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ON THE FRACTAL NATURE OF THE 
LARGE-SCALE STRUCTURE OF THE UNIVERSE 

YU. V. BARYSHEV 

Astronomical Observatory of the Saint-Petersburg State University, 
Scientific-Educational Union “Earth and Universe” 

(11 December 1992) 

The observational evidences of the fractality of the large-scale distribution of galaxies are reviewed. A 
perfect linearity of the redshift-distance relation deeply inside the inhomogeneity cell in the fractal 
structure are stressed upon being contradictory to the traditional interpretation of the Hubble law as a 
consequence of homogeneity. It is shown that this contradiction could be resolved with allowance for 
the effect of gravitational cosmological redshift within a fractal structure with the fractal dimension 
DF =. 2. 

KEY WORDS Cosmology, fractals, Hubble law. 

1. INTRODUCTION 

The language of the. theory of fractals has already been used in describing the 
large-scale distribution of galaxies for several years. The term “fractal” first 
introduced by Mandelbrot (1967; 1977; 1982) has appeared to be very fruitful in 
many branches of modern physics (see, e.g., Zel’dovich and Sokolov, 1985; 
Pietronero and Tosatti, 1986; Feder, 1988; Aharony and Feder, 1989). The first 
symposium completely devoted to fractals in astronomy was held in 1990 (Hech, 
1990). 

There are three main problems arising when one considers the large-scale 
structure as a fractal. First, this is a cut-off problem, i.e., one of the observational 
determination of the fractal structure limits, of its crossover into a homogeneous 
distribution. Second, this is the problem of dark matter: we need to obtain the 
parameters of the fractal distribution not only for the luminous matter (observed 
galaxies) but for the whole mass. And the third is a problem of origin and 
evolution: what physical processes are responsible for the fractal structure arising, 
its stability and development (evolution) with time. 

This paper discusses some aspects of the problems. A review of observational 
evidences for fractality of the large-scale distribution of galaxies is given in 
Section 2. In Section 3 an “inhomogeneity paradox” is formulated which is 
connected with the strict linearity of the Hubble law deep within the fractal 
structure. A possible solution of the paradox is proposed in Section 4. 
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16 YU. V. BARYSHEV 

2. OBSERVATIONAL EVIDENCES FOR A FRACTAL STRUCTURE 

The idea of fractality of the large-scale distribution of matter in the Universe has 
a quite long history. One of the simplest examples of a regular fractal is the usual 
hierarchy when some initial elements (e.g. stars) form first-level clusters that, in 
turn, are the elements of the second-level clusters and so on (to infinity). 
Hierarchical cosmological models were discussed as long ago as in the eighteenth 
century by Thomas Wright, Immanuel Kant and Johann Lambert (see a historical 
review in Harrison, 1981, Chapter 4: “Location and the Cosmic Center”). 

The most interesting history of the large-scale galaxy distribution investigation 
in the twentieth century is excellently described by Peebles (1980; Chapter 1: 
“Homogeneity and Clustering”), see also Baryshev (1981). 

According to Mandelbrot (1967,1977,1982), the main feature of the fractals of 
discrete-mass clusters in three-dimensional Euclidean space are the statistical 
self-similarity at different scales and the power-law dependence between mass (or 
the number of objects) and radius of a sphere containing the objects: 

M ( R )  a RDF, (1) 

where DF is the fractal dimension of the cluster. Unlike a classical in- 
homogeneous sphere with a distinguished center, the fractal sphere has a 
“distinguished center” at any point mass of the structure. So, (1) is true for any 
observer at any point mass of the fractal structure (the “observer-homogeneous 
structure”). 

Galaxy counts in the 13“-20” interval are usually believed to be the main 
argument for their homogeneous space distribution. In the ~O’S, Hubble found 
that log N ( m )  is proportional to 0.6m in this magnitude interval. In the case of a 
fractal galaxy distribution ( l ) ,  the Zeeliger theorem generalization is given by 

log N ( m )  = 0.20DFm + const, (2) 

I 
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Figure 1 Integral galaxy counts in the whole observable range of magnitudes. Extrapolations to unity 
(i.e. 1 objects per 4n steradian) of homogeneous (0.6m) and fractal ( 0 . h  and 0.4m) distributions. 
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STRUCTURE OF THE UNIVERSE 17 

where DF is the fractal dimension of the galaxy distribution. The homogeneity 
takes place when D; = 3. 

Figure 1 taken from Baryshev (1992) shows galaxy counts in the whole 
observable magnitude range. N(m) has three different slopes: 1) 0.2m for 
mB < 12; 2) 0.6m for 12 C mB C 19; and 3) 0.4m for mM > 19. Such complexity of 
the dependence means at least that the homogeneity is not so evident from galaxy 
counts as was thought earlier. In any case, different interpretations of the N(m) 
behavior are possible. One of them, for example, is that there exists a multifractal 
structure of the large-scale galaxy distribution. Also, it is possible that the 
luminous mass (galaxies) has the space distribution different from that of the 
hidden mass whose fractal dimension is hidden too. 

The slope 0.2 at the bright end of N(m) is naturally interpreted as our being 
within a fractal structure with DF== 1 for the luminous mass. The slope 
corresponds to the density-radius dependence of the form p ( R )  0: R-* which is 

Figure 2 Statistical self-similarity of two examples of fractals: a). Fragments of the photographs of a 
fractal structure of colloid gold (Weitz, Huang, 1984). Sizes are 200 X 200 nrn and loo0 x loo0 nm. b). 
Fragments of the distributions of galaxies, 100 x 100 Mpc (Lapparent ef ol., 1986) and of rich clusters 
of galaxies, 500 x 500 Mpc (Tully et ol., 1992). 
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18 YU. V. BARYSHEV 

close to the well-known relation p ( R )  a R-'.8 for various systems of galaxies (de 
Vaucouleurs, 1970). 

We can consider the statistical self-similarity of the structures at various scales 
as another argument for the fractality. Figure 2a presents photographs of the 
fractal structures of colloid gold taken with an electron microscope. There sizes 
are 2 0 0 ~ 2 0 0 n m  and 1OOOX 1OOOnm. Figure 2b shows the distribution of 
galaxies in a 100 x 100 Mpc square (Lapparent et al., 1986) and the distribution of 
rich galaxy clusters (Tully et al., 1992) in a 500 X 500 Mpc square. It is clearly 
seen in both cases that, in the clusters, there are holes of all sizes consistent with 
the cluster size. For the colloid gold clusters, DF = 1.7, while for galaxy clusters 
DF lies possibly between 1 and 2. 

The power-law behavior of the two-point correlation function g ( R )  
(Peebles, 1980) is a strong evidence for the fractality of the large-scale galaxy 

-2 3. 

-2 4. 

-2 5 

-26 

-2 7 

-28. 

-29. 

-30. 

-3 f ,01 

I , 

t 4 
R o  R d t  

iKPe 'f0HfC fOOKp fflp {of'!! fooflp f6p $lo {OGpe R 

Figure 3 Dependence of mass density p on radius R for various galaxy systems (Vaucouleurs, 1970). 
A is the density estimate for the luminous mass; 0 is the virial estimate of the density. Straight lines 
correspond to fractal distributions with D, = 1 and D, = 2. 
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STRUCTURE OF THE UNIVERSE 19 

distribution together with the dependence of its amplitude A on the survey depth 
R, (Pietronero, 1987; Calzetti er al., 1988): 

Here nd(R) = (1/4nR')/(dN(R)/dR) is the differential density of galaxies in a 
sphere of radius R, (n) is the average density of the sample within R,, 

y = 3 - DF, (4) 

According to (4), y is expressed through the fractal dimension DF 
Observations give the universal slope y = 1.8 for the carrelation function for 
galaxies, galaxy clusters and superclusters (Bahcall, 1988) and their amplitudes 
follow the relation ( 5 )  (Calzetti et af., 1988; Luo and Schramm, 1992). This value 
of y agrees with the-fractal dimension of the luminous mass, DF = 1.2. 

A well-known relation between the mass density p and radius R for various 
galaxy systems (Karachentsev, 1968; Vaucouleurs, 1970) is shown in Figure 3. 
Solid straight lines - are the expected p(R) for fractal galaxy distributions with 
DF = 1 and DF = 2. The density of the luminous mass is close to p cc R-' but then 
the virial mass density will be between R-2 and R-'. 

It is important that the galaxy counts for m < 12", the power-law two-point 
correlation functions and the luminous mass density are all in a natural agreement 
with a fractal distribution of the luminous mass with DF = 1, at least in the range 
10 kpc-10 Mpc. At ,the same time, virial correlations indicate that the hidden 
mass seems to have DF=1  to 2 at scales 10Mpc-100Mpc. As for the 
inhomogeneity cell where the galaxies are distributed according to the fractal law 
and have a homogeneous distribution outside the cell, its size is, at least, more 
than 100Mpc and there are indications that it can be as large as 200-300Mpc 
(Lebedev and Lebedeva, 1988; Tully er af., 1992). 

3. THE INHOMOGENEI'IY PARADOX 

It is well known that Hubble law, i.e., the linearity at small scales 

vs - V o h  I Ho z =  --R, 
yobs C 

is a consequence of homogeneity and isotropy of the Universe expansion, in 
terms of standard Friedmann models. However, one can consider the homoge- 
neity only outside an inhomogeneity cell. Density fluctuations inside the cell will 
lead to a disturbance of pure Friedmann expansions and, hence, to a deviation 
from the linearity in the z - R relation. 

Deviation of the Hubble ratio H(R)/Ho from unity within a fractal in- 
homogeneity cell was calculated by Fang et uf., (1991) in the framework of a 
generalized Robertson-Walker model taking into account the gravitational 
condensation of matter within a spherically symmetric inhomogeneity. Their 
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20 YU. V. BARYSHEV 

R Mpc 
0 20 YO 60 80 lo0 

a 

b 

R Mpc 
Figure 4 a). Calculated deviation from the linear Hubble law inside a fractal inhomogeneity cell with 
D, = 1.2 (curve 1) and D, =, 1.5 (curve 2) (Feng, er al., 1991). b). Observed relation between the 
effective radial velocity and distance inside the inhomogeneity cell (Sandage, 1986). 

results are shown in Figure 4a. It follows from these calculations that at distances 
R I 0.2RC,,, (where Rcell is the inhomogeneity cell size) the Hubble constant can 
vary by several times! Moreover, the lesser is the fractal dimension, the stronger 
is the deviation from the linearity. 

As mentioned above, the inhomogeneity size reaches at least 100 Mpc 
(Lebedev and Lebedeva, 1988; Tully et af., 1992 Luo and Schramm, 1992). So, 
at distances less than 10-20Mpc there must be a strong non-linearity in the 
redshift-distance relation. 

However, observations suggest the opposite conclusion. According to Sandage 
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STRUCTURE OF THE UNIVERSE 21 

(1986), striking linearity of the z - R relation is observed down to the distances of 
several Mpc. The observed r ( R )  for 0-25 Mpc is presented in Figure 4b. Shaded 
are the coinciding scales in Figures 4a and 4b. 

Strict linearity in the 4-20 Mpc range contradicts the theoretical prediction. 
This is called the- inhomogeneity paradox: a highly inhomogeneous galaxy 
distribution at small scales, together with the linearity of (6) at these distances 
mean that the Hubble law linearity (discovered by Hubble at small scales, by the 
way) is not a consequence of the homogeneity. 

One may assume that our Galaxy is in some “local void” outside the fractal 
structure and thus-we have (see) a linear Hubble law for small distances. But this 
“good luck” explanation is difficult to reconcile with bright galaxy counts, 
N(m) = 0.2m + const, demonstrating that the Galaxy lies deep within the fractal 
structure or in a strong density fluctuation. 

The next section proposes another explanation of the paradox. 

4. POSSIBLE SOLUTION OF THE “INHOMOGENEITY PARADOX” 

So far as we are concerned with cosmologically small scales ( R  < 100 Mpc), the 
Newtonian theory>of gravitation is adequate for our purposes. 

Let us consider a fractal distribution of galaxies with the dimension DF in the 
distance range from the galaxy radius Ro to Rccll, the inhomogeneity cell radius. 
As mentioned above, in this case the Universe looks equally inhomogeneous 
from any galaxy (observer-homogeneous structure), i.e., spherically s mmetric 
mass distribution with any galaxy as a center will be given by M ( R )  a Rgp,  where 

Following Bond$.( 1947), let us choose a spherical coordinate system centered 
on an arbitrary galaxy emitting radiation. Also, let the observer be at the distance 
R from the source. As shown by Bondi (1947), in this case the cosmological 
redshift of spectralJines observed at small R is given by 

R E (RO, Rce,,). 

The first two terms on the right-hand side of Eq. (7) correspond to the 
cosmological Doppier shift because of the relative recession velocity u. The third 
term is the cosmological gravitational spectral shift arising from the gravitational 
potential difference, d@,.,(R) = QN(R)  - @,(O) between the source and the 
observer. Thus the spectral shift does not only depend on conditions at the source 
and at the observer’s location but also on the distribution of matter within the 
whole sphere of radius R around the source. It is essential to note that the choice 
of the frame with the origin at the source is dictated by causality and isotropy 
principles. That is why the cosmological gravitational shift is the red shift. 

It was shown by Bisnovatyi-Kogan (1972) that there is a principal possibility of 
the construction of a stationary hierarchical stellar cluster with a high gravita- 
tional redshift. Here we consider the gravitational redshift by a fractal galaxy 
distribution with the fractal dimension DF Let us define the differential mass 
density in the sphere of radius R around the source as 

Ro 3--DF 

P ( . ) = P o ( T )  9 
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22 YU. V. BARYSHEV 

where po and Ro are the density and the radius of the basic "point-like" object of 
the structure (galaxies in our case). Solving the Poisson equation for the sphere 
we obtain the following expression for the Newtonian gravitational potential 
within the sphere (for 1 < Of 53):  

For a static structure, v = 0, then it follows from (7): 

S@N(R) = (@,,,(R) - 
cz cz zcos(R) = 

and using (9) we obtain 

4nGp0R$ (5) D ~ - '  

cZDF(DF - 1) Ro z c o m  = 

For the fractal structure with DF = 2 an interesting conclusion follows immedi- 
ately that the cosmological gravitational redshift is a linear function of distance 
(Baryshev, 1981): 

where Hg may be called the gravitational Hubble constant expressed by 

Hg = 2nGpoRo = 68.6( )(A) km s-' Mpc-'. 
C 5.2 * lodz4 g/cm3 10 kpc 

Here, numerical values of po and Ro correspond to characteristic galaxy 
parameters and were chosen so that poRo = 1/2n, i.e., Hg numerically equals to 
G/c .  

Thus, a possible solution of the inhomogeneity paradox is provided by taking 
into account the cosmological gravitational redshift. In the case of OF = 2 it just 
provides the linearity of the Hubble law inside the inhomogeneity cell. 

However, one should explain why the fractal dimension is equal to 2. Are there 
now any observational or theoretical evidences for the fundamental nature of this 
value of OF? 

As already noted, the luminous matter inside the cell is fractally distributed 
with DF = 1.2. Consequently, the only one possibility for the gravitational 
explanation of the paradox is to assume that the hidden mass has the fractal 
distribution with DF = 2. Virial estimates of the hidden mass in galaxy systems of 
various scales are in accordance with Of = 2 (see a review by Baryshev, 1981). It 
is important to note that, for a fractal structure, the estimation of the total mass 
via observations of peculiar galaxy velocities is a difficult problem because each 
galaxy participates in many motions at different structure levels (scales). 

Theoretical arguments for fractals with OF = 2 are as follows. First, there exists 
a special class of robust Brownian fractals with Df = 2 (Mandelbrot, 1977). 
Second, Perdang (1990) showed that self-gravitating fractal configurations have 
critical dimension DF = 2, below which these configurations become stable to the 
gravitational phase transition. And third, Lou and Schramm (1992) considered a 
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STRUCTURE OF THE UNIVERSE 23 

theoretical restriction on a possible fractal structure arising by diffusion-limited 
aggregation. From !Ball and Witten's causality bound they concluded that the 
observed fractal dimension DF = 1.2 implies that the dimension dF of the growth 
space must be less then 2.2. That is, the background growth space (it can be some 
sort of dark matter) should involve a two-dimensional fractal structure. 
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