time Interferometer (nl = 30, p = 30, n z  = 30). 

The largest period P,,, = 12 yr, extracted from ( a ,  b )  regular observations N = 120; 

PA:; = N At, 

whereas in the case of observations with a gap we have 

P2iz = 26. 

(5.22) 

(5.23) 

From Eqs. (5.20) and (5.21) we obtain again Eq. (5.3) with x = 1, from which it 
follows that besides the economy of observations, the Time Interferometer allows to 
find the period of a compnent, which is longer than the total time of observations 
(including the gap). Figure 15 confirms this result, showing that the 12 yr cosine 
component is registered either by 120 points of regular observations, or by 90 points 
of the STI, 30 points of which are missing. 

5.5 The Principle of Equivalence 

The comparison of the Simple Antenna and the Time Interferometer with respect 
to the frequency resolution,-separation of lines and low frequency problem gave us 
Eqs. (5.3) and (5.10), which we now rewrite in the following form: 

N = k ( M  + P), (5.24) 

where 
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1-1 "1 

I 1-1 "1 

I 

(b) 

N 

"1 P "2  

I k(N + p )  I 
Figure 16 a, Equivalence of the Time Interferometer and the Simple Antenna with respect to 
the resolution frequency; b ,  an artificial gap improves the resolution power of the initial time series. 
The case k = 1 is illustrated. 

k =  1, 

k = x ,  

x < k < 1, 

if a complete separation of the lines and the low frequency prob- 
lem is considered, 
if the resolution frequency is measured in terms of the half- 
power width of the spectral window's central peak, 
if the partial separation of the lines is studied. 

Eq. (5.24) states the principle of equivalence, which means that, with respect 
to the problems under consideration, the two-element and grating interferometers 
with the total amount of points M (including gaps) are equivalent to the Simple 
Antenna with the total amount of points k ( M  + p )  (without gaps). 

Two consequences follow from the principle of equivalence The first one implies 
that to achieve one and the same result (of those mentioned above), the Time 
Interferometer may require less time and less observations as compared with regular 
observations. The corresponding gains of time and observational expenditures may 
be estimated by Eqs. (5.4), (5.5), (5.11) and (5.12). 

The second consequence leads us to a quite remarkable result: a set of regular 
observations, consisting of N points, has a reserve of resolution power. Indeed, 
it is always possible to omit p successive points (one or several times) to convert 
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the SA into the STI or GTI with the value x as close to unity as possible. Such 
time interferometers will be equivalent to sets of regular observations consisting of 
x ( N + p )  points. So, to improve the resolution ability of a set of regular observations, 
one is either to add new observations, or to omit some observed points! 

The geometrical illustrations of the principle of equivalence are shown in Fig- 
ure 16. 

6 THE TIME INTERFEROMETER WHEN NOISE IS PRESENT 

Up to now we were dealing only with deterministic functions. In this section we 
shall see how the Time Interferometer works when a random component of the 
signal is taken into account. For the sake of simplicity, we consider the time series 
consisting of two cosine functions and noise: 

X k  = A 1  COS W l t k  + A 2  COS W ~ t k  + P k ,  k = 1, . . . , N ,  (6.1) 

where t k  are arbitrary set of time points, A l ,  w1 and A2, w 2  are the amplitudes and 
frequencies of each harmonics and T k  are the normally distributed random values 
with zero average. The power of the noise is ui. It is known that the power of the 
deterministic part in Eq. (6.1) can be defined as 

do = ( A :  + A i ) / 2 ,  (6.2) 

so the signal to noise ratio is 
2 2 = do/ao.  

Since it is regarded that the time series (6.1) is comprised of the observed values 
Z k ,  the quantity uo may be considered as a quantity which describes the accuracy 
of the instrument with respect to random errors of observations. 

We are going to study how the noise changes the accuracy of the amplitude 
estimations, if we replace the regular observations by the equal block Time Interfer- 
ometer. Usually, the frequencies w1 and w2 are obtained from the spectrum, and the 
amplitudes A1 and A 2  are derived by the least squares procedure from the equation 

where 

MA = X, 

A = [ : : ] ,  X =  
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In Eqs. (6.5)-(6.6), the following notations are used: 

(ci, Ci )  = (N/2)[1+ P(2wi)], i = 1921 (6.7) 
( C 1 , C Z )  = ( C 2 , C l )  

= (N/2)[P(Wl+ w2) + P(w1 - w2)l, (6.8) 
N 1 

N 
P ( w )  = Ren(w); Q(w) = - exp(-iwtk). 

k = l  

The function Q(w) defined by Eq. (6.9) represents a complex spectral window, 
satisfying the relation 

H ( w )  = In(w)l2. (6.10) 

Inverting the matrix M, we get 

A = M-'X, (6.11) 

while for the root mean square errors (r.m.s.e.) of the amplitudes we have 

ffA, = so(mi')'/', i = 1,2,  (6.12) 

where (mi') are the diagonal elements of M-l', and so is an estimate of a0 (the 
r.m.s.e. of unit weight), 

. N  

Compare now the r.m.s.e. which we have in case of N 
those which we would find for the Time Interferometer. 
function P ( w )  we have 

sin( NwAtl2) 
N sin(wAtl2). P ( w )  = 

(6.13) 

regular observations with 
In the former case for the 

(6.14) 

From Eqs. (6.7) and (6.8) it follows that the elements of the matrix M depend 
on the quantities 

i =  1,2,  
w i f w j  i , j =  1,2,  i #  j .  

Suppose the pi,j are beyond the region of the central peak, 

27r 
NAt  ' Pi,j - 

(6.15) 

(6.16) 

In this case the values of P(/3i,j) are small since they are determined by the sidelobes 
of the function P ( w ) .  Consequently, we obtain from Eqs. (6.5), (6.7) and (6.8) 

ffA, = C ~ ( ~ / N ) ' / ' ,  i = 1,2 .  (6.17) 

Now consider the Time Interferometer consisting of two n-point blocks of observa- 
tions, separated by a ppoint gap. As shown in Sect. 3, the spectral window H ( w )  
has sidepeaks centered a t  the Proper Frequencies Gk defined by Eq. (3.18). With 
respect to the sidepeaks, two situations are of interest. 
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2.8C 1 
-a08 - I 

0.31 ‘ 

0.15 - 

Figure 17 Spectral analysis of the same cosinusoids as in Figure 10, made by means of the Time 
Interferometer in the presence of noise. The signal to noise ratio is unity: a, nl = 30, p = 30, 
n 2  = 30; b,  the resulting spectrum; c, nl = 20, p = 40, nz = 20; d ,  the resulting spectrum. 
Comparison is to be made with Figures l l (c ,  d) and 12(a, b). 

- 2 . 9 5 - 1  1 1  I , ,  , I  I I , ,  0.00 

1. N o  one of the values pi,, coincides with the Proper Frequencies (or coincides 
with those of PF,  where the moduli of P(w) are small). In this case it follows 
from Eqs. (6.6), (6.7) and (6.8) 

bAi = orJ(l/n)1’2, i = 1, 2. (6.18) 

7 7 

2. Now suppose that at least one of the /3i,j happens to  be a PF.  Consequently, 
the values of P(&j)  in Eqs. (6.7) and (6.8) may be not negligibly small, and 
the quantities UA are to be calculated from the general formula (6.12). For 
simplicity we consider the situation when we have two close frequencies w1 
and w2 such that w1-  w:! = 01. For these harmonics we have from Eq. (6.12) 

(6.19) 

From Eqs. (6.17)-(6.19), it follows that the transition from regular observations to 
the Time Interferometer results in larger errors of the amplitude (if in both cases 
the accuracy uo of the instrument remains the same). Thus, to  obtain the same re- 
liability, the Time Interferometer is to treat the more accurate observations. Still, if 
the observations are of good accuracy, it may happen that the Time Interferometer 
will produce quite reliable results. As an example, we consider the time series of lat- 
itude variations, consisting of the so-called normal points, following each other over 
0.1 year. This time series is known to be generated by the annual and Chandler’s 
( P  - 1.2 yr) waves, and the accuracy of each point is evaluated to be uo = 0.2”. 
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To resolve the two lines completely, one needs N = 120 regularly spaced points, so 
from Eq. (6.17) we have 

U A ,  = O.o~'/&. (6.20) 

At the same time, for the Time Interferometer with n = 10, p = 50 (and it is the 
most extreme case, since H(w1 - w2) = 0.9) we find from Eq. (6.19) 

uAi  = 0.02". (6.21) 

Taking into consideration that the amplitudes of the annual and of Chandler's 
components are of order 0.1", we see that even in the most unfavourable case the 
root mean square errors satisfy the rule of three sigmas. 

Still one question remains: what the upper limit of noise is permissible to de- 
rive statistically reliable amplitudes and to have at the same time spectral lines at 
frequencies w1 and w2 still recognizable? Guided by the rule of three sigmas, one 
has from Eq. (6.12) 

3~o(rni;.')'/~ = Aj, i = 1,2.  (6.22) 

Now, we find from Eq. (6.3) 

z = 9domG'/A?, i = 1,2.  (6.23) 

Figure 17 shows the Time Interferometer with n = 30, p = 30; n = 20, p = 40, 
generated for the functions (5.14). The noise level was chosen in such a-way that 
the signal to noise ratio, z = 1,  does not exceed the critical value defined by Eq. 
(6.23). Nevertheless, as one can see, the true peaks are well recognizable. 

7 THE OPTIMIZATION OF THE TIME INTERFEROMETER 

As we have seen in Sect. 5 ,  the beneficial properties of the equal block Time In- 
terferometer over .the regular observations depend on p/n. The longer the gap, the 
better the interferometer works. On the other hand, very long baseline Time Inter- 
ferometer (p > n) produces a spectral window which contains so many sidepeaks 
that the resulting spectrum becomes hardly understandable. Moreover (see Sect. 
6), a small number of observations and large values of p/n deteriorate the reliability 
of the amplitude determination. In practice, optimal ratios p/n are to be taken 
in order to meet these contradictory requirements. Numerous numerical tests give 
confidence that if the Time Interferometer with equal blocks of observations is used, 
the optimal values are p/n = 1 ~ 2 .  In this case when the baseline 6 satisfies (5.19), a 
complete separation of close harmonics is possible, and the first sidepeak is not too 
large to confuse the interpretation of the spectrum. The Time Interferometer with 
unequal blocks is more preferable in some cases since it suppresses, to some extent, 
the sidepeaks though does not resolve two close lines completely. The recommended 
ratios for the parameters nl ,  p and nz are: nl = p, n2 I 4 2 .  
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0.28 - 0.13 - 

frequency Crad/yrI (requency t r a d ~ r l  

( C) ( d) 

0.00 3.11 6.28 9.42 12.57 0.00 3.14, 6.28 8 4 2  12.57 
frequency Cradgrl frequency Cradgrl 

Figure 18 Separation of the annual and Chandler’s components in spectra of the PVL by means 
of the equal blodc Time Interferometers: a, nl = 32, p = 32, nz = 32; b = 6.4 yr, L = 9.5 yr; b ,  
n1 = 33, p = 33, 712 = 33; b = 6.6 yr, L = 9.8 yr; c, n1 = 34, p = 34, n2 = 34; b = 6.8 yr, L = 10.1 
yr; d ,  nl = 40, p = 40, n2 = 40; b = 8.0 yr, L = 11.9 yr. 

8 APPLICATIONS OF THE TIME INTERFEROMETER T O  
ASTROMETRIC OBSERVATIONS 

To show how the Time Interferometer works when data are taken from observations, 
we chose a time series of the polar variations of the latitude (henceforth, PVL), 

(8.1) A+(t) = z ( t )  cos X - y ( t )  sin A, 

where the coordinates of the pole z ( t ) ,  y(t) were taken from the Annual Reports 
of RIH for 1967 to 1986 at the interval At = 0.1 yr. The values A+(t) correspond 
to longitude X of the Pulkovo Observatory. In Sect. 6 we have only mentioned 
the PVL, now we are going to use it in order to see how the Time Interferometer 
separates the annual and Chandler’s harmonics. 

All the properties of the Time Interferometer described in previous sections may 
be fully realized only if we know a priori the frequencies of the harmonics. In most 
practical cases, either no a priori information is available, or the information is not 
complete. Keeping this in mind, we treated the PVL by various methods, each time 
making different assumptions on what kind of a priori information is suggested. 
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13.31 ’ \ 

l C  

0.29 ~ 1 
I 

13.16 - 

13.00 

0.M 3.14 6.28 9.42 12.57 0.00 3.14 6.28 8 4 2  12.57 
frqucncy Crad/yrl f r c q u c ~ y  tr a d q l  

Figure 19 Separation of the annual and Chandler’s components in spectra of PVL by means of 
the Grating Time Interferometers: a, n = 4, p = 6, m = 10; L = 9.5 yr; b, n = 5, p = 5, m = 10; 
L =  9.4 yr; c, n = 6, p = 4, m = 10; L = 9.3 yr; d, n = 5 ,  p = 5, m = 14; L = 13.4~. 

0.15 - 

\ -  
r I I I 0.00 

8.1 Regular Observations 

Power spectra of the PVL calculated for successfully increasing number of observa- 
tions show that the annual and Chandler’s lines are not separated until 90 points 
are available; the complete separation is provided by 133 points. The estimations 
of the periods made by means of the parabolic interpolation over three adjacent 
spectral readings yield: PI = 1.00 and PZ = 1.18 yr. 

0.43 

8.2 The Time Interferometer with Equal Blocks. 
Complete Information is Available 

1 

Suppose we know exactly the periods of the harmonics to be separated (PI = 1.00 
and PZ = 1.18 yr). In this case, from Eq. (5.19) we find that the baseline of a 
suitable interferometer is equal to 6.67 yr, hence we may take n = p = 33 or 34 to 
separate the two lines completely (Figure 18b, c). 

8.3 The Time Interferometer with Equal Blocks. 
Approzimate Information is Available 

Let us assume that we are not sure that the periods we know are exact, but we 
admit that errors do not exceed 30 per cent. Thus we may adopt n = p = 32 or 40. 
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2.08 0.27 

-0.10 0.14 - 

-228 0.00 I I I I I I 1 0 1  

time Cyrl frequenq Cradq;  

Figure 20 Separation of the annual and Chandler's components in spectra of the PVL by means 
of an artificial gap: a, regular observations, N = 90, Ab(t )  in 0.01 of arcsec; 6, no separation is 
visible in the spectrum; c, the artificial gap produced the Time Interferometer nl = 40, p = 40, 
n2 = 10; b = 6.5 yr, M = 90; d,  separation of the lines is clearly visible in the spectrum, C = 0.45. 

Figures 18(a), 18(d) show that the Time Interferometer is able to show the double 
structure with a good separation. 

8.4 The Grating Interferometer. 
Approzimate Information is Available 

Suppose that we'do not know the periods exactly but we are sure that the double line 
is situated somewhere in the vicinity of the frequency w = 2n rd/yr. In this case we 
may try regular observations with periodic gaps (the Grating Time Interferometer). 
As can be seen from Figure 4, the sidepeaks of the spectral window are far from 
the central peak. For this reason (Figure 19) the spectrum contains several replicas 
of our double line, but the knowledge of approximate periods enables us to find the 
correct replica in the 'spectrum. We see that a partial resolution is available at the 
time spans L = 9.3 + 9.5 yr, and a full separation is attained at L = 13.4 yr. In 
this case we save not time, but labour expenditure up to 40 i 60 per cent. 

8.5 The Time Interferometer with Unequal Blocks. 
No  a Priori Information is Available 

In this case it seems that the interferometric idea is hopeless. But recalling that 
a set of regular observations has always a reserve of the resolution power, we may 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:0
5 

19
 D

ec
em

be
r 2

00
7 

THE TIME INTERFEROMETER 209 

combine the regular observations with the abilities of the Time Interferometer. 
Making successive acquisition of data, we have found that when the total amount 
of points reached N = 90, the broad line in the spectrum of PVL lost its symmetrical 
form giving suspicion of duplicity (see Figure 20b). In accordance with the property 
of the artificial gap, stated in Sect. 5 ,  we may omit some points in order to make 
the rest of them to be equivalent to a more extended time series. Keeping in mind 
that a non-equal block Time Interferometer suppresses the sidepeaks, we may place 
step by step the gap inside the time series in such a way that, for every value of 
increasing parameter 122, other parameters are taken as 

nl = p = ( N  - n2)/2, (8.2) 

where N = const (in our example, N = 90). Figure 20 demonstrates the result, 
obtained with the help of an artificial gap, which produced the Time Interferometer 
n l  = 40, p = 40, n2 = 10, b = 6.5 yr, M = 90. The comparison of Figures 20(b) and 
20(d) shows how the gap helped us to see clearly the two lines without additional 
observations. 

9 CONCLUSIONS 

Usually, all advantages are to be paid for. In our case, the surprising abilities of the 
Time Interferometer are paid by the contamination of the spectrum. The longer 
the gaps the better close harmonics are separated, the more dirty the spectrum 
becomes. To extract the true information from the contaminated spectra, we should 
have either sufficient a priori information of the process under consideration (and 
it is the predominant idea of the present work), or to use a suitable restoration 
technique (and it is a topic for a further study). The main goal of this work was 
to show that gaps in observational series are not to be afraid of, moreover, in some 
applications they may be used to improve the resolution abilities of power spectra, 
provided that the time series is stationary and nothing drastic is expected inside 
the gaps. The concept of the Time Interferometer, introduced in this paper, is very 
instructive, for it helps us to understand many unusual properties of time series with 
gaps from the standpoint of radio astronomy, where the corresponding properties 
of interferometers are usual. 

The author appreciates the support of this work by a grant of the American 
Astronomical Society. 
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